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The advent of immune checkpoint (ICP) blockade has introduced an unprecedented

paradigm shift in the treatment of cancer. Though very promising, there is still a substantial

proportion of patients who do not respond or develop resistance to ICP blockade.

In vitro and in vivo models are eagerly needed to identify mechanisms to maximize the

immune potency of ICP blockade and overcome primary and acquired resistance to ICP

blockade. Vγ9Vδ2T cells isolated from the bone marrow (BM) from multiple myeloma

(MM) are excellent tools to investigate the mechanisms of resistance to PD-1 blockade

and to decipher the network of mutual interactions between PD-1 and the immune

suppressive tumor microenvironment (TME). Vγ9Vδ2T cells can easily be interrogated

to dissect the progressive immune competence impairment generated in the TME by

the long-lasting exposure to myeloma cellss. BM MM Vγ9Vδ2T cells are PD-1+ and

anergic to phosphoantigen (pAg) stimulation; notably, single agent PD-1 blockade is

insufficient to fully recover their anti-tumor activity in vitro indicating that additional players

are involved in the anergy of Vγ9Vδ2T cells. In this mini-review we will discuss the value

of Vγ9Vδ2 T cells as investigational tools to improve the potency of ICP blockade and

immune interventions in MM.
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INTRODUCTION

Multiple myeloma (MM) is a disease characterized by the malignant growth of clonal plasma
cells (hereafter referred to as myeloma cells) driven by intrinsic and extrinsic mechanisms. MM is
uniformly preceded by a premalignant phase, termed monoclonal gammopathy of undetermined
significance (MGUS). The risk of progression fromMGUS to MM varies from 1 to 5% per year (1).
Interestingly, myeloma cells isolated from the BM ofMGUS already harbormany of the genetic and
epigenetic abnormalities of myeloma cells isolated from patients with overt disease. Interestingly,
long-term follow up has shown that almost 50% of high-risk MGUS never progresses to overt MM
(2). These clinical data strongly support the concept that other factors, in addition to intrinsic
myeloma cell features, are important to determine the fate and aggressiveness of myeloma cells.
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FIGURE 1 | Immune-based approaches in MM patients (A–C) and major hurdles to their definitive clinical success (D-G). (A) The monoclonal immunoglobulin

produced by myeloma cells is a very specific TAA. The antigenic determinants localized in the complementary determining regions of monoclonal heavy and light

chains (yellow and green rectangles) are termed idiotypes (Id) and are tumor-specific. Id specifities have been used to address tumor-specific immune responses. A

vaccine formulation consisting of Id-specific proteins conjugated with KLH as immunogenic carrier has been shown to generate very specific and long-lasting

anti-myeloma immune responses (6). (B) The ultimate goals of allogeneic transplantation (allo-tx) are to ensure a rapid blood engraftment mediated by donor HSC and

concurrently address donor immune effector cells to eliminate residual malignant cells (GVL) and to control post-transplant infections (GVI; green lines). Ideally, these

goals are achieved in the absence of graft rejection and/or GVHD (red lines) (72). So far, it has not been possible to clearly separate GVL from GVHD in the clinical

practice. (C) Immunomodulatory drugs like lenalidomide fine-tune multiple immune functions in MM patients: (i) they enhance and potentiate the cytototoxic and ADCC

activity of T cells and NK cells, respectively; (ii) they inhibit myeloma cell growth and induce apoptosis; (iii) they inhibit osteoclasts, ECs, and Tregs suppressor functions.

(D) The role of innate effector cells such as NK cells, NKT cells and γδ T cells has been neglected when initial immunotherapy approaches have been developed; the

need to overcome or neutralize the suppressor role of MDSCs, Tregs, TAMs, and suppressive neutrophils type II (GN2) was unkown and not addressed. (E) Another

major hurdle is represented by the ICP/ICP-L immune suppressive circuitry. The interactions between ICP expressed by effector cells (ICOS, CTLA-4, PD-, BTLA,

TIM-3) and ICP-L expressed by myeloma cells and bystander cells in the TME (ICOS-L, CD80/CD86, PDL-1/PDL-2, HVEM, GAL-9) impair anti-myeloma immunity. (F)

MM is characterized by clonal and subclonal diversity which is shaped over time by repeated treatments, responses, and relapses. This clonal heterogeneity facilitates

the immune escape of myeloma cells. (G) The TME immune infiltration discriminates between cold and hot tumors. The former are characterized by the local

recruitment and/or activation of immune suppressor cells like Tregs and MDSC; the latter are characterized by the presence of cytotoxic cells (NK, CD8, γδ T cells).

Clonal diversity, mutational load, and treatments are key factors to drive the immune infiltration of cold vs. hot tumors. Hot tumors are more sensitive to

immunotherapy than cold tumors. The MM TME is closer to cold than hot tumors. Id, idiotype; KLH, keyhole limpet hemocyanin; allo-tx, allogeneic transplantation;

HSC, hematopoietic stem cells; MM, multiple myeloma; graft-vs.-leukemia, GVL; graft-vs.-infections, GVI; graft-vs. host desease (GVHD); IMIDs, immunomodulatory

drugs; Tregs, regulatory T cells; MDSC, myeloid derived suppressor cell; tumor-associated macrophages (TAM); GN, granulocyte neutrofils; NK, natural killer; ADCC,

antibody-dependent-cellular-cytotoxicity; NKT, natural killer T cells; ICP, immune checkpoint; ICP-L, immune checkpoint ligands; TAA: tumor associated antigen.

The nature and relevance of the tumor microenvironment
(TME) in MM have comprehensively been described
elsewhere, including the role of immune cells (3, 4).
We have anticipated these insights in the mid ‘80s,
when we have shown a defective CD73 expression in
CD8+ cells which was correlated with the proliferative
activity of BM PC in both MGUS and MM (5). These
initial findings have been corroborated by many other
preclinical studies leading to the pioneeristic development
of active specific immunotherapy approaches. The unique
expression of idiotype (Id) by clonal B cells encouraged
the generation of a variety of Id-specific vaccines
(from protein- to DNA-based vaccines) which were
able to induce long-lasting and tumor-specific immune
responses (6).

Clinical results in allo-transplanted MM patients have
strengthened the perception that the only chance to
permanently eliminate residual myeloma cells [including
those surviving high dose melphalan and autologous stem cell
transplantation (ASCT)] is the recognition and elimination
by allogeneic immune effector cells (7). The development of
immunomodulatory imide drugs (IMiDs) and the clinical results
obtained with lenalidomide (including maintenance treatment
after ASCT) have brought further evidences that immune cells in
the TME are key targets to interrupt the myeloma cell prosurvival
network (8).

These approaches have significantly impacted on the clinical
outcome, but none of them has generated such an impressive
cure rate to definitely change the natural history of the disease
(Figure 1).
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RECONSIDERING THE IMMUNE
COMPETENCE OF MGUS AND MM
PATIENTS

The unsatisfactory results of immune-based approaches in MM
should not generate a pessimistic view. The reasons are rooted in
the increased knowledge about the pathogenesis of the disease,
the pathophysiology of immune responses, and the innovative
technologies available to monitor the disease, assess clinical
responses, and develop novel strategies of immune interventions.
Additional progresses have been made by shedding some
misconceptions like the wisdom thatMGUS are immunologically
blessed conditions in which myeloma cells are hold in check
by very effective immune responses. This misconception was
based on mouse models and preclinical results obtained in
humans when much less was known about the mechanisms of
immune surveillance and immune escape (9). Only recently, this
misconception has been breached by us and others revealing
that multiple immune dysfunctions are already present in MGUS
(10–13).

Another misconception to be abandoned is that the remission
state after ASCT represents a unique opportunity for immune
interventions since it is possible to achieve a minimal residual
disease (MRD) condition in this setting. We have shown more
than 10 years ago that the T-cell receptor (TCR) repertoire is
highly disrupted in patients in remission after ASCT (14). These
results have been confirmed and consolidated (15) explaining
why Id vaccination could not fulfil clinical expectations and why
lenalidomide maintenance, even nowadays, significantly extends
progression free survival (PFS), but does not definitely protect
MM patients from late or very late relapse (8).

The time is ripe to apply more informative assays to
investigate the immune competence of MGUS and MM. The
aim of this minireview is to recapitulate how interrogating the
immune competence of BM Vγ9Vδ2T cells has deepen our
knowledge about the immune derangement occurring in MGUS
and MM patients and how these informations can be applied to
design more effective immune interventions in MM.

Vγ9Vδ2T CELLS AS ULTRASENSITIVE
TOOLS TO ASSESS THE IMMUNE
SUPPRESSIVE TME COMMITMENT
IN MGUS AND MM

Vγ9Vδ2 T-cells are non-conventional T cells half-way between
adaptive and innate immunity with a natural inclination to
react against malignant B cells, including malignant myeloma
cells (16). These cells are able to sense supra-physiological
concentrations of phosphorylated metabolites (pAgs) generated
in the mevalonate (Mev) pathway of mammalian cells.
Isopentenyl pyrophosphate (IPP) is the prototypic pAg
recognized by Vγ9Vδ2 T cells. The pAgs-reacitivity of Vγ9Vδ2 T
cells can be tested in vivo and in vitro by stimulating monocytes
or dendritic cells (DC) with aminobisphosphonates like
pamidronate or zoledronate (ZA). Both compounds inhibit
farnesylpyrophosphate synthase in the Mev pathway (17, 18)

and induce intracellular IPP accumulation and extracellular IPP
release that are detected by Vγ9Vδ2 T cells. IPP recognition by
Vγ9Vδ2 T cells is mediated by the γδ TCR in association with
the isoform A1 of the butyrophilin-3 (BTN3A1) protein family
(19, 20).

Vγ9Vδ2 T cells are endowed with peculiar functional
properties which make them very good candidates for
immunotherapy: they do not require MHC restriction and
co-stimulation; they produce pro-inflammatory cytokines
(IFN-γ and TNF-α); they recognize antigens shared by a
variety of stressed and tumor cells; they behave as professional
antigen-presenting cells (21); they can provide help to B cells to
produce antibodies (22); and they can induce DC maturation
boosting αβ T cell priming and MHC-restricted antigen-specific
T-cell responses (23). We believe that this multifaceted array of
immune functions gives a unique predisposition to Vγ9Vδ2 T
cells to behave as very sentitive biosensors of the immune
suppressive TME commitment occurring in the BM of MGUS
and MM patients (24).

We have previously shown in a large series of patients (MGUS:
n = 10; MM at diagnosis: n = 70; MM in remission: n = 52;
MM in relapse: n = 24) that BM MM Vγ9Vδ2 T cells are unable
to properly react to pAgs stimulation in terms of proliferation,
CD107 expression and IFN-γ production. This is an early and
long-lasting immune dysfunction, already detectable in MGUS
individuals, largely anticipating that of CD8+ T cells and not
disappearing even when most of tumor cells have been cleared
by ASCT as in MM in remission. The investigation of pAgs
reactivity of BM MM Vγ9Vδ2 T cells has been instrumental
to show that the frequency of immune suppressor cells in
the TME [bone marrow stromal cells (BMSC), regulatory T
cells (Tregs) and myeloid-derived suppressor cells (MDSC)] are
similar in the BM of MGUS, MM at diagnosis and MM in
remission.

ROLE OF IMMUNE CHECKPOINTS (ICP)
AND ICP-LIGANDS (ICP-L) IN THE
IMMUNE SUPPRESSIVE TME
COMMITMENT OF MGUS AND MM
PATIENTS

Immune checkpoints (ICP) are key regulators of immune
activation, immune homeostasis, and autoimmunity driven by
interactions with the corresponding ligands (ICP-L) expressed
by surrounding cells (25). In cancer, the ICP/ICP-L network is
often hijacked by tumor cells to suppress anti-tumor immune
responses. This has led to the development of anti-ICP/ICP-L
monoclonal antibodies (mAbs) to treat a variety of cancers with
heterogenous results.

Among the ICP/ICP-L pairs identified so far, the PD-1/PD-
L1 axis plays a major role in the generation of the immune
suppressive TME in MM. PD-L1 expression in myeloma cells
is higher in MM and SMM than in MGUS and predicts an
increased risk of disease progression (26, 27). Paiva et al.
have shown a significant upregulation of PD-L1 expression in
residual myeloma cells of MM patients who are in first complete
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remission (27). PD-L1 expression can protect residual myeloma
cells from the immune modulation driven by lenalidomide and
promote their immune escape and regrowth. Beside myeloma
cells, MDSC, and BMSC also express high levels of PD-L1 cells
in the BM microenvironment [24 and our unpublished data],
underlining a redundancy of immune suppressor cells exploiting
the ICP/ICP-L circuitry to hamper anti-myeloma immunity in
the TME.

PD-L1 expression is paired by PD-1 overexpression in CD4+

and CD8+ T cells, and NK cells (28–30) isolated from PB and
BM of MM patients creating a very effective network to protect
myeloma cells from immune recognition and killing. Preliminary
data from our laboratory indicate that multiple ICP can be
expressed by effector cells, as already reported by Koyama’s group
in solid tumors (31).

These and other pre-clinical evidences (30, 32, 33) have
been the groundwork to introduce anti-PD-1/PD-L1 treatment
in MM patients, but clinical results have not met clinical
expectations (34–36). These data have confirmed the complexity
of the ICP/ICP-L and shown that single PD-1/PD-L1 blockade
is insufficient to recover anti-tumor immune responses in MM
patients. Investigating the defective pAg reactivity of BM MM
Vγ9Vδ2 T cells represent a unique opportunity to identify
potential partners and strategies to improve the efficacy of
ICP/ICP-L blockade and immune interventions in MGUS and
MM.

LESSONS FROM BM MM Vγ9Vδ2T CELLS

The unsatisfactory results of anti-PD-1/PD-L1 monotherapy
have stimulated the hunt for combinatorial treatment including
lenalidomide (28, 37), elotuzumab (anti-SLAMF7) (38), histone
deacetylase inhibitors, oncolytic reovirus (39), and radiation
therapy (40). Lenalidomide and pomalidomide in combination
with pembrolizumab (anti-PD-1) and dexamethasone have
progressed up to phase III first-line trials, but unexpected
toxicity in the pembrolizumab arm has led to the temporary
discontinuation of these trials (https://www.onclive.com/
web-exclusives/fda-discloses-data-on-halted-pembrolizumab-
myeloma-trials). These hitches are paradigmatic examples how
difficult is to carry on immunotherapy studies without a full
knowledge about the TME landscape and the local conundrum
of tumor-host interactions.

We have shown that a significant fraction of Vγ9Vδ2 T cells
that are anergic to pAg stimulation in the TME of MGUS
individuals and MM patients are PD-1+ (24). The attempts to
fully recover anti-myeloma BM Vγ9Vδ2 T-cell activity in vitro
by single PD-1 blockade has failed (24). Investigating the
mechanisms of resistance to PD-1 blockade in PD-1+ BM MM
Vγ9Vδ2 T cells can provide useful hints to improve the potency
of ICP blockade in MM and other diseases.

Multiple ICP expression by immune cells, paired by multiple
ICP-L expression in tumor cells and surrounding cells in
the TME is emerging as a general mechanism of cancer
resistance to ICP blockade. Our preliminary results show that
BM MM Vγ9Vδ2 T cells express multiple ICP engaged by the

corresponding ICP-L expressed by myeloma cells and bystander
cells. ICP-L overexpression in MDSC reinforces their intrinsic
immune suppressive commitment, but ICP-L overexpression in
endothelial cells and BMSC reflects a contranatural protumoral
recruitment operated by myeloma cells in the TME. Our data
showing that anergic PD-1+ Vγ9Vδ2 T cells up-regulate PD-
1 and express alternative ICP (TIM3, LAG3; that we have
defined super-anergic state), if stimulated with pAgs in the
presence of single PD-1 blockade, indicates that the TME is
reprogrammed to resist any mild and/or insufficient attempt to
recover antitumor immune function (Figure 2). This is not very
different from what we have learned from chemotherapy when
polychemotherapy has replaced single-agent chemotherapy (i.e.,
ABVD for Hodgkin’s disease, R-CHOP for diffuse large B-cell
lymphoma, ICE for acute myeloid leukemia etc).

Currently, the most common strategies to overcome the
onset of alternative ICP are combinations of multiple anti-ICP
antibodies. This approach, supported by in vitro and in vivo
data, is impeded by the prohibitive costs and increased side
effects and toxicity in the clinical setting. The analysis of
the molecular interactions between different ICP (PD-1, TIM-
3, LAG-3) in anergic Vγ9Vδ2 T cells could help to identify
mechanistic interventions to prevent alternative ICP uregulation
and boost the immune potency of ICP inhibitors.

POTENTIAL CONTRIBUTION OF Vγ9Vδ2T
CELLS TO NOVEL IMMUNE TREATMENTS

The spectrum of immune interventions has significantly
broadened inMM over the last few years thanks to novel findings
and technical advances. Immune responses mediated by non-
conventional T cells like Vγ9Vδ2 T cells, NKT cells, and CD1a-
restricted T cells have gained significant consideration similar to
MHC-restricted immune responses mediated by CD8+ cells. The
characterization of suppressor cells like MDSC, Tregs, BMSC,
and very importantly, the discovery of the ICP/ICP-L network
have been other important steps to promote the renaissance of
immunotherapy in MM. The identification of additional targets
other than Id has led to an unprecedented surge of mAbs directed
against myeloma cells (CD38, CD138, SLAMF7, CD138, BCMA),
the TME (ICP/ICP-L), or both (CD38, SLAMF7, anti-PD-L1)
(41, 42). Notably, CD38-targeted therapy with daratumumab has
emerged as of the most effective passive immunotherapy ever
developed in MM (43).

Current adoptive immunotherapy approaches under
preclinical or clinical investigation include ex-vivo (CAR-T,
TCR-engineered T cells) or in vivo redirected T cells [bispecifc
T-cell engager (BiTEs)] (44, 45). Clinical trials testing BCMA-
redirected CAR-T cells are producing impressive results in
heavily pretreated relapsed and/or refractory MM patients
(44–49).

TCR-engineered T cells are genetically modified in order
to express αβ TCR with enhanced affinity for selected TAA.
In contrast to CAR, αβTCR gene transferred cells retain HLA
restriction of Ag recognition and are sensitive to intracellular
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FIGURE 2 | Potential contribution of rescued Vγ9Vδ2T cells to immune treatments in MM. (A) BM Vγ9Vδ2T cells in the TME are PD-1+ and anergic to

pAg-stimulation. This anergy is not overcome by pAg stimulation in the presence of anti-PD-1. Paradoxically, the pAg + anti-PD-1 combination deepens the anergy of

BM MM Vγ9Vδ2 T cells (super-anergic state). One possible hallmark of super-anergic immune effector cells is the expression of multiple ICP (i.e., LAG-3. TIM-3) on the

same cells. Combinations of multiple anti-ICP antibodies (anti-PD-1/anti-LAG3/anti-TIM-3) is necessary to overcome the super-anergic state. If rescued from the

anergic or super-anergic state, Vγ9Vδ2T cells can become attractive candidates for immune interventions as proposed in panels B-E. Compared to conventional T

cells, Vγ9Vδ2T cells are not MHC-restricted and can be activated by pAgs (IPP), and stress-induced self ligands (i.e., MICA/B) other than CARs, tumor-specific

transferred αβ TCR genes, and BITEs (see also text). (B) The “costimulatory only” CAR Vγ9Vδ2 T cells approach (58). In these cells, the cytotoxic capacity of CD3

(signal 1) is mediated through the native γδ-TCR recognition of IPP, whereas costimulation (signal 2) is provided by a CAR recognizing BCMA with an endodomain

consisting of the innate NKG2D signaling molecule, DAP10. The cytotoxic ability of CAR Vγ9Vδ2T cells is improved by the recognition of other molecules expressed

by myeloma cells like MICA/B via NKG2D. (C) BITEs can be used to re-direct CD16-expressing Vγ9Vδ2T cells against MM antigen (i.e., BCMA) and enhance their

cytotoxic anti-tumor activity. (D) Vγ9Vδ2T cells can act as APC to present TAA to MHC-restricted CD4+ and CD8+ T cells. APC-Vγ9Vδ2T cells express many

APC-related cell surface receptors like MHC-I and II, and co-stimulatory proteins (CD80, CD86). (E) The beneficial activity of Vγ9Vδ2T cells in the allo-tx settings can

be exploited as follows: i) direct infusion of unmanipulated grafts containing small amounts of donor circulating Vγ9Vδ2T cells; these cells can increase in number after

infusion depending on several factors like infections etc; (ii) donor Vγ9Vδ2 T cells from healthy donors are expanded ex-vivo before reinfusion in graft recipients using

pAg like zoledronic acid and IL-2 (73); (iii) donor Vγ9Vδ2T cells are expanded in vivo in the recipient after allo-tx with pAgs like zoledronic acid and IL-2. BM, bone

marrow; pAg, phosphoantigen; CAR-T, chimeric antigen receptor-T; co-stim-CAR, “costimulatory only” CAR; BITEs, bispecifc T-cell engager; APC, antigen-presenting

cell; TAA, tumor-associated-antigen; allo-Tx, allogenic-transplantation; GVHD, graft-vs.-host disease; GVL, graft-vs.-leukemia; GVI, graft-vs.-infections; IL-2,

interleukin-2.

peptides (44, 45). Cancer testis antigens are under investigation
as potential TAA in MM patients (50, 52).

Despite a growing enthusiasm, immunotherapy progresses
are still facing many hurdles. The majority of MM treated with
anti-CD38 mAbs (daratumumab) eventually progress and the
mechanisms involved in resistance to daratumumab are largely
unknown. CAR T cells also are not free from handicaps like
reduced expression of BCMA onmyeloma cells, short persistence
or loss in vivo of functional CAR T cells (44–49). Bispecific CAR
T cells targeting simultaneously twomyeloma associated antigens
may compensate the decreased BCMA expression, but it may also
increase on-target off-tumor toxicity. MHC down-regulation on
tumor cells may compromise the therapeutic efficacy of αβTCR
gene transferred T cells, whereas the eventual recognition of cross
reactive epitopes from alternative target antigens may account
for considerable on-target off-tumor toxicity. Autoimmune fatal
complications have occurred with MAGE-A3 enhanced affinity
αβTCR gene transferred T cells (51). Another drawback of
αβTCR gene transfer to conventional CD3+ αβ T cells is the
formation of mixed TCR dimers with unknown specificities

due to pairing of endogenous and introduced α and β TCR
chains (53).

BMVγ9Vδ2 T cells can be very attractive candidates to deliver
antitumor responses in MM, provided that they are rescued from
the immune dysfunction they are afflicted. These cells recognize
a broader range of targets (including metabolic targets like IPP
and self-induced stress ligands) and possess a more favorable
safety profile than conventional T cells (16). This unique feature
has been exploited to reduce the potential “off target” toxicity
of CAR Vγ9Vδ2 T cells (54–57). Fisher et at (58) have designed
“costimulatory only” CAR Vγ9Vδ2 T cells in which activation
signals 1 and 2 are provided by separate receptors. In these dual-
receptor CAR Vγ9Vδ2 T cells, the cytotoxic capacity of CD3
(signal 1) is mediated via the native γδ-TCR recognizing IPP,
whereas costimulation (signal 2) is provided by a CAR-mediated
recognition of TAA mediated by DAP10, the endodomain
consisting of the NKG2D receptor (Figure 2B). Normal healthy
tissues which do not express IPP do not activate Vγ9Vδ2 TCR
and are spared from Vγ9Vδ2 T cell cytotoxicity. Interestingly,
these “costimulation only” CAR Vγ9Vδ2 T cells express lower
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levels of PD1 and TIM3 than traditional CAR Vγ9Vδ2 T cells
after long term culture (58).

Vγ9Vδ2 T cells are excellent candidates for αβTCR gene
transfer without the risk of expression of undesired mixed TCR
dimers (59). Another interesting approach is to engineer αβ T
cells to express tumor-specific Vγ9Vδ2 TCRs (TEGs) to redirect
αβ T cells against cancer cells (60). Vγ9Vδ2 TCR-redirected αβ

T cells very efficiently kill cancer cell lines in vitro and primary
acute myeloid leukemia blasts in a humanized mouse model.
Very recently, TEGs have also been generated in MM patients
and shown to be able to recognize and kill myeloma cells in a
3D model (61). Vγ9Vδ2 T cells can also be redirected against
myeloma cells with BITEs (Figure 2C). The bispecific antibody
[(HER2)2xCD16] has been used to re-direct CD16+ Vγ9Vδ2 T
cells against Her2+ tumor cells that were killed with very high
efficiency (62). HLA-independent recognition of TAA by tumor-
redirected CAR Vγ9Vδ2 T cells or BITEs-activated Vγ9Vδ2 T
cells may prelude to the development of allogeneic “off the shelf ”
CAR products.

Another unique feature of Vγ9Vδ2 T cells is their capacity
to act as antigen-presenting cells (APC) to boost antigen-
specific immune responses mediated by CD8+ cells (21, 63)
(Figure 2D). Combination therapy of Vγ9Vδ2 T-APC-based
vaccines with ICP blockade may have synergistic activity leading
to enhanced anti-tumor immune responses and long-lived
immuno-surveillance (64, 65). These adjuvant properties are not
lost even after chimerization of Vγ9Vδ2 T cells as demonstrated
by Capsomidis A. (57)

Lastly, the multifunctional properties of Vγ9Vδ2 T cells may
also be beneficial in the allo-tx setting (allo-tx) (Figure 2E)
(66). Vγ9Vδ2 T cells have been reported to cause less graft-vs.-
host disease (GVHD) than αβ T cells while retaining graft-vs.-
leukemia activity (GVL) (67, 68). A protective effect of Vγ9Vδ2 T
cells against both leukemia cell regrowth and infections has
been reported in haploidentical HSCT depleted of TCR-αβ/CD19

lymphocytes (69). Lastly, recent studies suggest an overall
favorable effect of high Vγ9Vδ2 T cells immune reconstitution
after HSCT; patients with elevated numbers of Vγ9Vδ2 T cells
had a significantly higher overall survival rate and a decreased
rate of acute GVHD compared to patients with low Vγ9Vδ2 T
cell counts (70).

CONCLUSIONS

Investigation of BMMMVγ9Vδ2 T cells has been useful to gather
a faithfully picture of the immune suppressive TME in MGUS
andMM.Understanding themechanisms that are responsible for
BM Vγ9Vδ2 T-cell dysfunction, with special regard to resistance
to PD-1 blockade, can help to overcome ICP resistance and
safely integrate ICP/ICP-L blockade in the immune treatments
of MGUS and MM patients. The use of nanotechnologies
may improve delivery of antagonistic antibodies to block ICP
inhibitory receptors compared to free antibodies and improve T
cell activation (71).

Finally, the functional rescue of BM Vγ9Vδ2 T cells
is an attractive opportunity to exploit their multifaceted
immune functions to carry on ex-vivo and in vivo adoptive
immunotherapy interventions.
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