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The association of radiotherapy and immunotherapy has recently emerged as an exciting

combination that might improve outcomes in many solid tumor settings. In the context

of breast cancer, this opportunity is promising and under investigation. Given the

heterogeneity of breast cancer, it might be meaningful to study the association of

radiotherapy and immunotherapy distinctly among the various breast cancer subtypes.

The use of biomarkers, such as tumor infiltrating lymphocytes, which are also associated

to breast cancer heterogeneity, might provide an opportunity for tailored studies.

This review highlights current knowledge of the association of radiotherapy and

immunotherapy in the setting of breast cancer and attempts to highlight the therapeutic

opportunities among breast cancer heterogeneity.
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INTRODUCTION

Breast cancer (BC) is the most frequently diagnosed cancer and leading cause of cancer death
among females worldwide. BC survival is closely related to cancer biology and disease stage,
in a disease setting that presents a tremendous heterogeneity in terms of natural history (1).
Historically, Halsted proposed that BC represents a local disease that progressively spreads to
adjacent tissues through lymphatics (2); Fisher then underlined the systemic component of the
disease (3, 4) and finally Hellman suggested that BC is heterogeneous, varying from a solely
local disease throughout its whole course vs. systemic disease at presentation (5, 6). Local and
systemic treatments address therapeutically these two BC elements. The current challenge becomes
the introduction of emerging therapies, such as immunotherapy, in association to established
modalities, such as radiotherapy (RT), chemotherapy or targeted treatments in order to improve
oncological outcomes. This review will examine existing data highlighting potential combinations
of immunotherapy and RT in the setting of BC. The possible implications of BC heterogeneity on
RT-immunotherapy combinations will also be discussed.

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2018.00609
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00609&domain=pdf&date_stamp=2018-12-12
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pelagia.tsoutsou@h-ne.ch
mailto:pelagia.tsoutsou@chuv.ch
https://doi.org/10.3389/fonc.2018.00609
https://www.frontiersin.org/articles/10.3389/fonc.2018.00609/full
http://loop.frontiersin.org/people/80564/overview
http://loop.frontiersin.org/people/601276/overview
http://loop.frontiersin.org/people/648491/overview
http://loop.frontiersin.org/people/425263/overview


Tsoutsou et al. Radiotherapy, Immunotherapy and Breast Cancer Heterogeneity

BIOLOGICAL CONSIDERATIONS OF BC

The molecular biological basis of BC heterogeneity was poorly
understood until 2000 when Perou and colleagues brought into
light at least four distinct BC subtypes (7). Tumors were classified
based on their gene expression and the fact that variations of
their transcriptional program were implicated in their diversity.
A classification system based upon the gene expression profile
of a tumor was thus developed, with selection of particular
gene groups (intrinsic gene subset) constantly present in the
same tumor and distinct among different tumors. Others have
subsequently further dissected BC heterogeneity (8) providing
tailored therapeutic targets to distinct subsets of BC.

Nowadays, BC is no longer considered a unique disease,
but the clinical manifestation of several. The classification of
4 subtypes, associated to distinct clinical behaviors and natural
histories of BC, has permitted refining systemic therapy in order
to improve patient’s outcome and minimize toxicities (9–11).
Despite this, a complete image of the biological heterogeneity of
BC in regards to molecular alterations, sensitivity to treatment
and cellular composition, is still lacking. In clinical practice, most
BC tumors are classified as Luminal A or B, HER-2 positive,
or triple negative (TN) based on pathological parameters in
immunohistochemistry, such as hormone receptor status, HER-
2 status, grade, and proliferation index (Ki-67), that have been
well defined (12), although they do not perfectly correspond
to the molecular subtypes defined by Perou (13). Luminal A is
the most favorable subtype in terms of prognosis and endocrine
sensitivity (14), while triple negative remains a subtype with
highly aggressive biology, associated with an increased risk of
locoregional recurrence (15) and systemic failure (16).

ESTABLISHED TREATMENT OPTIONS IN
BC

Surgery is an important treatment modality for non-metastatic
disease of every stage. Neo/adjuvant systemic treatments, namely
chemotherapy, endocrine therapy, and targeted treatments, have
been been combined with surgery in the non-metastatic setting
given their ability to reduce the risk of systemic and local
recurrence (17). Systemic treatments have been the cornerstone
in the metastatic setting and have been providing overall
survival gains within the last decades (18). Radiotherapy is
a local/locoregional treatment with the potential to sterilize
residual microscopic disease in BC. It is often indicated after
mastectomy, when prognostic factors imply an increased risk
of locoregional recurrence (LR), and systematically after breast
conserving surgery, permitting equal locoregional control rates
to mastectomy and conferring an overall survival benefit (19).

The indication of a systemic treatment is now refined by
the use of surrogates, which permit the selection of patients
at highest risk for relapse, and thus in need for an additional
“preventive” treatment (prognostic factors), as well as the
patients with enhanced probabilities of response to a given
treatment (predictive factors, a concept known as treatment
personalization. BC is perhaps the paradigm of personalized

therapy, since data accumulation, due to its high incidence, has
permitted unprecedented insight into disease heterogeneity.

CANCER IMMUNOTHERAPY

Immunotherapy is an emerging modality in cancer treatment.
The basic principle for introducing immunotherapy in
cancer treatment is that although tumors are finally
poorly immunogenic entities, which, according to the
“immunosurveillance hypothesis,” escape immune detection
(20), they present as initially immunogenic and are eliminated by
the immune system. Natural selection results in the persistence
of the less immunogenic clones, through the expression of
immunosuppressive cytokines and growth factors (21), though
a procedure known as “immunoediting,” which progressively
enriches tumor microenvironment by immunosuppressive cell
populations, such as Treg (CD4+CD25+regulatory T cells) and
hijacked plasmacytoid dendritic cells (pDCs) (21, 22).

The central idea of cancer immunotherapy is to identify
tumor specific antigens, not present in essential normal
tissues (so that autoimmune phenomena are avoided), which
could induce a tumor-specific immune response and promote
adaptive immunity to fight back the tumor within a given
cancer patient. Immunotherapies comprise active, passive or
immunomodulatory strategies, although some of them overlap
(23). Vaccines or adoptive-cell therapies with autologous T-cells
are active strategies aiming to increase the ability of the patients’
own immune system to mount an immune response against the
patient’s tumor (24).

Truly tumor-specific antigens, “tumor-associated antigens”
(TAAs) are rare (25), but still can be detected within the tumor
and in the peripheral blood of patients with specific tumors
(26). In order to identify and clone TAAs, tumor infiltrating
lymphocytes (TILs) have been isolated, and emerge as a
therapeutic tool (27). Both antigen presentation and lymphocyte
activation depend on the tumor microenvironment (28), while
the interaction of lymphocytes with antigen-presenting cells
occurs in regional lymph nodes, where dendritic cells (DCs,
which are professional Ag-presenting cells) migrate during
their maturation process (Figure 1). DCs present antigens to
lymphocytes, activating them to identify, target and destroy
tumor cells (29). The microenvironment can induce tumor-
suppressing and promoting pathways, including the secretion of
cytokines and growth factors by stromal cells and promoting
macrophage polarization, angiogenic switch and immune
suppression or evasion by affecting in situ immune cells of
myeloid and lymphoid lineage (30).

TUMOR-INFILTRATING LYMPHOCYTES
(TILS): A BIOMARKER OF BC
IMMUNOGENICITY

TILs as a Biomarker
TILs infiltrating BC are tumor specific T cells chronically exposed
to tumor associated antigens (TAAs) (31).Whereas normal breast
tissue does not contain large quantities of immune cells (32),
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FIGURE 1 | Tumor-regional lymph node communication after irradiation. NKC,

natural killer cells; Ag, antigen; APC, antigen-presenting cells; L, lymphocytes;

DCs, dendritic cells; M, macrophages; N, Neutrophil.

TILs infiltration can be observed in specific subtypes of BC
(Table 1). Notably, TILs are mainly present in TNBC and HER-
2 positive BC, in which subtypes their increased number has
a positive prognostic impact. Increased TILs infiltration has
also been correlated to better overall prognosis and response to
neo-/adjuvant chemotherapy (34) and recently, TILs have been
proven an independent prognostic factor for disease-free survival
(DFS) and overall survival (OS) in TNBC (34). The first studies
of TILs have been published in a pivotal study published in
1992, in which the predictive value of TILs for axillary lymph-
node status, tumor diameter and histological and morphometric
variables has been reported in 489 BC patients after 10-year
follow-up (35). More importantly, they correlated to recurrence-
free survival and BC-specific survival in rapidly proliferating,
axillary lymph-node negative disease (36).

In the last five years, TILs have been evaluated in about 16,000
patients, thus highlighting the growing interest in this biomarker
(35–39). Loi et al. have shown in 2,009 patients participating
in the Breast International Group (BIG) 02-98 trial (a phase
III trial in the adjuvant setting of early BC), that TILs are an
important prognostic biomarker, but in TN patients only (33).
In that study, after calculation of tumor lymphocyte infiltration
(defined as the percentage of mononuclear cells within the
epithelium of the invasive tumor nests) and stromal lymphocyte
infiltration (defined as the percentage of infiltrating lymphocytes
into the stroma), a lymphocyte predominant phenotype (LPBC)
was defined as >50% infiltration of either tumoral or stromal
TILs (sTILs).

As expected, TILs were higher in TN and HER-2 positive
subgroups given they are highly proliferative tumors. TILs were
independent predictors of DFS and OS in the TN subgroup of
patients only. Importantly, for every 10% increase in TILs there
was a 15–17% (stromal vs. intratumoral TILs) decrease in the risk
of recurrence and a 17–27% decrease in the risk of death (stromal
vs intratumoral TILs). The 5-year DFS was 92 vs. 62%, and the 5-
year OS was 92 vs. 71% for TN patients with a LPBC phenotype
vs a non LPBC phenotype, respectively. However, it should be

noted that only 27 patients had a LPBC in the TN group, while
229 patients had not. In that study, TILs were also predictive of
response to taxanes within the HER-2 positive subtype only (33).

The OS and DFS benefit has recently been confirmed in a
meta-analysis in TNBC, where a 15–20% gain in any recurrence
or mortality was shown for every 10% TILs’ increase (40). In
TNBC patients, intratumoral or stromal presence of TILs has
been consistently associated with a survival benefit. In a meta-
analysis that was conducted to identify the prognostic value of
TILs and/or TILs subsets in BC patients stratified by infiltration
sites, the presence of TILs was associated to improved disease-
free survival (DFS) (HR= 0.82; 95% CI, 0.76–0.88 8) and overall
survival (OS) in TNBC patients; (HR = 0.79; 95% CI, 0.71–
0.87). Both intratumoral and stromal TILs were associated with
good prognosis, while LPBC was a surrogate of a particularly
significant survival benefit (41).

It was then shown in 12,439 BC patients that the presence of
CD8+ TILs is associated with good prognosis in HER-2 positive
patients (regardless of ER positivity) also (37). In that study, a
21–28% reduction (stromal vs intratumoral TILs, respectively)
in the hazard of BC-specific mortality was shown in all ER
negative tumors (HER-2 positive and TN); for HER-2- and ER-
positive tumors, a 27% reduction in the hazard of BC-specific
mortality was shown with intratumoral CD8+ TILs (37). Finally,
in multivariate analyses of combined data coming from two large
phase III randomized adjuvant BC trials, the prognostic value of
TILs in TNBC has once more been confirmed (35, 42). Moreover,
it was shown that the likelihood of absence of TILs increased as
the number of positive nodes increased (36).

Molecular and Physiological Features of
TILs
TILs can be detected with heamatoxylin and eosin (H&E)
staining on histological slides as well as with light microcopy.
Additional immunohistochemistry (IHC) helps to characterize
specific lymphocyte markers (31). In BC, TILs consist mainly
of heterogeneous lymphocyte populations phenotyped as CD8+

(cytotoxic) and CD4+ (T helper) T cells, as well as CD19 B
cells and natural killer (NK) cells (31, 43). These cell types have
different functions with a variable functional significance and
impact in the context of BC. They possess cytolytic and cytokine
secretion properties, as well as the property to recognize unique
tumor antigens (31).

TILs are functionally important, since immunomodulatory
gene activation, as well as high expression of immunological
gene signatures has been detected in patients with enriched
TILs (44) and associated to intrinsic tumor qualities (45). These
analyses were undertaken in full-face tissue sections, consisting
of the entire tumor, whereas Mahmud et al. showed a prognostic
significance for CD8+ lymphocytes at distance of the tumor
(>1cm diameter from the tumor) (44). Functionally, these
studies suggested that TILs in BC have a Th1 polarization and
express immune checkpoint molecules, such as programmed
cell death-1 (PD-1) (46). TILs express mRNA related to genes
involved in T-cell activation and T-cell checkpoint receptors,
such as indoleamine 2,3-dioxygenase 1 (IDO1) and markers of
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TABLE 1 | The median percentage of stromal tissue TILs within the various BC subtypes (33).

BC subtype Median percentage of stromal tissue

TILs (%)

Minimum percentage of stromal tissue

TILs (%)

Maximum percentage of stromal

tissue TILs (%)

ER- positive/HER-2 negative 10 1 75

HER-2 positive 15 0.5 80

TN 20 2.5 75

T-regs (34, 47). Notably, the expression of immunosuppressive
markers also increases with TILs’ infiltration but should not
be considered as an ineffective immunity signal (31, 34, 48).
It seems indeed that the stimulus of immune recognition of
breast tumors is the repertoire of tumor mutant peptides, while
a variable correlation between tumor mutation burden and T-cell
effector function has been recognized (31, 49). TNBC is generally
known to possess an increasedmutation rate while TNBC tumors
accumulate mutations 13.3 times faster than luminal tumors
(50). It was shown that the relapse rate after chemotherapy and
radiotherapy is higher in patients with BC when they carry a
TLR4 loss-of-function allele, which induces an impaired innate
immune response to tumor-cell death (51).

In the meta-analysis of TNBC, a clear benefit in OS was
maintained for CD8+ and FOXP3+ (regulatory) TILs (40),
however, given that data on these TILs’ phenotype are limited,
their specific prognostic value should be considered with caution.
Others have shown that CD8+, CD3+, and CD20+ TILs are
associated to better response to neo-adjuvant chemotherapy (52).
Moreover, the prognostic value of FOXP3+ TILs seems to be
related to ER positivity: FOXP3+ TILs are related to improved
prognosis in ER-negative tumors while they are significantly
associated with poor survival in ER-positive BC (53). The
expression of PDL-1 in BC tumor cells is associated with elevated
TILs and longer recurrence-free survival suggesting a functional
link between TILs and tumor PD-L1 upregulation (48, 54). High
intratumoral and stromal CD3+, CD4+, and CD8+ TILs have
been also shown to be prognosticators of OS in 150 patients with
BC (all subtypes represented) (54). In a meta-analysis, CD3+,
CD8+ and the ratio of CD8+/FOXP3+ TILs presented the most
significant positive effect on survival (hazard ratio (HR): 0.59
(confidence interval (CI) 0.43–0.78; HR:0.71 (CI:0.62–0.82 and
HR:0.48, CI:0.34–0.68, respectively) (55). The relevance of local
lymphoid structures to support immune activation in response
to RT has also been recently suggested by our group in medullary
BC (56), a type of BC infiltrated with tertiary lymphoid structures
(TLS). We showed acute and transient TLS depletion after hypo-
fractionated RT, followed by a restoration phase and identified
possible cellular targets (i.e., Tregs) that could be selectively
modulated in subsequent studies to optimize anti-tumor immune
response (56).

Hormone-receptor (HR)-positive BC is less proliferative and
is expected to be less immunogenic. In fact, TILs have not been
shown to maintain their prognostic value in the context of HR-
positive BC and might be associated with worse survival, as
shown in a pooled analysis of 3,771 patients treated with neo-
adjuvant therapy (57). The role of TILs seems to be unclear in this

setting (58), while the surprising finding that TILS are associated
with poorer prognosis has also been observed in metastatic HR-
positive BC patients treated with metronomic chemotherapy
(59). In fact, CD4+ TILs display a positive prognostic value in
patients with HR-negative tumors, while FOXP3+/CD8+ TILs
display a negative prognostic value in those with HR-positive
tumors (60). However, it has been shown that HR-positive
tumors possess lower CD8+ TILs, while aminority possesses high
FOXP3+ cells (61).

TILs, a Biomarker Beyond Prognosis
Despite the emerging importance of TILs as prognosticators and
predictive factors, several points need to be addressed before their
introduction into clinical practice. This has also been the case in
other tumor sites, such as ovarian cancer (62). In this disease,
a genetic background has been implicated in the mechanism
associated with TILs infiltration (63).

Our group believes that TILs represent a biomarker beyond
prognosis with major therapeutic implications in BC (64).
It remains an open question if this intrinsic quality can be
manipulated and a host can be “pushed” to a more favorable
immunologic response within the different contexts of disease
heterogeneity. This is particularly important mainly in the
early BC setting, where a favorable immune response could
eradicate microscopic, dormant disease that would eventually
manifest as metastasis; moreover, this could also optimize local
control, therefore providing an essential component of disease
eradication both at the local, as well as at the regional and
distant setting. According to the immunosurveillance hypothesis,
poorly differentiated tumors were shown to be more antigenic
and therefore stimulate a stronger immunogenic response (65).
As discussed by Loi, this immunogenic response might not be
sufficient to eradicate existing tumor, but might be important in
preventing recurrence after surgery, as also shown in BC in the
setting of preventing metastasis (42).

Immunotherapy in BC
Vaccines have reached a relatively advanced stage of clinical
evaluation in BC. Vaccines attempt to enhance tumor killing
by reinforcing tumor-dependent cellular cytotoxicity, which
relies mainly upon NK and CD8+ T-cells. In a study that
has evaluated immunological effects of conventional treatment
in preoperative and postoperative BC patients, as well as in
healthy controls, NK cells’ quantity and functional cytotoxicity,
as well as T-cell functions were decreased in post-operative,
post-chemo/radiotherapy patients, while cytokine counts were
increased in pre-operative patients (66). This study suggests
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that early introduction of immunotherapy interventions might
be more efficient (66). Immunotherapy merits testing in
early disease stages, where tumor burden is less important
and immunotherapy might be more efficient in eradicating
microscopic disease. Therefore, the design of early phase window
studies needs to be emphasized in order to fully unveil the
potential of this modality.

Existing BC vaccines have been reviewed by Soliman (67). In
these studies, patients with minimal tumor burden and those
not heavily pretreated seemed to benefit most from vaccines.
A hypothesis would be that antigen-specific, cytotoxic T-cells
activated after vaccination are not numerically sufficient to fight
against an increased tumor burden, while they might be capable
of eradicating microscopic, indolent disease.

A detailed review of the role of immunotherapy in BC
has suggested various strategies to introduce this modality
into clinical trials (68). The concept of BC heterogeneity is
important, since it has been shown that not all BC subtypes are
immunogenic. The notion of immunogenic tumors, as detected
by increased TILs counts, is relevant for highly proliferating
tumors and notably for the HER-2 positive and TN subtypes.

Immunotherapy in TNBC
In the paradigm of TNBC, checkpoint inhibitors have been
tested and shown interesting activity profiles (69). It has been
shown that 20% of TNBC express PD-L1 (70). The overall
response rate (ORR) in a phase IB study of 28 metastatic
TNBC patients with pembrolizumab monotherapy was 18.5%
(71). Atelizolizumab has shown an ORR of 24% in 21 metastatic
TNBC bearing PD-L1-positive tumors (72). Two ongoing
studies of monotherapy with checkpoint inhibitors are underway
(KEYNOTE-086 (NCT02447003) (phase II) and KEYNOTE-
119 (NCT02555657) (randomized phase III) (69). Studies of
combination of checkpoint inhibitors with chemotherapy have
also been promising. A phase Ib trial of atezolizumab and nab-
paclitaxel in the same setting has shownORR of 42% (73) and two
studies are currently ongoing: IMpassion130 (NCT02425891),
and KEYNOTE-355 (NCT02819518) (both phase III) (69).

The TONIC trial recently showed that nivolumab in TNBC
induced an ORR of 22% with a median response duration of 9
months in responders (74). Interestingly, nivolumab treatment
was initiated after priming the tumor microenvironment with
either irradiation or chemotherapy, resulting in a promising
response rate that appeared higher than expected based
on previous PD-1/PD-L1 blockade monotherapy studies in
unselected TNBC. Here, the median time to response was 2.1
months, and the median response duration was 9.0 months.
Median progression-free survival was 3.4 months (95% CI 2.5–
3.7 months). Among patients with a complete or partial response,
the 1-year overall survival rate was 83%, compared with 13% in
the one patient who had stable disease.

Immunotherapy in HER-2 Positive BC
In HER-2 positive disease, trastuzumab downregulates
HER-2 signaling by blocking heterodimers; it has also been
shown to activate killing of HER-2 overexpressing cells by
antibody-dependent means, through activation of NK cells

(75, 76). Patients with immunoglobulin fragment (IgG Fc)
polymorphisms have better trastuzumab responses, through the
enhancement of an immune response (77). Trastuzumab has
already been combined to HER-2-specific vaccines resulting in
enhanced responses (78). However, patients in the metastatic
setting eventually progress and acquire resistance to these
treatments. Despite trastuzumab resistance, HER-2-based
vaccines, that induce polyclonal antibody responses against HER-
2 have shown enhanced anti-tumor activity when administered
with lapatinib in murine models. In a phase I study of a HER-2-
based cancer vaccine combined with lapatinib in 12 patients with
metastatic, trastuzumab-refractory, HER-2-overexpressing BC,
the regimen was well tolerated and anti-HER-2-specific Ab was
induced in all patients, while very satisfactory overall survival
rates (1y-OS: 92%) have been observed (79).

For a comprehensive and recent overview of undergoing
immunotherapy studies in BC, the reader is referred to the works
of Puzstai et al. (80), Vonderheide et al. (58), and Kroemer
et al. (81). Within all this evidence, it becomes apparent that
immunotherapymight be an interesting strategy formaintenance
or prevention of micrometastasis, while in the setting of very
advanced stages with an important disease burden, it might be
insufficient by itself to eradicate the disease.

Immunotherapy in HR-Positive BC
Given the poor immunogeneicity and the ambivalent role of TILs
in HR-positive BC, immunotherapy is not expected to have a
major therapeutic role in this setting (69). Immunotherapy is
mostly effective when sufficient neo-antigens exist, so that T-cells
can be activated and BC has been shown to possess a medium
mutational load (82). In fact, estrogen-receptor (ER)-positive
tumors with high mutational load are associated with poorer
survival (83) and immunotherapy might be an appropriate
strategy in this setting, but clinical data is lacking and very few
studies focused on immunotherapy in hormone-receptor positive
BC are ongoing.

RT AND IMMUNOLOGICAL EFFECTS

Theoretical Advantages of Associating RT
to Immunotherapy
The association of RT and immunotherapy has gained extensive
attention in the last few years, as RT is able to modulate each
parameter of the immune cycle: 1-antigen release; 2-Antigen
presentation; 3-Priming and activation of T-cells; 4-T- cells
trafficking to tumors; 5-T cells tumor infiltration; 6-Recognition
of tumors by T cells; 7-Killing of tumor cells by T cells (25,
84–91). First, irradiation has a known tumoricidal action by
provoking DNA damage through single- or double-strand DNA
breaks, whose insufficient repair leads to cell death and antigen
release. Therefore, intrinsic tumor radiosensitivity depends also
on the immunocompetence of the host (92), and cell death caused
by irradiation is also “immunogenic” (51). It has been shown that
RT enhances tumor immunogenicity and increases the presence
of effector immune cells to the tumor site (25, 93–95). Recently
RT has been characterized as “immunomodulatory” (96) and
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considered as signaling “danger,” through the induction of pro-
inflammatory cytokines, such as TNF-α and IL-1β (97), capable
of generating an in vivo vaccination effect. The group of Formenti
and Demaria has extensively summarized the concept of the
interaction of RT with the immune system (25, 93–95).

RT-induced increased availability of tumor antigens and its
immunomodulatory consequences, such as antigen capture, cell
migration to the lymph nodes, polarization toward a tolerogenic
or immunogenic phenotype or migration of lymphocytes into
the tumor might promote tumor killing (83, 98). Combining RT
with immunotherapy would therefore induce tumor cell death
resulting in antigens release and promotion of DCs’ maturation,
enhancing the cytotoxic capacity of T cells. Therefore, a
synergistic model can be conceived, where systemic effects of
irradiation and immunotherapy are more effective for cancer
treatment than any of both treatments administered alone
(83, 98). A synergistic model of the effects of combined
immunotherapy and RT is visualized in

Figure 2.Various combinations of RT and immunotherapy
have been explored, such as intratumoral (IT) or peritumoral
DCs’ administration, cytokines (IL-3, IL-12, TNF-α), as well as
CTLA-4 blockade administration, some with promising results
(22). Other combinations consist of virus, dendritic cell-based
vaccines, and TLR agonists (83).

Another potential benefit of the association of RT and
immunotherapy relates to the considerable evidence suggesting
that RT can have inhibitory effects on tumor cells outside of
the irradiation field. Formenti et al. describe four such events:
(a) responses of non-irradiated tissues due to signals from
irradiated cells (bystander effect), (b) effects of irradiation to
the whole body (consisting of RT producing host-dependent

inflammation), (c) effects of RT in tumor microenvironment,
promoting phenomena outside of the treatment field, and
finally (d) abscopal effects. All of these effects seem to involve
the immune system (94, 95, 99–101). It remains nevertheless
complex to anticipate systemic RT effects, since similar doses
can provoke either pro or anti-tumorigenic effects depending
upon the context. For instance, both pro- and anti-tumorigenic
immune effects has been described with low doses (<4Gy) of
irradiation (100, 102), while doses provoking cell death, such
as high ablative doses of irradiation induce danger signals and
activate an adaptive immune response (103) and at the same time
activate immunosuppressive signals such as TGF-β1 (104).

An interplay between the primary tumor and the metastases
seems to exist: in some cases, the enhancement of metastatic
growth after the removal of the primary breast tumor has
been observed, which was reversed when surgical removal
occurred after irradiation (105–107). Although this effect
remains somehow controversial in the literature and has not
been extensively evaluated, it reinforces the concept of associating
radiotherapy and immunotherapy in BC, a disease known par
excellence to be of a strong local and systematic component (108).

Practical Considerations of the Association
Combining the appropriate RT regimen (dose, fractionation,
volume) with the appropriate immunotherapy in an appropriate
schedule would therefore theoretically be locally and systemically
highly effective. The real challenge today is related to our ability
to determine what is the appropriate schedule in each and every
tumor, capable of providing reproducible effects.

Preclinical data have shown maximum RT- immunotherapy
interactions with SBRT fractions such as 6-8Gy delivered in one

FIGURE 2 | A synergistic model of immunotherapy and RT. NKC, natural killer cells; Ag, antigen; APC, antigen-presenting cells; L, lymphocytes; DCs, dendritic cells;

M, macrophages; RT, radiotherapy; N, neutrophils; L, regional lymph node; T, tumor.
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to 3 fractions (83). Although immunostimulatory effects can be
observed with doses as low as 0.5–0.94Gy (109), many preclinical
studies have shown that doses >7Gy increase local interferon
production, which enhances antigen presentation in tumor cells
(110–112). A single dose of 10Gy has been shown to increase the
efficacy of adoptive T-cell transfer in vivo (113). Generally, it has
been shown that hypo-fractionated SBRT (single fraction of 10–
24Gy) provokes massive immunogenic release of antigens and
DAMP ligands as well as stimulates TLRs on antigen-presenting
cells for several days (51, 113, 114).

Notably, Dewan et al. have evaluated three different
radiotherapy schemas (1 × 20Gy, 3 × 8Gy, and 5 × 6Gy)
in combination with a monoclonal antibody against CTLA-4
and have shown that 3 × 8Gy was the most immunogenic
combination, enriching tumors with active CD8+ T cells and
associated to an effect on distant lesions, being either an abscopal
effect or a direct effect of CTLA-4 monoclonal antibody (115).
In the study by Verbugge and colleagues, immunotherapy and
RT showed enhanced curative capacity of RT combined with α-
CD137 and α-PD-1 antibodies in AT-3 tumors (corresponding to
the triple negative subtype) with doses of 12Gy (116), although
various regimens (1 × 12Gy, 4 × 4Gy, or 4 × 5Gy) were
investigated. Finally, Filatenkov et al. has compared the immune
modulation of 1 × 30Gy with 10 × 3Gy or 30Gy + 10 × 3Gy
and has shown that 1 × 30Gy was the most efficient regimen in
terms of MDSCs decrease and CD8+ T-cell infiltration (117).

Emerging Clinical Evidence and
Hypotheses
The idea of combining irradiation and immunotherapy to
enhance the host’s immune response to tumor has been clinically
evaluated in melanoma, where enhanced responses (17%) to
ipilimumab were seen after irradiation of a single lesion in
multimetastatic patients (118). A proof-of-principle clinical
study of GM-CSF and RT managed to show the production of
objective abscopal responses in oligometastatic disease, using
concurrent RT of 35Gy in 10 fractions (119). The strategy of
employing high doses in small tumor volumes with tight margins
seems to be the most interesting from an immunostimulatory
point of view. Another recent proof-of-principle study used
stereotactic body RT (SBRT) to stimulate immunity in metastatic
solid tumors, associated with pembrolizumab, with doses ranging
from 30 to 50Gy in 3–5 fractions and observed that interferon-
γ associated genes from tumor biopsies after SBRT were related
to abscopal responses (120). Recently, Jatoi and colleagues have
formulated the hypothesis that RT exerts an abscopal effect
eradicating micrometastasis in the early setting of BC, which is
manifested by its constant effect on distant-metastasis decrease
in studies of adjuvant RT (121).

COMBINING IMMUNOTHERAPY AND RT
IN BC

Preclinical Evidence
Within BC, a preclinical study has explored the potential
immunomodulatory effect of irradiation and BC (51), while
the interplay between irradiation and immunotherapy has been

validated in the preclinical study by Verbugge et al. (122).
In mice bearing orthotopically implanted TNBC tumors, the
combination of RT and immunotherapy, consisting of mAbs to
CD137, CD40 and PD-1 resulted in the rejection of AT-3 and
4T1.2 tumors (122). The key innate immune cells critical to
the antitumor effects of radio-immunotherapy have been those
expressing CD137 and/or PD-1 and that persisted within the
irradiated tumors, notably CD8+ and NK cells that expressed
CD137. CD8+ T cells were essential for the therapeutic effect.
In this study, anti-CD137 alone or in combination with α-CD40
treatment significantly enhanced RT-induced tumor shrinkage. It
was observed that once the mice were cured of primary tumors,
the growth of secondary tumors was impaired, suggesting the
development of immunologic memory (122).

In another preclinical study, high-dose, ablative RT
dramatically increased T-cell priming in lymphoid nodes
and resulted into eradication of the primary tumor or distant
metastasis also in a CD8+ T cell-dependent way, in mice
harboring the 4T1 cell line (a TN cell line) (123). This
phenomenon was greatly amplified by local immunotherapy
(123). The same group had previously shown that targeting a
primary breast tumor (4T1 cell line) with immunotherapy (“Ad-
LIGHT, a name derived from “homologous to lymphotoxins,
that shows inducible expression, and competes with herpes
simplex virus glycoprotein D for herpes virus entry mediator,” a
receptor expressed by T lymphocytes) can result into eradication
of distant metastases (124).

In another preclinical study, evaluating topical imiquimod
(a TLR-7 agonist) and local RT in the TSA murine model
of BC with cutaneous metastases, both complete regression of
treated lesions and improved distant control and survival were
observed (125). This was further shown in nude transgenic mice
when imiquimod was associated to IL-10 antibodies, possibly
suggesting independence from innate immune response (126).

An overview of ongoing clinical studies in the BC setting
is presented in Table 2. Most of them combine RT and
immunotherapy in the metastatic setting, often in TNBC. On
single study is testing permbrolizumab and preoperative RT
in the early setting. All of the studies are early phase and
test tolerance of the association, with several testing efficacy
in terms of local and distant control, in search of an abscopal
effect. The preoperative study tests standard treatment delay
and TILs increase (127). In the same spirit, a recent study
used radiofrequency ablation and/or single dose preoperative
ipilimumab in patients with BC who would anyway undergo
mastectomy (91). They observed sustained (persisting at 30 days
after mastectomy) immunological responses, such as peripheral
elevation in Th-1 type cytokines, activated and proliferating T
cells, both CD4+ and CD8+, as suggested by high Inducible T-
cell COStimulator (ICOS)+ and Ki-67, respectively, along with
T-reg-associated T-eff cells intratumorally (91).

TRIPLE NEGATIVE BC (TNBC),
RADIOTHERAPY AND IMMUNOTHERAPY

Triple negative BC (TNBC) remains, along with HR-/HER2
positive, among the subtypes with the most aggressive biology,
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associated to an increased risk of locoregional recurrence and
distant failure (15). However, in contrary to the HR−/HER2+

subtype, systemic treatments have not yet been adequately
developed for TNBC and it represents par excellence the BC
subtype lacking therapeutical targets (16). It represents an ideal
target for the combination of RT and immunotherapy, given that
this subtype is the most immunogenic among BC subtypes (78)
and that the presence of tumor infiltrating lymphocytes (TILs)
within the tumors of patients with early invasive TNBC has been
associated with improved prognosis (44).

The association of radiotherapy and immunotherapy has
gained extensive attention in the last few years (119, 128)
and might be of particular interest in the context of
TNBC as this subtype is the most immunogenic among BC
subtypes (78).

As already specified above, the median percentage of TILs in
TNBC patients is 20% (129) and a 10% increase in intratumoral
and stromal TILs translates into a 15 and 17% reduction of
risk for recurrence or death and 17 and 27% reduction of risk
for death, respectively, in data from the BIG-02-98 study (33).
Therefore, if any of the investigational treatments increases sTILs’
levels in tumors of TNBC patients, this is expected to be beneficial
for those patients. A study of preoperative immunostimulatory
SBRT associated to immunotherapy (a toll-like receptor agonist)
in the setting of TNBC with the objective to increase TILs is
currently in preparation in our Institution. A study with the same
objective in a population of TNBC or high risk Luminal non-
HER-2 positive patients has recently started accrual in the US
(Principal Investigator: Alice Ho, Trial number: NCT03366844),
combining preoperative RT and pembrolizumab. Hopefully,
these studies will prove the principle of the possibility of
TILs increase in this population, susceptible to micrometastatic
disease opening the road to larger-scale studies testing outcomes
in terms of distant control with the association of RT and
immunotherapy.

CONCLUSIONS

The clinical relevance of BC heterogeneity when designing
studies in the era of introduction of immunotherapy is
pivotal. The combination of radiotherapy and immunotherapy
is promising and particularly relevant for immunogenic BC
subtypes, such as TNBC or HER-2 positive BC. The availability
of a valid biomarker, such as TILs, makes studies of association
of immunotherapy and RT very appealing in this context.
Combinations of established modalities are nowadays tailored

to BC heterogeneity and, accordingly, the design of modern
studies of BC requires a careful selection of BC subtypes that
are likely to benefit from tailored experimental approaches
with a strong translational background. Little is known on the
intrinsic properties of radiosensitivity within the BC subtypes
(15, 33). Insights on this information will optimize the RT-
immunotherapy associations and are expected to lead to tailored
studies in selected populations.

The timing of the introduction of immunotherapy with or
without immune-stimulatory RT seems to be important, since,
the least the tumor burden, the more efficient these treatments
are expected to be. Therefore, optimal RT-immunotherapy
studies should ideally be designed in the early or oligometastatic
setting.

The optimum sequence of RT and immunotherapy remains
to be found, as is the ideal dose, fractionation and volume of
irradiation. The optimum immunotherapeutic agents to combine
with RT are also under investigation. The accumulation of data is
rapid and hopefully meaningful insights will be available within
the next few years.

In our mind, an ideal RT-immunotherapy study in the setting
of BC, should take into account the following elements: (a)
focus into subtypes with high mutational load, (b) introduce
the combination in early disease or early in the oligometastatic
setting, with the scope of micrometastasis eradication by a
abscopal effect, (c) use, if possible, fractionated irradiation on
the primary, unresected tumor or on the most active metastasis,
with fractions in the order of 8Gy, (d) combine RT with TLR-
agonists, that enhance dendritic activation and permit enhanced
cross-presentation to T-cells (which permits to take advantage of
the major immunogenic effect of irradiation, being the liberation
of TAAs) or with the combination of check-point inhibitors
and TLR-agonists in order to assist activated T-cells to unmask
and kill tumor cells and e. evaluate biomarkers, such as TILs
or immune gene signatures, to detect early immune activation,
which might otherwise be undetectable in the clinical setting
(given that the abscopal effect remains hard to reproduce). These
strategies might permit to transform not only the role of RT in
BC but also, hopefully and most importantly, might transform
not only the role of RT in BC but also, hopefully and most
importantly, bring a great therapeutic benefit to patients.
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