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Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death, which

develops in the context of fibrosis and cirrhosis caused by chronic inflammation, in turn

due to non-alcoholic fatty liver disease (NAFLD), alcohol consumption and/or hepatitis

viral infection. An increased number of senescent cells are associated with age-related

tissue degeneration during NAFLD-induced HCC, or during chemotherapeutic treatment.

Senolytic agents target selectively senescent cells. A combination of the senolytic

drugs dasatinib and quercetin (D+Q) reduced hepatic lipid accumulation and alleviated

age-associated physical dysfunction in mice. However, whether D+Q can impact the

treatment of HCC, at the end-stage of the NAFLD inflammatory spectrum, is unknown.

Here, using two well-established HCC cell lines (HepG2, Huh-7), we demonstrate

that the maximal cytostatic doses for D and/or Q (1 + 1µM) lacked efficacy in

removing doxorubicin-induced β-gal-positive senescent cells. Moreover, D+Q did not

affect doxorubicin-dependent induction of flattened morphology, activation of p16,

expression of SASP-associated genes or formation of γH2AX foci. We then investigated

the antitumor efficacy of doxorubicin, D+Q, or the combination, in xenograft studies

conducted with HCC cells inoculated in athymic nude mice. Doxorubicin reduced tumor

growth by 30% compared to control mice, while D+Q was ineffective in synergizing with

doxorubicin and in clearing doxorubicin-induced HCC senescent cells. Unexpectedly,

D+Q alone appeared to have acute pro-tumorigenic effects in control mice. While

our data need to be confirmed in animal models that fully recapitulate NAFLD, we

demonstrate that these compounds are ineffective, alone or in synergy with senescence-

inducing chemotherapy, against experimental HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the second leading cause of
cancer-related death in the world (1). As a result of advanced
disease or poor liver function, few patients with HCC are eligible
for surgery: the leading chemotherapeutics agents (sorafenib,
doxorubicin, and others) do not offer an increase in the average
survival time of 6 months (1–3). Most HCCs develop in the
context of liver steatosis, fibrosis and cirrhosis caused by chronic
inflammation. These disturbances can be part of a clinical
spectrum called non-alcoholic fatty liver disease (NAFLD), or
of prolonged alcohol abuse and/or hepatitis viral infection.
Regardless of the etiology, disease progression to HCC takes
several decades and is thus accrued by aging: in a recent US
study enrolling 59,907 the median age at the time of diagnosis
of HCC was 62 years (4). Cellular senescence refers to a
state of stable cell-cycle arrest combined with the senescent
associated secretory phenotype (SASP) (5). Great hopes rely on
the so called senolytics, agents that selectively induce removal
of senescent cells, and alleviate multiple age-related phenotypes
(6). An increased number of senescent cells is associated to
age-related tissue degeneration during NAFLD-induced HCC
(7, 8). Ogrodnik et al. showed that treatment with a combination
of the senolytic drugs dasatinib and quercetin (D+Q) leads
to an overall reduction of NAFLD in aged dietary-induced
NAFLD mice models (9). Xu et al. recently showed in a ground
breaking report that oral administration of D+Q to naturally
aged mice alleviated physical dysfunction and increased their
survival by 36% (10). D+Q previously showed efficacy also in
pre-clinical models of fibrotic pulmonary disease (11). If D+Q
have an effect also on the treatment of the more serious HCC
condition, at the end of the liver disease inflammatory spectrum,
is unknown.

RESULTS AND DISCUSSION

To address this issue, first we tested the separate dose-dependent
effects of D or Q on the viability of two well-established HCC
cell lines (HepG2, Huh-7) (7, 12–16); we administered D or
Q to increased concentrations of D or Q (1 nM−1mM) to
HepG2 and Huh-7 cells and identified 1µM as the maximal
cytostatic dose for either drug, without displaying cytotoxic
effects (Figure S1A). Subsequently, we tested the impact of
combined D+Q on the cellular senescence induced by the
chemotherapeutic agent doxorubicin, according to scheme in
Figure 1A. Four experimental groups were considered: (1)
control cells; (2) cells treated with doxorubicin (DOX) at 100 nM,
a concentration slightly cytotoxic in HCC cells (15, 17, 18). DOX
was washed out after 24 h and cells were incubated in normal
medium for seven additional days, before analyses; (3) D+Q, cells
were treated with 1µM D + 1µM Q for 24 h; (4) D+Q, DOX;
cells were treated with 100 nM doxorubicin for 24 h. Doxorubicin
was washed out after 24 h and cells were incubated in normal
medium for six additional days, before treatment with D+Q for
additional 24 h (Figure 1A). To assess cellular senescence at the
end of the treatments, C12FDG, a fluorogenic substrate for β-
galactosidase, was used for detection of senescence associated

(SA) β-gal positivity, a bona-fide standard marker of senescent
cells. C12FDG retention within the cells was evidenced by the
distribution plots obtained from the flow cytometer in the
area with stronger green fluorescence intensity (Figure S1B).
DOXO induced a 40- and 400-fold increase in SA-β-galactosidase
activity in HepG2 and in Huh-7 cells, respectively (Figure 1B).
Surprisingly D+Q treatment had no effects in removing β-gal
positive cells upon DOX treatment, as well as D+Q alone had
no significant effects compared to untreated cells (Figure 1B).
Next, we quantified the activation of p16, p21, and γH2A.X,
established markers of senescence and of DOX-induced DNA
damage, respectively (19, 20), using immunofluorescence. As
expected, DOX induced significant increase in the amount of
nuclei with more than 5 γH2A.X distinct foci marking DNA
lesions, and also in p16 and p21 staining, in Huh-7 cells
(Figures 1C,D,S1C) and in HepG2 cells (Figures S2A–C). D+Q
had no effect in preventing the activation of these markers of
senescence upon DOX treatment (Figures 1C,D, S1C, S2A–C).
In parallel we measured the expression levels of key genes
involved in cellular senescence (p16, p21) and in SASP (IL-6,
IL-8, MMP1, MMP3), using qPCR. DOX increased p21, IL-
8, MMP1, MMP3, and TGF-β mRNA levels in both Huh-7
and HepG2 cells (Figures S1D, S2D). Interestingly, IL-6 mRNA
was not expressed in HepG2 while it was found increased by
DOX treatment in Huh-7 cells (Figure S1D). D+Q was largely
ineffective in preventing the activation of senescence/SASP
genes in both cell types upon DOX treatment (Figures S1D,
S2D). In summary, DOX induced cellular senescence in HCC
cells, manifested by the SA-β-gal positivity, flattened nuclear
morphology, appearance of senescent markers and SASP gene
expression; however D+Q did not exhibit senolytic activity in
our in vitro experimental setup involving DOX-induced cellular
senescence. To investigate the in vivo antitumor efficacy of
doxorubicin, D+Q, or the combined treatment, xenograft studies
were performed. SubcutaneousHCC xenografts fromHuh-7 cells
stably over-expressing a far-red fluorescent protein (eqFP650)
were established on the dorsal flank of immunodeficient athymic
nu/nu mice, and treated until tumor size in the control/untreated
group reached 1,400 mm3 (∼23 d post-inoculation). Four
experimental groups of balb/c nude mice (n = 11 per group)
implanted with Huh-7-eqFP650 were created as it follows: (1)
CTL, control mice i.p. injected with vehicle alone (PBS); (2) DOX,
mice injected with 4 mg/kg doxorubicin at days 7 and 14 post-
implantation; (3) D+Q, mice administered with Dasatinib (D,
5 mg/kg) + Quercetin (Q, 50 mg/kg) by oral gavage, at days
9 and 16 post-implantation; (4) D+Q + DOX, mice injected
with 4 mg/kg doxorubicin at days 7 and 14 post-implantation,
and simultaneously administered with D+Q by oral gavage, at
days 9 and 16 post-implantation (Figure 2A). Tumor volume
measurement by caliper and eqFP650 in vivo imaging was
performed every 2–3 days until euthanasia. Time-dependent
tumor volume growth is illustrated in Figures 2B,C: average
tumor volume in mice of group 3 (D+Q) exceeded of 50% the
average tumor volume in mice of group 1 (CTL) (p = 0.0252).
Treatment of doxorubicin reduced tumor growth of 30% (group
2 vs. group 1, p = 0.0486; Figure 2C). Synergistic treatment of
mice with D+Q did not further enhance DOX-induced tumor
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growth inhibition (Figure 2C). Independent assessment of tumor
volume using eqFP650-dependent body fluorescence imaging
(Figure S3A) or explanted tumor weight (Figure S3B) at sacrifice
largely mirrored the values of tumor growth (Figure 2C). Of
note, D+Q treated-tumors showed increased proportion of
fibrotic-like tissue upon H/E staining (Figure S3C). Overall these
data indicate that D+Q is ineffective in clearing chemotherapy-
induced HCC senescent cells as also shown on selected
tumors sections stained for the SA-β-gal positivity (Figure 2D).
Conversely, D+Q alone displayed pro-tumorigenic effects in
vitro and in vivo in the absence of chemotherapy. This calls for
concern about the utilization of senolytics and of Q, which is
often taken as off-the-counter supplement for its documented
anti-oxidant properties, in advanced liver diseases. Moreover, a
recent clinical trial on D treatment of patients with advanced liver
cancer that cannot be removed by surgery, showed no efficacy
and significant side effects1. It remains to be demonstrated what
impact of D+Q may have in dietary/genetic mice models of
NAFLD slowly progressing into HCC (21). Whereas, D and/or
Q treatment might exert a protective/therapeutic effect against
NAFLD at high (9) but not low (22) doses, we demonstrate that
these compounds are largely ineffective alone, or in synergy with
senescence-inducing chemotherapy, against experimental HCC.

MATERIAL AND METHODS

Cell Cultures and Treatment
HepG2 and Huh-7 parental lines were obtained from CLS-
GmbH and cultured in DMEM (1X) supplemented with 10%
fetal bovine serum (FBS), with 1% penicillin/streptomycin.
Viral production and transduction of Huh-7 cells to stably
express RFP was previously described (7, 23). For chemotherapy-
inducing senescence experiments, HepG2 and Huh-7 cells were
treated for 24 h with 100 nM Doxorubicin (Sigma-Aldrich)
as vehicle DMSO was used. Cell viability was assessed by
using alamarBlueTM Cell Viability Reagent (ThermoScientific),
according to manufacturer’s instructions.

Generation of Stable eqFP650-Huh-7
Clonal Cell Line
Stable Huh-7 clonal cell line expressing the far-red fluorescent
protein eqFP650 was derived via lentiviral transduction. The
cDNA encoding eqFP650 (17) was placed into the HIV1-based
self-inactivating lentiviral vector under the control of human
EF1α-promoter. The puromycin resistance gene is linked via an
internal ribosomal entry site (IRES) element [as described in
(8)]. Virus was produced by transient transfection in HEK293T
cells and used to transduce Huh-7 cells with MOI > 10 for 48 h
in the presence of 4µg/mL Polybrene. Cells were grown for a
week under 3µg/mL puromycin selection, expanded and used
to produce subcutaneous xenograft tumors in immunodeficient
mice. Cells from tumor biopsy were re-derived into culture, and
plated to multiwell plates at limited dilution. Positive single-cell

1Available online at: https://clinicaltrials.gov/ct2/show/record/NCT00459108?

sect=X30156.

derived clones were characterized, and a high-expressing clone
designated A1 was used in subsequent experiments.

Mouse Xenografts
The study was conducted in the Animal Facility of Tallinn
University of Technology, in accordance with European
Directive 2010/63/EU and National Animal Welfare legislation;
the experimental protocol was approved by the ethical committee
of Estonian Ministry of Agriculture (now Ministry of Rural
Affairs). Forty immunodeficient athymic nu/nu mice (Envigo)
were injected subcutaneously with 5 × 106 of exponentially
growing eqFP650-Huh-7 (clone A1) cells per animal, in 100
µl 50% media: Matrigel mixture. For treatment, mice were
randomized into four cohorts: vehicle alone; doxorubicin; D+Q;
and doxorubicin combined with D+Q. Drugs were dissolved
in DMSO (doxorubicin at 10 mg/ml; D+Q in a single stock
solution of 5 and 50 mg/ml, respectively) and dilutions were
made just prior to the treatment procedure. Doxorubicin was
diluted in PBS and injected i.p. at 4 mg/kg body weight, D+Q
stock was diluted 1/10 in water and administered by oral gavage at
5 and 50 mg/kg body weight, respectively (As D+Q precipitates
in aqueous solutions, dilution was prepared individually for
each mouse, and the whole contents of the tube was gavaged).
Twice a week, images of isoflurane-sedated mice were acquired
using IVIS Lumina (PerkinElmer) with 7.5 × 7.5 cm field-of-
view, medium binning, 1–2 s exposure time and 500/Cy5.5,
535/Cy5.5, 570/Cy5.5, 605/Cy5.5 excitation (nm)/emission filter
pairs. Images were analyzed with LivingImage (PerkinElmer).
Fluorescence data were reported as background-subtracted signal
(Signal–Bkg), where background fluorescence was measured
from the same mouse nearby the injection site, as described
(Sci Rep 10332). Tumor volume measurements were performed
by a digital caliper in two dimensions, length (L) and width
(W), and volume was calculated according to the formula
V= L×W2/2.

CF12FDG Staining
Cellular senescence was quantified using CF12FDG [5-
Dodecanoylaminofluorescein Di-β-D-Galactopyranoside]
(Satereh Biotech). CF12FDG is a non-fluorescent, lipophilic,
beta-galactosidase substrate. The substrate is cleaved by
ß-galactosidase producing a fluorescent product that is well-
retained by the cells. CF12FDG detection in HepG2 and Huh-7
cells was performed by flow cytometry as it is described in (24).
Briefly, lysosomal alkalinization of HepG2 or Huh-7 cells was
induced by incubation of Baf A1 (100 nM) in humidified air
with 5% CO2 at 37C for 1 h. CF12FDG was added in the culture
media containing Baf A1 for another 2 h. After fixation with 4%
formaldehyde at room temperature, nuclei were stained with
DAPI. To quantify the cells positive for CF12FDG, cells were
rinsed with PBS, trypsinized, collected, and resuspended in ice
cold PBS. The HepG2 hepatocyte suspension was analyzed using
a flow cytometer FACSCanto (BD Biosciences).

qPCR
Total RNA was extracted from HepG2 and Huh-7 cells
using Trizol R© (Invitrogen), according to manufacturer’s
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FIGURE 1 | Effect of D+Q on chemotherapy-induced senescence of HepG2 and Huh-7 HCC cells. (A) Four experimental groups of either HepG2 or Huh-7 HCC cells

were created: 1. CTL; 2. DOX; 3. D+Q; 4. D+Q, DOX. See main text for details. (B) CTL; D+Q; DOX and D+Q, DOX-treated HepG2 or Huh-7 cells were incubated

with C12FDG. N = 3. (C) Left panels: representative micrographs displaying DAPI, p16, and γH2A.X in control, DOX-treated, D+Q-treated or D+Q, DOX-treated

HuH-7 cells; Right panels: quantification of p16 staining intensity or of γ-H2A.X positive cells. (B,D), *p < 0.05; ***p < 0.001 compared to CTL.

instructions. Real Time-PCR was performed in triplicate
utilizing StepOnePlusTM Real-Time PCR System (Applied
Biosystems, Darmstadt, Germany) and SYBRTM Select Master
Mix (ThermoScientific).

Human primer sequences were as it follows:

p16 Forward 5′-ATGGAGCCTTCGGCTGACT-3′ Reverse 5′-
GTAACTATTCGGTGCGTTGGG-3′; p21 Forward 5′-TGTCC
GTCAGAACCCATGC-3′ Reverse 5′-AAAGTCGAAGTTCCAT
CGCTC-3′ IL-6 Forward 5′-ACTCACCTCTTCAGAACGAAT
TG-3′, Reverse 5′-CCATCTTTGGAAGGTTCAGGTTG-3′; IL-8

Frontiers in Oncology | www.frontiersin.org 4 October 2018 | Volume 8 | Article 459

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Kovacovicova et al. Senolytics and Liver Diseases

FIGURE 2 | Effect of D+Q on chemotherapy-induced decrease in tumor growth and senescence in vivo. (A) Four experimental groups of balb/c nude mice (n = 11

per group) implanted with Huh-7 cells were created: 1. CTL; 2. DOX; 3. D+Q; 4. D+Q, DOX. See main text for details. (B) Representative images of mice at

euthanasia. (C) Time-dependent tumor volume assessment by caliper. Statistical differences between the experimental groups at day 23 are shown. (D)

representative pictures of SA-β-gal immunostaining of tumor sections from mice as in (A) (n = 3). The percentage of SA-β-gal-positive cells was calculated in 10

blindly chosen at a magnification of ×200. D, *p < 0.05; **p < 0.01; compared to CTL.

Forward 5′-ACTGAGAGTGATTGAGAGTGGAC-3′, Reverse
5′-AACCCTCTGCACCCAGTTTTC-3′; TGF-β, Forward 5′-GG
CCAGATCCTGTCCAAGC-3′, Reverse 5′-GTGGGTTTCCAC
CATTAGCAC-3′.

MMP1 Forward 5′-CTCTGGAGTAATGTCACACCTC
T-3′ Reverse 5′-TGTTGGTCCACCTTTCATCTTC-3′; MMP3
Forward 5′-CTGGACTCCGACACTCTGGA-3′, Reverse 5′-CA
GGAAAGGTTCTGAAGTGACC-3′; RPLP0 Forward 5′-CTGG
AAGTCCAACTACTTCCT-3′, Reverse 5′-CATCATGGTGTTC
TTGCCCAT-3′; GAPDH Forward 5′-GGATTTGGTCGTATTG
GG-3′, Reverse 5′-GGAAGATGGTGATGGGATT-3′.

Immunofluorescence
Immunofluorescence in HCC cells was performed as previously
described (25). Briefly, cells were fixed in 4% paraformaldehyde
for 20min and permeabilized with 0.1% Triton X-100 (Sigma-
Aldrich). 1:1,000 primary antibody was incubated overnight
at 4◦C. Primary antibodies were from Abcam (gammaH2A.X,
CDKN2A/p16INK4a, p21). The staining was developed using
Alexa fluorescent (488, 555) conjugated secondary antibodies,
and images were acquired using a Axio scan Z.1 or LSM 7 DUO
microscopy system, respectively (Zeiss) (LeicaMicrosystems,
Wetzlar, Germany).
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Immunohistochemistry
Sections from xenograft Huh-7 liver tumors specimens were
processed by hematoxylin and eosin staining for histologic
evaluation. Immunostaining was performed using the iVIEW
DAB Detection Kit. Primary antibody for anti-GLB1/Beta-
Galactosidase Antibody (clone 5H2) IHC-plus LS-B10217 was
obtained from LSBio. Anti-GLB1 primary antibody was diluted
1:100. Positive and negative controls were run concurrently.
Means of triplicate counts were used for statistical analyses.
The percentage of brown staining, indicating β-galactosidase
positivity, was calculated in 10 random high-power field (HPF)
at 200×magnification and expressed as means. All analyses were
performed in triplicate by two independent pathologists.

Statistical Tests
Results are expressed as means ± s.d. Comparisons between
groups were performed with the parametric Student’s t-test or
the non-parametric Mann–Whitney U-test, as appropriate, using
GraphPad Prism Software (version 5.00 forWindows, San Diego,
CA, USA): a P-value ≤0.05 was considered significant.
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Figure S1 | Effect of D+Q on chemotherapy-induced senescence of HCC cells.

(A) Dose-response of D or Q on the cell viability. Cells were incubated for 24 h with

increasing concentrations (0-1-5 nM, 10-100-500 nM, 1-5-10-50-100-500µM,

1mM) of either drug, before viability assay. (B) Representative fluorescence

scatter plot of SA-β-gal in HuH-7 cells, control or DOX-treated. (C) Quantification

of p21 staining intensity. (D) qPCR measurement of mRNA levels of cellular

senescence (p16, p21) and SASP (IL-8, MMP1, MMP3) factors in HuH-7 cells.

Results are expressed as fold induction relative to control, following normalization

to expression of the housekeeping gene phosphoribosomal protein P0 (RPLP0)

and GAPDH. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 compared to CTL.

Figure S2 | Effect of D+Q on chemotherapy-induced senescence of HCC cells.

(A) Representative immunofluorescence micrographs display staining for DAPI,

p16 and γ-H2A.X in control, DOX-treated, D+Q-treated or D+Q, DOX-treated

HepG2 cells. (B) Quantification of p16 staining intensity or of γ-H2A.X positive

cells. For the latter staining, cells with five or more nuclear foci were scored as

positive. Approximately 600 cells per group were counted. (C) Quantification of

p21 staining intensity. (D) qPCR measurement of mRNA levels of cellular

senescence and SASP factors in HepG2 cells. Results are expressed as fold

induction relative to control, following normalization to RPLP0 and GAPDH. ∗p <

0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 compared to CTL.

Figure S3 | Effect of D+Q on chemotherapy-induced decrease in tumor growth.

(A) Huh-7 cells stably expressing RFP were imaged using IVIS Lumina II. Left

panel: representative image of a tumor-engrafted mouse at 21 days. Right panel:

image-assisted quantification of tumor fluorescence intensity in mice in CTL (n =

3), DOX (n = 10), D+Q (n = 9), D+Q, DOX (n = 7). (B) At sacrifice, tumors were

excised and weighted. N = 11 per group. (C) Representative pictures of eosin

and SA-β-gal immunostaining of tumor sections from mice as in Figure 2 (n = 3).
∗p < 0.05; ∗∗p < 0.01 compared to CTL.
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