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Biglycan, a small leucine rich proteoglycan (SLRP), is an important participant in

bone homeostasis and development as well as in bone pathology. In the present

study biglycan was identified as a positive regulator of MG63 osteosarcoma cell

growth (p ≤ 0.001). IGF-I was shown to increase biglycan expression (p ≤ 0.01),

whereas biglycan-deficiency attenuated significantly both basal and IGF-I induced

cell proliferation of MG63 cells (p ≤ 0.001; p ≤ 0.01, respectively). These effects

were executed through the IGF-IR receptor whose activation was strongly attenuated

(p ≤ 0.01) in biglycan-deficient MG63 cells. Biglycan, previously shown to regulate

Wnt/β-catenin pathway, was demonstrated to induce a significant increase in β-catenin

protein expression evident at cytoplasmic (p ≤ 0.01), membrane (p ≤ 0.01), and

nucleus fractions in MG63 cells (p ≤ 0.05). As demonstrated by immunofluorescence,

increase in β-catenin expression is attributed to co-localization of biglycan with the

Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) resulting in

attenuated β-catenin degradation. Furthermore, applying anti-β-catenin and anti-pIGF-IR

antibodies to MG-63 cells demonstrated a cytoplasmic and to the membrane interaction

between these molecules that increased upon exogenous biglycan treatment. In parallel,

the downregulation of biglycan significantly inhibited both basal and IGF-I-dependent

ERK1/2 activation, (p≤ 0.001). In summary, we report a novel mechanismwhere biglycan

through a LRP6/β-catenin/IGF-IR signaling axis enhances osteosarcoma cell growth.

Keywords: osteosarcoma growth, biglycan, small leucine rich proteoglycans, IGF-IR, β-catenin, extracellular

matrix

INTRODUCTION

The small leucine-rich proteoglycans (SLRPs) are a family of proteoglycans (PGs) characterized
by a relatively small protein core (36–42 kDa), containing a number of leucine-rich repeats
and able to undergo post-translational modifications, notably substitution with various types of
glycosaminoglycan side chains (1, 2). The PGs secreted to the extracellular matrix can be found
at multiple locations, have a high level of conservation and are expressed at crucial points in
embryogenesis and tissue homeostasis, which is indicative of their importance. The SLRP gene
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family now counts 18 genes classified into five distinct
subfamilies which is based on their chromosomal organization
and functional similarities (3).

Biglycan is a canonical class I SLRP member containing
two chondroitin or dermatan sulfate side chains which are
covalently bound to attachment sites at the N-terminal (4).
Recently, novel roles in cancer biology including regulation
of proliferation, apoptosis, migration, motility, inflammation
as well as autophagy have been attributed to biglycan (5, 6).
The effects of biglycan have likewise been implicated in the
pathogenesis of osteosarcoma, primary malignant tumor of the
bone (7, 8). The highest incidence of this tumor has been reported
in children and young adults between the ages of 10 and 30
(9, 10) with a significant 30–40% of patients still exhibiting
relapses and adverse outcome despite major advances in the
treatment of this cancer (10, 11). An important characteristic of
osteosarcoma is its heterogeneity and ability to produce abundant
non-mineralized ECM–osteoid, mainly consisting of collagen
type I, glycoproteins, and proteoglycans (PGs)/GAGs (12, 13).
Specifically, biglycan has been identified as a product involved
in resistance to chemotherapy-resistant pediatric osteosarcoma
(14). Furthermore, we have previously shown that parathyroid
hormone (PTH) fragment, PTH(1-34), and fibroblast growth
factor-2 (FGF-2), through a novel cooperative mechanism of
action, modulate the extracellular matrix content of biglycan to
regulate osteosarcoma cell migration (15, 16). Key downstream
mediators of biglycan have been correlated to osteosarcoma
development and prognosis. Thus, it was recently demonstrated
that the attenuation of the low-density lipoprotein receptor-
related protein 6 (LRP6)-Wnt/β-catenin signaling pathway
through microRNA-183 (miR-183) inhibits osteosarcoma cell
proliferation and invasion (17). Wnt pathway is suggested
as one of key pathways in osteosarcoma pathogenesis (18).
Moreover, the Wnt/β-catenin pathway is a therapeutic target in
osteosarcoma as its suppression through resveratrol action elicits
anti-tumor effects (19). Other SLRP have likewise been shown to
affect various osteosarcoma cell functions including proliferation,
migration or adhesion (20–22). In the present work, taking
into account the importance of biglycan and its downstream
mediators in the functional regulation of osteoblastic lineage
cells, we examined the effect of biglycan on osteosarcoma
cell growth as well as the putative mechanisms involved. Our
findings revealed that biglycan through an LPR6/β-catenin/IGF-
IR signaling axis positively regulates MG63 osteosarcoma cell
growth.

MATERIALS AND METHODS

Materials
Recombinant human biglycan (2667-CM) and IGF-I (insulin-like
growth factor I; 291-G1) were obtained from R&D Diagnostics.
Selective inhibitor of ERK1/2 (Cell Signaling Technology;
U016) and allosteric inhibitor of IGF-IR (Sigma-Aldrich;
AG1024) were used in this study. Primary antibodies from
Santa Cruz Biotechnology used, anti-biglycan (sc100857; mouse
monoclonal; 1/100 dilution), anti-β catenin (sc7963; mouse
monoclonal; 1/300 dilution and 1/50 for immunofluorescence

experiments), anti-IGF-IR total (sc81464; mouse monoclonal;
1/100 dilution), anti-pERK1/2 (sc136521; mouse monoclonal;
1/100 dilution) and anti-fibrillarin (sc374022; 1/100 dilution). In
addition, anti-actin (Millipore MAB1501; mouse monoclonal;
½,500 dilution), anti-ERK total (Thermo scientific MA5-15343;
mouse monoclonal; 1/500 dilution), anti-pIGF-IR (Thermo
scientific PA5-37602; polyclonal rabbit; 1/500 dilution for
western blot and 1/50 for immunofluorescence experiments),
anti-tubulin (Sigma-Aldrich T4026; monoclonal mouse;
1/1,000 dilution) and anti-LRP6 (Elabscience E-AB17347;
rabbit polyclonal; 1/50 dilution) were utilized. Secondary-HRP
antibodies anti-rabbit (AP182PR); and anti-mouse (AP192PM)
were used in a 1/3,000 dilution and obtained fromMillipore.

Cell Culture
In this study, MG63 (ATCC R© CRL1427TM) human
osteosarcoma cell line of moderately differentiated fibroblastoid-
type cells and high metastatic capacity was utilized. Cells were
grown in DMEM (BiochromAG; F0455) supplemented with 10%
fetal bovine serum (FBS; Invitrogen 10500-064; heat inactivated),
glutamine (4mM; Biosera XCT1715), gentamycin (Invitrogen;
15710-049) and penicillin/streptomycin (100 units/ml; Biosera
LMA4118). Before addition of treatments (biglycan 10µg/ml or
IGF-I 10 ng/ml), cells were cultured in serum free medium for
24 h at 37◦C and 5%CO2. Inhibitors, when used (ERK inhibitor
or IGF-IR inhibitor), were added 1 h before growth factor
treatment.

Proliferation Assay
Growing cells from non-confluent cultures were harvested and
seeded in black 96-well plates (Corning; 3603) at a density of
3,500 cells per well in 200 µl of DMEM (10% FBS). The cell
density number was chosen from optimization experiments (data
not shown). The cells were allowed to rest overnight. If necessary,
transfection with siRNAs was performed in a serum-free medium
without antibiotics for 6 h. This was then replaced with fresh
medium (0% FBS) with antibiotics. Treatments were added for
the next 48 h at 37◦C and 5% CO2 in 0% FBS. The cells were
then lysed and their number was calculated using the CyQUANT
fluorometric assay (Thermo Scientific; C7026) according to the
manufacturer’s instructions. Fluorescence was measured in a
Fluorometer (Biotek) using the proposed excitation (485 nm) and
emission filters (528 nm). A separate standard curve was used to
convert fluorescence units to cell numbers. All experiments were
performed in triplicate.

Transfection With siRNA
For transfection experiments, the cells were plated in serum
and antibiotic free medium in either 96 well plates (4,000
cells/well), or 24-well plates (80,000 cells/well) or T25 flasks
(1:8 dilution of a 90% confluent T75 flask). Short interfering
RNA specific for biglycan (siBGN) [Invitrogen; stealth siRNAs
HSS184531, S328618; optimized for MG63 cells by (15)] or
β-catenin (sib-cat) (sc29209; Santa Cruz Biotechnology), and
RNAi negative control (siScr) (Invitrogen; medium GC content
negative control). To provide optimal transfection, siRNA and
Lipofectamine 2000 (Invitrogen; 11668-027) were diluted in
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Opti- MEM I Reduced Serum Medium (Invitrogen; 31985-070).
After 5min of incubation, diluted Lipofectamine 2000 was mixed
with diluted siRNA (2µM) for 20min at room temperature to
allow siRNA–liposome complexes to form and added to cell
layers. Transfection was allowed to take place during 6 h when the
medium was replaced with fresh serum-free medium containing
antibiotics and the incubation period continued for 48 h. Cells
were then harvested and mRNA or protein was extracted. When
necessary, treatments were performed during 24 h after the
initial 48 h transfection period. All transfection experiments were
repeated at least three times and performed in triplicates.

RNA Isolation and Real-Time PCR
Total ribonucleic acid isolation was performed using TRIzol
(Invitrogen; 15596026), according to the manufacturer’s
instructions. One microgram of total RNA was added for cDNA
synthesis using the TAKARA (RR037A) RT cDNA synthesis
kit. For semi-quantification of the genes of interest, real-time
reactions were performed in an Mx300P cycler using the
Universal qPCR kit (KAPA Biosystems; KK4602) in a total
volume of 20 µL. PCR conditions for amplification and primers
used are listed in Table 1. Standard curves were run in each
optimized assay, which produced a linear plot of threshold
cycle (Ct) against log (dilution). The amount of each target was
quantified based on the concentration of the standard curve
and was presented as arbitrary units. GAPDH was utilized as a
housekeeping control gene

Western Blot
Total protein secreted into the serum-free culture medium
was concentrated using Amicon Ultra 15mL (UFC901024; 10
kDa cutoff) centrifugal concentrator tubes. The initial volume
of 3mL serum-free medium collected from culture, to isolate
secreted proteins, was concentrated to final volume of 500
µL whereas, harvested cells were lysed with RIPA solution
(50mM Tris-HCl, 1% NP-40, 0.25% Na-Deoxycholate, 150mM
NaCl, 1mM EDTA with protease and phosphatase inhibitors).
Equal amounts of protein, either cell extracts or secreted, were
subjected to SDS-PAGE using 8% polyacrylamide gels under
reducing conditions. Separated protein bands were transferred
to nitrocellulose membranes in 10mM (pH 11), containing 10%

TABLE 1 | Real-time PCR primers and amplification conditions.

Primers Sequences

GAPDH Forward: 5′-GGA AGG TGA AGG TCG GAG TCA-3′

Reverse: 5′-GTC ATT GAT GGC AAC AAT ATC CAC T-3′

β-catenin Forward: 5′-TTC TGG TGC CAC TAC CAC AGC-3′

Reverse: 5′-TGC ATG CCC TCA TCT AAT GTC-3′

Cyclin Forward: 5′-CTC CAC CTC ACC CCC TAA AT-3′

Reverse: 5′-AGA GCC CAA AAG CCA TCC-3′

Biglycan Forward: 5′-TCT GAA GTC TGT GCC CAA-3′

Reverse: 5′-TCT GAG ATG CGC AGG TA-3′

Thermal conditions 94◦C for 15min;

40 cycles at 94◦C for 20 s;

55◦C for30 s;

72◦C for 30 s; 72◦C for 10min

methanol. Membranes were blocked overnight at 4◦C with PBS
containing 0.1% Tween-20 (PBS-Tween) and 5% (w/v) low-fat
milk powder. The membranes were incubated for 1 h at room
temperature (RT) with primary antibody in PBS containing 0.1%
Tween-20 (PBS-Tween) and 1% (w/v) low-fat milk powder.
The immune complexes were detected after incubation with the
appropriate peroxidase-conjugated secondary antibody diluted
(1:3,000) in PBS-Tween, 2% low-fat milk, using the LumiSensor
Chemiluminescent HRP substrate kit (Genscript; L00221V500),
according to the manufacturer’s instructions. Protein expression
of Actin was used to correct for the amount of each sample
analyzed.

Nuclear and Cytoplasmic Extract
Separation
Treated cells in T25 flasks were detached using trypsin-EDTA
(Biosera; LMT1706), deactivated with PBS and centrifuged at
1,100 rpm for 5min. Supernatants were discarded and the pellets
resuspended in 250 µL of ice cold PBS supplemented with
protease and phosphatase inhibitors. After centrifugation at 1,100
rpm for 5min at 4◦C the pellets were resuspended in 200 µL of
5x CPVNP-40 lysis buffer (10mMTris-HCl, 10mMNaCl, 3mM
MgCl2, 0.5% NP-40 with protease and phosphatase inhibitors).
Tubes were incubated on a rotating platform at 4◦C for 10min
and centrifuged strictly at 1,000 rpm for 5min at 4◦C. The
supernatants (cytoplasmic protein fractions) were kept at−80◦C.
The pellets were resuspended in 100µL of RIPA solution (50mM
Tris-HCl, 1% NP-40, 0.25% Na-Deoxycholate, 150mM NaCl,
1mMEDTAwith protease and phosphatase inhibitors), vortexed
and incubated for 60min on a rotator at 4◦C. Samples were
centrifuged to pellet insoluble fraction at 13,000 rpm for 30min
at 4◦C and after the supernatants (nucleus protein fractions) were
kept at−80◦C as well as the pellets (membrane fractions).

Immunofluorescence
MG63 cells were seeded on round coverslips placed in 24-well
plates, at a concentration of 50,000 cells/well and incubated
in complete medium for 24 h. After a 24-h serum starvation,
treatments were added and the cells incubated for 48 h at 37◦C
and 5% CO2. The cells were fixed with 5% formaldehyde and
2%sucrose in PBS for 10min at RT. After three washes with PBS
supplemented with 1% FBS, the permeabilizing agent Triton X-
100 was added for 10min and then washed before the addition of
primary antibody for 1 h at RT. Coverslips not incubated with
the primary antibody were utilized as negative controls. The
coverslips were washed again and incubated for 1 h, in the dark
at RT, with anti-mouse Alexa 555 (Thermo Scientific; A21422) or
Alexa Fluor 488 (Molecular Probes; A21206). TO-PRO-3 iodode
(Molecular Probes; T3605) diluted 1:1,000 in de-ionizedH2Owas
applied for 10min to stain nuclei. The coverslips were then placed
onto slides using glycerol as a mountant and visualized using
confocal microscopy.

Statistical Analysis
The statistical significance was evaluated by student’s t-test,
or ANOVA analysis of variance with Tukey’s post-test, using
GraphPad Prism (version 4.0) software.
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RESULTS

The Role of Biglycan on IGF-I Stimulated
MG63 Cell Proliferation
We have previously shown that biglycan is a potent modulator
of osteosarcoma cells’ migration (15). In this study we wanted

FIGURE 1 | Effect of siBGN on MG63 cell proliferation. MG63 cells were

harvested and seeded (3,500 cells/well) on 96-well plates and transfection

with siRNAs (short interfering RNAs) was performed. Cells, in each well, were

incubated in serum-free medium and transfected with either siRNAs against

biglycan (siBGN) or scrambled siRNAs (siScr), used as negative control. Cells

were counted after a 48 h incubation period, using fluorometric CyQUANT

assay kit. Results represent the average of three separate experiments. Means

± S.E.M were plotted; statistical significance: ***p ≤ 0.001 compared with the

respective control samples.

to investigate its’ possible role on osteosarcoma cell growth.
Therefore, we used siRNAs specific for the biglycan gene (siBGN)
achieving a significant downregulation of biglycan expression at
both protein and mRNA biglycan levels, as previously shown
(15). The growth ability of biglycan-deficient and control siScr
cells was evaluated using the CyQUANT fluorometric assay (20).
This approach demonstrated a strong attenuation of biglycan
deficient cell growth as compared to control (p ≤ 0.001;
Figure 1).

IGF-I Modulation of Biglycan Expression
In order to identify possible partners/mediators of biglycan
action we screened the effect of key regulators of osteosarcoma
growth on biglycan expression. This approach identified IGF-I as
a regulator of biglycan expression. Indeed, upon treating MG63
with IGF-I (10 ng/mL) for 48 h and performing western blot
analysis to supernatant and cell extract, a statistically significant
increase of secreted biglycan (p ≤ 0.01), was demonstrated
(Figure 2). Utilization of antibody specific for actin on secreted
proteins excluded a contamination by cytoskeletal proteins
(data not shown). Biglycan mRNA levels were also significantly
(p ≤ 0.01) upregulated, as shown by real-time PCR analysis
(Figure 2D). These data are well in accord with previous reports
where IGF-I has been shown to regulate the expression of
biglycan in human osteoblast-like cells (23).

FIGURE 2 | Effect of IGF-I on biglycan expression at the mRNA and protein level. (A) Expression of extracellular and intracellular Biglycan (BGN) levels of cells treated

with serum-free medium (control) and cells treated with IGF-I (10 ng/ml) was determined by Western blot analysis. Densitometric analysis of the extracellular BGN

protein band (100 KDa glycosylated proteoglycan) (B) and of the intracellular BGN protein band (45 KDa protein core band) (C) were normalized against actin and

plotted. Representative blots are presented. (D) Biglycan mRNA levels in MG63 cells treated with IGF-I (10 ng/ml) during 48 h were determined by real time PCR using

primers specific for the BGN gene and normalized against GAPDH. Results represent the average of three separate experiments. Means ± S.E.M were plotted;

statistical significance: **p ≤ 0.01 compared with the respective control samples.

Frontiers in Oncology | www.frontiersin.org 4 October 2018 | Volume 8 | Article 470

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Aggelidakis et al. Biglycan, Regulator of Osteosarcoma Growth

Due to the fact that, IGF-I/IGF-IR is a key signaling pathway
of bone anabolic processes and established in early reports
to regulate osteosarcoma cell proliferation (24) we wanted to
verify its putative action on MG63 cell growth and assess
possible connection to biglycan effects. Treating osteosarcoma
cells with IGF-I (10 ng/ml) induced a significant increase in cell
proliferation (p ≤ 0.01; Figure 3). To estimate an interaction
between biglycan and IGF-I signaling we treated biglycan-
deficient cells (siBGN) as well as cells transfected with control
scramble siRNAs (siScr) with IGF-I (10 ng/mL) for 48 h and
measured their proliferation rate. IGF-I-induced increase in cell
proliferation (p ≤ 0.01) was abolished in biglycan-deficient cells
(p≤ 0.001; Figure 3). Therefore, biglycan was shown tomodulate
significantly both basal and IGF-I induced cell proliferation of
MG63 cells, suggesting an interplay between biglycan and IGF-I
signaling in the regulation of osteosarcoma growth.

Role of IGF-IR on IGF-I-Dependent MG63
Cell Proliferation—Effect of Biglycan
Next, we examined themechanisms involved in IGF-I-dependent
growth, taking into account the fact that the IGF-IR receptor
is the key IGF-I downstream mediator (25) as well as the
confirmation of IFG-IR activation shown in our control
experiments (Supplementary Figure 1). For this purpose MG63
cells were treated with 1µM of specific IGF-IR inhibitor
(AG1024) for 48 h, with or without the presence of IGF-I
(10 ng/ml). The AG1024 concentration used was chosen after
initial optimization experiments that were performed using a
range of different concentrations (data not shown). Fluorometric
cell growth assay demonstrated that this strategy resulted in a
statistically significant decrease of both basal and IGF-I-induced
proliferation (p≤ 0.001; p≤ 0.01, respectively; Figure 4A). These
results, therefore, suggest that IGF-IR mediates both basal and
exogenous IGF-I-dependent growth ofMG63 osteosarcoma cells.

FIGURE 3 | Effect of IGF-I on cell proliferation of MG63 cells. MG63 cells were

harvested and seeded (3,500 cells/well) on 96-well plates and transfection

with siRNAs was performed. Cells, in each well, incubated with 0%

FBS-medium (control), cells incubated with 10 ng/ml IGF-I (IGF-I) and cells

transfected with either siRNAs against biglycan (siBGN) or scrambled siRNAs

(siScr) with or without IGF-I addition, were counted using fluorometric

CyQUANT assay kit. Results represent the average of three separate

experiments. Means ± S.E.M were plotted; statistical significance:

***p ≤ 0.001, **p ≤ 0.01 compared with the respectivecontrol samples.

Of note, these data highlight the importance of endogenous IGF-
IR signaling in the regulation of MG-63 cell growth (Figure 4A).

In order to investigate the direct effects of biglycan on
IGF-IR downstream signaling, the activation of IGF-IR was
studied. To this end, cell extracts of siBGN and control siScr

FIGURE 4 | Role of IGF-IR on IGF-I-dependent MG63 cell proliferation- effect

of biglycan. (A) Effect of IGF-Inhibitor on cell proliferation of MG63 cells. MG63

cells were harvested and seeded (3,500 cells/well) on 96-well plates. Cells, in

each well, incubated with 0% FBS-medium (control), 10 ng/ml IGF-I (IGF-I),

1µM IGF-I inhibitor (InhIGF-I), and 10 ng/ml IGF-I + 1µM IGF-I inhibitor

(IGF-I+ InhIGF-I), were counted using fluorometric CyQUANT assay kit. (B)

Effect of siBGN on the activation of IGF-IR. Expression of IGF-IR total protein

(IGF-IR) and phosphorylated IGF-IR protein (pIGF-IR) of cells in serum-free

medium (control) and cells transfected with either siRNAs (short interfering

RNAs) against biglycan (siBGN) or scrambled siRNAs (siScr) were determined

by Western blot analysis. (C) Densitometric analysis of the activated IGF-IR

levels (pIGF-IR/IGF-IR) from the protein and were normalized against actin and

plotted. Representative blots are presented. Results represent the average of

three separate experiments. Means ± S.E.M were plotted; statistical

significance: ***p ≤ 0.001, **p ≤ 0.01 compared with the respective control

samples.
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cells, were probed with antibodies against IGF-IR and pIGF-
IR. As presented in Figures 4B,C, the activation of IGF-IR was
strongly attenuated (p ≤ 0.01) in biglycan-deficient MG63 cells
(Figures 4B,C).

Biglycan Mediated Changes in the Wnt
Pathway (β-Catenin)
Next, to further define the mechanism of biglycan action, we
turned to the identification of putative co-operation partners.
Biglycan has been suggested to regulate Wnt/β-catenin pathway
by either mediating ligand effects or modulating downstream
signaling molecules (26–29). Indirect interactions of β-catenin
with IGF-IR receptor and other members of the IGF-I signaling
pathway have also been reported (27–29). In order to investigate
the effect of biglycan on the Wnt pathway in osteosarcoma cells,
β-catenin expression was studied after incubation of the cells with
biglycan for 48 h. Both protein (Western blot) and mRNA (Real
time PCR) analysis showed a statistically significant increase
(p ≤ 0.01) in β-catenin protein expression after the addition of
biglycan (Figure 5). This increase in β-catenin protein expression
is well in correlation with a previous report in normal human
osteoblasts (26).

β-catenin is known to regulate gene expression followingWnt
pathway activation which affects cell proliferation (30–32). The
above functions of β-catenin derive from its interplay with several
proteins in different compartments e.g., the cell membrane, the
cytoplasm and the nucleus. Therefore, β-catenin localization was
investigated at the different compartments of MG63 cells after
treatment with biglycan during 48 h. As presented in Figure 6

a significant increase in the expression of β-catenin to the
cytoplasm (Cyto C vs. CytoB; p ≤ 0.01); to the nucleus (NuclC
vs. NuclB; p ≤ 0.01) as well as to the membrane (MembrC vs.

MembrB; p ≤ 0.05) was demonstrated in biglycan treated cells
as compared to control. Therefore, biglycan regulates the protein
expression and localization of β-catenin in MG63 osteosarcoma
cells.

Role of β-Catenin in Osteosarcoma IGF-1R
Signaling
In order to investigate the role of β-catenin in the biglycan
regulated IGF-IR signaling of MG63 cells, RNA interference
methodology was utilized. MG63 cells were transfected with
siRNAs against β-catenin (siβ-catenin) for 48 h and mRNA
and protein expression of β-catenin were analyzed using Real
Time PCR and Western blot analysis, respectively. This strategy
resulted in an efficient downregulation of β-catenin at both
protein (p ≤ 0.001) and mRNA levels (p ≤ 0.001; Figure 7).

The generated β-catenin-deficient cells were used to study the
possible effect of β-catenin/Wnt pathway on IGF-IR activation.
Thus, phoshorylation of IGF-IR was assessed using Western
blot analysis of protein extracts from cells incubated with 0%
FBS medium (C), cells transfected with siβ-catenin and cells
transfected with scrambled siRNAs (siScr). Interestingly, a strong
decrease in the phosphorylation levels of IGF-IR (p ≤ 0.01) in
β-catenin deficient cells was shown (Figure 8) suggesting that β-
catenin/Wnt pathway can regulate IGF-IR activation in MG63
osteosarcoma cells.

Biglycan Co-localizes With LRP6
Previously, biglycan was shown in osteoblasts to affect Wnt-
induced β-catenin/T cell-specific factor-mediated transcriptional
activity by interacting with the LRP6 receptor (26). Therefore, we
examined whether in our osteosarcoma model biglycan interacts
with the LRP6 receptor. Utilization of immunofluorescence

FIGURE 5 | Effect of biglycan on the expression of β-catenin at the mRNA and protein level. (A) Expression of β-catenin in cells treated with 0% FBS-medium (control)

and cells treated with biglycan (BGN; 10µg/ml) was determined by Western blot analysis. (B) Densitometric analysis of the β-catenin protein bands were normalized

against actin and plotted. Representative blots are presented. (C) B-catenin mRNA levels in MG63 cells treated with biglycan (BGN) during 48 h were determined by

real time PCR using primers specific for the β-catenin gene and normalized against GAPDH. Results represent the average of three separate experiments. Means ±

S.E.M were plotted; statistical significance: **p ≤ 0.01 compared with the respective control samples.
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FIGURE 6 | Effect of biglycan on β-catenin protein expression at the different MG63 cell compartments. (A) Expression of β-catenin in the cytoplasmic compartment

of the cells treated with 0% FBS-medium (Cyto C) and cells treated with biglycan 10µg/ml (Cyto BGN), as well as the nuclear compartment of the cells (Nucl C; Nucl

BGN) and the membranes (Membr C; Menbr BGN) was determined by Western blot analysis. (B) Purity controls tubulin and fibrillarin were used for cytoplasmic and

nuclear proteins, respectively. Equal amounts of protein from each compartment were loaded and densitometric analysis was performed and plotted. Representative

blots are presented. Results represent the average of three separate experiments. Means ± S.E.M were plotted; statistical significance: **p ≤ 0.01, *p ≤ 0.05

compared with the respective control samples.

demonstrated an abundant deposition of LRP6 (green color)
and associated to the cell membrane biglycan (red color with
moderate co-localization (LRP6 + biglycan; Figure 9). Upon
treating the cells with recombinant biglycan a strong increase
in orange color, together with enhanced biglycan-LRP6 co-
localization was showed (Figure 9). These data demonstrate that
biglycan in a concentration dependent manner co-localizes with
LRP6 in MG63 osteosarcoma cells. Therefore, biglycan, through
its interaction with LRP6, activates the receptor and attenuates
β-catenin degradation.

Cross Talk Between β-Catenin and IGFR
Signaling
Cytoplasmic β-catenin can be complexed to the cell membrane
with the cadherin family members (33). We hypothesized that
β-catenin can interact with IGF-IR and to facilitate signaling.
Applying anti-β-catenin (green color) and anti-pIGF-IR (red
color) antibodies to MG-63 cells demonstrated a co-localization
between these molecules (Figure 10). Observed co-localization
was enhanced in biglycan treated MG-63 cells (Figure 10).

Biglycan Activates Canonical β-Catenin
Pathway in MG63 Cells
Wnt-mediated transcription through β-catenin—T-cell factor
(TCF)/Lymphoid enhancer-binding factor (Lef) transcription
factors, is characterized as the canonical wnt/β-catenin signaling
pathway. To assess the modulation of this pathway by biglycan
we examined the expression of a β-catenin downstream target
molecule cyclin D1 (34, 35). As demonstrated in Figure 11

cyclin D1 expression was significantly (p ≤ 0.01) downregulated
in biglycan-deficient cells, suggesting that biglycan affects
both canonical and non-canonical signaling in osteosarcoma
cells.

Role of ERK1/2 in the Biglycan Regulated
IGF Signaling
IGF-I/IGF-IR are known to activate several downstream
signaling pathways that regulate cell functions including that of
the MAP kinases (36, 37). Thus, the role of ERK1/2, member
of the MAP kinase pathway, was investigated on IGF-I/biglycan
growth effects. Utilization of an ERK1/2 inhibitor in MG63

Frontiers in Oncology | www.frontiersin.org 7 October 2018 | Volume 8 | Article 470

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Aggelidakis et al. Biglycan, Regulator of Osteosarcoma Growth

FIGURE 7 | Transfection with siRNA-specific for β-catenin. (A) B-catenin

protein expression of cells treated with 0% FBS-medium (control) and cells

transfected with either siRNAs (short interfering RNAs) against β-catenin

(siβ-catenin) or scrambled siRNAs (siScr) were determined by Western blot

analysis. (B) Densitometric analysis of β-catenin protein levels of the protein

band swere normalized against actin and plotted. Representative blots are

presented. (C) B-catenin mRNA levels in MG63 cells treated with serum-free

medium (control) and cells transfected with either siRNAs (short interfering

RNAs) against β-catenin (siβ-catenin) or scrambled siRNAs (siScr) were

determined by real time PCR using primers specific for the β-catenin gene and

normalized against GAPDH. Results represent the average of three separate

experiments. Means ± S.E.M were plotted; statistical significance:

***p ≤ 0.001 compared with the respective control samples.

cells treated or not with IGF-I (10 ng/mL) demonstrated a
significant decrease in both the basal and the IGF-I induced
MG63 cell proliferation (p ≤ 0.01 and p ≤ 0.001, respectively;
Figure 12A). These data, therefore, suggest that ERK participates
in the regulation of both basal and IGF-I dependent MG-
63 cell growth. Next, we wanted to examine the putative
effects of biglycan on ERK1/2 activation. To achieve this
aim, analysis of ERK1/2 phosphorylation was performed in
cell extracts of control cells, cells transfected with siRNAs
against biglycan (siBGN) and cells transfected with negative
siRNAs (siScr). As shown in Figures 12 B,C the activation of
ERK1/2 was significantly (p ≤ 0.001) inhibited in biglycan-
deficient (siBGN) cells. These results suggest that ERK1/2 is a
downstream mediator of IGF-IR/biglycan signaling dependent
cell growth.

FIGURE 8 | Effect of siβ-catenin on the activation of IGF-IR. (A) Expression of

IGF-IR total protein (IGF-IR) and phosphorylated IGF-IR protein (pIGF-IR) of

cells treated with 0% FBS-medium (control) and cells transfected with either

siRNAs (short interfering RNAs) against β-catenin (siβ-catenin) or scrambled

siRNAs (siScr) were determined by Western blot analysis. (B) Densitometric

analysis of the activated IGF-IR levels (pIGF-IR/IGF-IR) from the protein bands

were normalized against actin and plotted. Representative blots are presented.

Results represent the average of three separate experiments. Means ± S.E.M

were plotted; statistical significance: **p ≤ 0.01 compared with the respective

control samples.

DISCUSSION

Biglycan, an important component of bone ECM, has been
correlated to the emergence of mesenchymal tumors (7, 21, 38).
Recent publications show the importance of the “proteoglycan
signature” on cancer patients’ outcome (38) and discuss that
they can be used as sensitive biomarkers/therapy targets in some
cancer types (39–43). In the present study we demonstrate for
the first time that biglycan is an endogenous upregulator of
osteoasarcoma growth as biglycan-deficient cells were shown to
have attenuated ability to proliferate. Others, upon dissecting
the sets of genes that regulate the cell functions of biglycan-
null pre-osteoblasts using oligonucleotide microarrays, have
previously shown that biglycan deficiency modulates the genes
that regulate inflammation processes, immune response, as well
as proliferation of tumor cells (44). Furthermore, osteosarcoma
markers of poor response to therapy (Huvos grade I/II response
defines tumors with little or no response to chemotherapy) are
predominantly gene products involved in microenvironmental
remodeling and osteoclast differentiation, including biglycan
(14). We further investigated if other potential mediators
of biglycan action involved in key developmental processes
such as BMP, Wnt/β-catenin, RUNX2, HIPPO/YAP or IGF-
IR are “hijacked” by osteosarcoma (45) Previously, IGF-I was
shown to be an important enhancer of osteosarcoma cell
survival facilitating growth and attenuating apoptosis (46).
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FIGURE 9 | Co-localization of biglycan and LRP6 in MG63 cells using immunofluorescence. Biglycan (red; anti-mouse Alexa Fluor 555) and LRP6 (green; anti-rabbit

Alexa Fluor 488) protein staining of cells and respective nuclear staining (using TO-PRO-3) were evaluated in cultures after 48 h in serum-free medium (control) or

biglycan (10µg/ml). In negative controls, primary antibodies were omitted, but both secondary antibodies used (anti-mouse - negative red; anti-rabbit—negative

green). Slides were analyzed by confocal microscopy and pictures were taken using x40 magnification.
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FIGURE 10 | Co-localization of β-catenin and pIGF-IR in MG63 cells using immunofluorescence. B-catenin (red; anti-mouse Alexa Fluor 555) and pIGF-IR (green;

anti-rabbit Alexa Fluor 488) protein staining of cells and respective nuclear staining (using TO-PRO-3) were evaluated in cultures after 48 h of incubation with 0%

FBS-medium (control) or biglycan (10µg/ml). Negative controls were used wherethe primary antibodies were omitted for both secondary antibodies used (anti-mouse

- negative red; anti-rabbit—negative green). Slides were analyzed by confocal microscopy and pictures were taken using x40 magnification.
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FIGURE 11 | Effect of biglycan in the mRNA expression of cyclin D1. Cyclin

D1 mRNA levels in MG63 cells treated with 0% FBS-medium (control) and

cells transfected with either siRNAs (short interfering RNAs) against biglycan

(siBGN) or scrambled siRNAs (siScr) were determined by real time PCR using

primers specific for the biglycan gene and normalized against GAPDH. Results

represent the average of three separate experiments. Means ± S.E.M were

plotted; statistical significance: **p ≤ 0.01 compared with the respective

control samples.

Furthermore, IGF-IR is upregulated in osteosarcoma tissue
samples as recently shown by Liu et al. (47) whereas the genetic
polymorphisms of IGF-I were shown to be correlated with
osteosarcoma risk and prognosis (48). Since in the present
study, we showed an enhancement of biglycan expression
through IGF-IR downstream effects we examined the possible
involvement of IGF-IR in biglycan-dependent osteosarcoma cell
growth. Indeed, in this study IGF-IR downstream signaling,
was shown to be a strong endogenous enhancer of MG63 cell
growth, in keeping with previous reports (47, 49). Importantly,
IGF-I/IGF-IR dependent growth was completely abrogated in
biglycan-deficient cells. Previously, it has been demonstrated that
ligand-induced IGF-IR activation is followed by proteasomal
and lysosomal degradation of IGF-IR, a phenomenon of
receptor desensitization (50). Thus, endogenous mechanisms
prolonging IGF-IR activation would lead to a protracted IGF-
I-dependent growth response and facilitate cancer progression.
We hypothesized that biglycan downstream effects could lead
to enhanced IGF-IR activation and prolonged growth response
and assessed potential mediators focusing on the Wnt/β-
catenin. The indirect interactions of β-catenin with IGF-IR
receptor and other members of the IGF-I signaling pathway
have been reported as β-Catenin/POU5F1/SOX2 transcription
factor complex mediates IGF-I receptor signaling and predicts
poor prognosis in lung adenocarcinoma and Caveolin-1-LRP6
signaling module stimulates aerobic glycolysis in prostate cancer
(27–29). On the other hand, it has been shown that biglycan
regulates Wnt/β-catenin pathway in osteblastic-lineage cells,
by either mediating ligand effects or modulating downstream
signaling molecules (26).

We examined the possibility of a cross-talk between IGF-
IR and Wnt/β-catenin pathways in the biglycan effect on
osteosarcoma growth. Interestingly, in this study β-catenin
deficientMG63 osteosarcoma cells were shown to have abrogated
both basal and IGF-I-dependent IGF-IR activation, and strongly
attenuated growth. Likewise, we demonstrate for the first time
that treatment of MG63 osteosarcoma cells with recombinant
biglycan increases β-catenin expression and mediates its

FIGURE 12 | The role ofERK1/2 on MG63 cell proliferation and the effect of

biglycan expression on its activation. (A) MG63 cells were harvested and

seeded (3,500 cells/well) on 96-well plates. Cells, in each well, incubated with

serum-free medium (control), 10 ng/ml IGF-I (IGF-I), 5µM ERK1/2 inhibitor

(InhERK1/2), and 10 ng/ml IGF-I + 5µM ERK1/2 inhibitor (IGF-I+InhERK1/2),

were counted using fluorometric CyQUANT assay kit. (B) Expression of

ERK1/2 total protein (ERK1/2) and phosphorylated ERK1/2 protein (pERK1/2)

of cells incubated in serum-free medium (control) and cells transfected with

either siRNAs against biglycan (siBGN) or scrambled siRNAs (siScr) were

determined by Western blot analysis. (C) Densitometric analysis of the

activated ERK1/2 levels (pERK1/2 /ERK1/2) from the proteinbandswere

normalized against actin and plotted. Results represent the average of three

separate experiments. Means ± S.E.M were plotted; statistical significance:

***p ≤ 0.001, **p ≤ 0.01 compared with the respective control samples.

cellular deposition and enhancingβ-catenins’ cell membrane and
cytoplasmic localizations. Previously, it has been shown inmouse
calvarial osteoblasts model, that biglycan interacts with both
the canonical Wnt ligand Wnt3a and the Wnt co-receptor
low-density lipoprotein receptor-related protein 6 (LRP6).
Furthermore, this co-localization enhanced downstream Wnt-
induced β-catenin/T cell-specific factor-mediated transcriptional
activity (26). In order to clarify the mechanism of biglycan
action we examined biglycan and LRP6 respective localization in
MG63 cells utilizing immunofluorescence assays. This approach
showed that biglycan co-localizes with LRP6 in a manner
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FIGURE 13 | Schematic presentation of proposed biglycan/LRP6/IGF-IR downstream signaling axis in regulation of MG63 osteosarcoma cell growth. (A) Secreted to

ECM biglycan binds to LRP6 and activates frizzled to de-activate GSK3β. (B) β-catenin cytoplasmic pool increases. (C) β-catenin co-localizes with IGF-IR to enhance

its activation/deposition to membrane and to (D) cytoplasm. (E) pIGF-IR activates ERK1,2 to induce downstream transcriptional regulation. (F) Part of cytoplasmic

β-catenin pool translocates to nucleus to induce transcriptional regulation of target genes.

dependent on biglycan concentration. Binding of biglycan to
(LRP5/6) co-receptors determines the inactivation of the β-
catenin destruction complex and increases β-catenin cytoplasmic
pool. This allows β-catenin to accumulate in the cytoplasm and
translocate to the nucleus, where it forms a transcriptionally
active complex with TCF/LEF family members or to engage in
interactions with and stabilize its membrane/cytoplasmic pool
(51). β-catenin cytoplasmic pool is deregulated in cancer in a
manner correlated to cancer development (52).

Activation of Wnt signaling was previously shown to enhance
the survival of osteoblastic cells, as demonstrated by the
reduction in osteoblast and osteocyte apoptosis in mice not
expressing the Wnt inhibitor sFRP1 (soluble frizzled-related
protein 1) (53). Moreover, Wnt proteins were demonstrated in
a separate study to prevent osteoblast and osteocyte apoptosis by
a mechanism that requires activation of the Src/ERK signaling
pathway (54). Furthermore, increased insulin-like growth factor
receptor (IGF-1R) protein levels and an activation of the
phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3
beta/β-catenin signaling pathway were identified in a mouse
neurodegenerative disease model (55). In the present study a
strong up regulation β-catenin to the MG63 cell cytoplasm
as well as moderate upregulation to membrane and to
nucleus was evidenced upon biglycan treatment. Furthermore,
immunofluorescence demonstrated that increased MG63 cell
growth correlated with β-catenin colocalizing with IGF-IR to the
membrane, cytoplasm and nucleus. Previously in a number of
chordoma biopsies, Aleksic et al. detected IGF-1R in the plasma
membrane and cytoplasm which was expressed more strongly in

recurrent tumor than the primary (56). Furthermore, in the same
cohort Aleksic et al. had identified heterogeneous nuclear IGF-
1R, which has been linked with sensitivity to IGF-1R inhibition
(56).

Our present data demonstrate that biglycan, by binding
to the LRP6 receptor, inactivates inactivates the formation of
the β-catenin destruction complex enhancing its cytoplasmic,
membrane as well as nuclear deposition. Increased β-catenin
pool interacts with IGF-IR, strongly enhancing pIGF-IR
expression at different subcellular compartments. Furthermore,
ERK1/2 was found to be a downstreammediator of biglycan/IGF-
IR/β-catenin signaling axis facilitating MG63 cell growth.
However, we do not exclude the possibility that ERK1/2
may be a downstream mediator of other membrane receptors
including Wnt receptors (57) or that ERK1/2 contributes
to the sustaining of the β-catenin cytoplasmic pool. Indeed,
other studies have suggested an interaction(s) between the
β-catenin/Wnt and the ERK pathway without clarifying the
exact mechanism(s) of action (58–60). It has, however, been
established in NIH 3T3 cells, that WNT3A induces cell
proliferation through the activation of ERK and Wnt/β-catenin
pathways indicating that these two signaling cascades interact
at several levels (61). Moreover, in this study, we also confirm
that an increased β-catenin nuclear translocation facilitated
transcription of target cyclin D1 gene involved in cell cycle
regulation, as previously well established in other models
(62).

Our study presents some limitations. First, we utilized a
single cell line (MG63), and second, we have not identified the
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components of the IGF-IR/β-catenin co-localization complex, an
issue currently under investigation. Future studies in different in
vitro/in vivo models as well as interpolation with data obtained
from patient biopsies could provide more refined data to the
mechanism presented here.

In summary we report a novel mechanism where biglycan,
an ECM proteoglycan, through a LRP6/β-catenin/IGF-IR
axis enhances osteosarcoma cell growth (Figure 13). IGF-IR
activation results in increased biglycan secretion thus, forming an
autonomous ECM-originating signaling loop which contributes
to osteosarcoma growth. Previously PGs were discussed to
“regulate the bioavailability of hormones, growth factors, and
cytokines as well as the activation of their respective receptors
which regulate phenotypic diversibility, gene expression and
rates of recurrence in specific tumor types” (40). Defining and
targeting the components of the biglycan signaling loop on an
individual patient may basis offer ground for the generation of
tailor-made osteosarcoma strategies?
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