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Pancreatic ductal adenocarcinoma (PDA) is a highly lethal cancer with a long-term

survival rate under 10%. Available cytotoxic chemotherapies have significant side effects,

and only marginal therapeutic efficacy. FDA approved drugs currently used against

PDA target DNA metabolism and DNA integrity. However, alternative metabolic targets

beyond DNA may prove to be much more effective. PDA cells are forced to live within a

particularly severe microenvironment characterized by relative hypovascularity, hypoxia,

and nutrient deprivation. Thus, PDA cells must possess biochemical flexibility in order

to adapt to austere conditions. A better understanding of the metabolic dependencies

required by PDA to survive and thrive within a harsh metabolic milieu could reveal

specific metabolic vulnerabilities. These molecular requirements can then be targeted

therapeutically, and would likely be associated with a clinically significant therapeutic

window since the normal tissue is so well-perfused with an abundant nutrient supply.

Recent work has uncovered a number of promising therapeutic targets in the metabolic

domain, and clinicians are already translating some of these discoveries to the clinic.

In this review, we highlight mitochondria metabolism, non-canonical nutrient acquisition

pathways (macropinocytosis and use of pancreatic stellate cell-derived alanine), and

redox homeostasis as compelling therapeutic opportunities in the metabolic domain.

Keywords: pancreatic cancer, metabolism, redox homeostasis, metabolic dependencies, targeting metabolism

OVERVIEW OF PANCREATIC CANCER TREATMENT AND
BIOLOGY

Pancreatic cancer is the third leading cause of cancer-related death in the United States (1). The
disease is predicted to be the second leading cause within the next decade (2). Cures are exceedingly
rare, and the 5-years survival for patients with metastatic disease is just 3%. Even patients with
localized PDA who undergo resection with curative intent have a 5-years survival of only 30% (1).
This survival rate is by far the lowest of the common cancers, and is attributable in large part to
PDAs uniquely aggressive behavior and resistance to conventional therapy (3, 4).

Themajority of pancreatic cancer patients already have experiencedmacroscopic ormicroscopic
spread at the time of diagnosis (5–7). Cytotoxic chemotherapeutic agents are the only approved
systemic treatments for these patients, and are grouped into two separate multi-agent regimens
used as standard-of-care: (1) gemcitabine and nab-paclitaxel (albumin-bound paclitaxel or

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2018.00617
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00617&domain=pdf&date_stamp=2018-12-12
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jordan.winter@UHhospitals.org
https://doi.org/10.3389/fonc.2018.00617
https://www.frontiersin.org/articles/10.3389/fonc.2018.00617/full
http://loop.frontiersin.org/people/624469/overview
http://loop.frontiersin.org/people/627205/overview
http://loop.frontiersin.org/people/41661/overview


Vaziri-Gohar et al. Vulnerabilities in Pancreatic Cancer Metabolism

Abraxane) or (2) 5-fluorouracil, leucovorin, irinotecan, and
oxaliplatin (FOLFIRINOX). Unless researchers discover effective
strategies to detect PDA earlier or preventative tactics, new ways
to treat invasive PDA are desperately needed (8, 9).

Pancreatic cancer develops over many years due to the
additive effects of numerous genetic changes (10). Gain-of-
function mutations in KRAS at codons 12, 13, and 61 are
observed in over 90% of PDAs. Loss-of-function mutations in
three specific tumor suppressor genes occur in the majority of
PDAs: TP53, CDKN2A, and SMAD4 (11–14). These oncogenic
changes occur early in the adenoma to carcinoma progression
(15, 16). The vast majority of pancreatic cancers are sporadic.
Approximately 10% of patients have one or more immediate
family members with a history of PDA. Germline culprits include
genes that are important for DNA repair, such as BRCA2, PALB2,
ATM, FANCC, and FANCG genes (11, 17).

Histologically, pancreatic tumorigenesis passes through
three non-invasive, pre-malignant stages before acquiring an
invasive phenotype. The premalignant stages are referred to
as pancreatic intraepithelial neoplasia (PanIN 1, 2, and 3).
More detailed descriptions of the genetics and pathobiology
of pancreatic cancer appear elsewhere (18–20). In addition to
well-characterized genetic mutations, there other molecular
abnormalities common to PDA including hyperactivated
growth factor signaling, epigenetic changes, dysregulated
gene expression (transcriptional or post-transcriptional), and
abnormal post-translational modifications (18, 21–23).

THE TUMOR MICROENVIRONMENT AND
IMPLICATIONS FOR AN AGGRESSIVE PDA
PHENOTYPE

The PDA tumormicroenvironment is characterized by one of the
most abundant stromal compartments of any tumor type, and
this feature is the principal biologic driver of the PDA metabolic
program. Neoplastic epithelial cells account for roughly 10–15%
of the tumor mass, while non-neoplastic elements comprise the
remainder of the tumor. The stroma, or desmoplastic response,
consists of an extracellular matrix and diverse cellular elements
including fibroblasts, myofibroblasts, lymphatic vessels, blood
vessels, pancreatic stellate cells, and immune cells (24, 25). As
a result of these elements, the stroma is extremely dense, with
a high interstitial fluid pressure (26). Consequently, blood vessels
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serine-cysteine transporter 2; dCTP, deoxycytidine triphosphate; Drp1,
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glucose-6-phosphate dehydrogenase; GLUD, glutamate dehydrogenase; GLUT1,

glucose transporter 1; HIF-1α, hypoxia-inducible factor-1a; IDH, isocitrate

dehydrogenase; LDH, lactate dehydrogenase; ME, malic enzyme; MTHFD,

methylenetetrahydrofolate dehydrogenase; NAD+, oxidized nicotinamide

adenine dinucleotide; NADK, NAD+ kinase; NADP+, oxidized nicotinamide

adenine dinucleotide phosphate; NADPH, reduced nicotinamide adenine

dinucleotide phosphate; NAMPT, nicotinamide phosphoribosyltransferase; NMN,
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PGD, phosphogluconate dehydrogenase; PPP, pentose phosphate pathway; ROS,

reactive oxygen species; shRNA, short hairpin RNA; TCA, tricarboxylic acid.

are compressed by biochemical forces andmicroscopic arteriolar-
venular shunts are common events (27, 28). Compounding this
significant biologically relevant perfusion challenge, microscopic
vessel density is markedly reduced in PDA stroma as compared
to normal pancreata (26).

PDA hypovascularity is easy to appreciate macroscopically.
Transected PDAs are pale gray and necrotic (Figure 1A). On
imaging, PDA appears as a hypodense tumor, easily distinguished
by the well-perfused and contrast-enhancing normal pancreatic
parenchyma (Figure 1B). This biologic reality accounts for
the harsh, nutrient deprived, and hypoxic conditions that are
hallmarks of the PDA microenvironment. Indeed, PDA survives,
and thrives, in a desert!

Studies implicate mutant KRAS as a key driver of the
desmoplastic response. Temporally, this genetic model fits
since KRAS mutations arise in PanIN1 lesions when the
stroma first develops. As evidence, withdrawal of mutant
KRAS expression using shRNAs in genetically engineered KPC
mice (autochthonous PDA mice with conditional expression
of oncogenic KRAS and TP53 mutations) (16) resulted in the
disappearance of the stromal compartment (29).

GLUCOSE METABOLISM

Oxidative phosphorylation is an energy extracting process where
pyruvate enters the mitochondria matrix via pyruvate translocase
and is oxidized to generate ATP, H2O, and CO2. Oxygen acts
as a final electron acceptor in the electron transport chain. As
a result of the associated redox reactions, an electrochemical
potential is generated across the inner mitochondrial membrane,
which drives a proton-motive force across the membrane, and
directly results in the formation of ATP. Thus, carbon flows
through the tricarboxylic acid (TCA) cycle and is oxidized to its
simplest form, creating basic energy subunits with high energy
phosphate bonds that drive other chemical reactions required
for cell viability. Well-perfused and differentiated normal cells
generate the bulk of their cellular energy through oxidative
phosphorylation in the mitochondria (30). Cancer cells, on the
other hand, are often oxygen-poor. This scenario theoretically
poses an obstacle for effective oxidative phosphorylation. Even
in the presence of sufficient oxygen, however, scientists believed
for decades that cancer cells were reprogrammed.

Scientists posited that cancer cells relied on cytosolic glycolysis
to produce ATP instead of oxidative phosphorylation, even
though the energy yield was far less efficient (2 ATP vs. 36 ATP).
A preference for aerobic glycolysis is eponymously referred to
as the “Warburg’s effect” (31), and there have been numerous
lines of evidence that in fact reveal robust glycolytic activity in
pancreatic cancer cells in certain experimental models, including
patient samples. For instance, endogenous expression of many
glycolytic enzymes is increased, including hexokinase 2, enolase
2, and lactate dehydrogenases (both LDHA and LDHB isoforms)
(32–35). Consequently, glycolytic metabolites, including lactate,
are also elevated in pancreatic cancer cells (32, 33, 36).

Generally speaking, a biochemical penchant for glycolysis
can serve cancer cells in multiple ways. First, Lactic acid
build-up reduces cellular and extracellular pH. This contributes
to invasiveness by promoting genetic changes in PDA cells

Frontiers in Oncology | www.frontiersin.org 2 December 2018 | Volume 8 | Article 617

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Vaziri-Gohar et al. Vulnerabilities in Pancreatic Cancer Metabolism

(spurring on genetic selection), impairing the anti-tumor
immune response (protecting cancer cells from immune
patrol), reducing adherens junctions on cancer cell membranes
(facilitating detachment and metastases), and hydrolysis of
extracellular proteins to encourage cell invasion (37). Just as
important, enhanced glycolytic activity minimizes combustion
of carbon from glucose to CO2. Instead, organic carbon is
preserved, and diverted into cellular building blocks through
biosynthetic pathways, such as lipid synthesis, the hexosamine
biosynthesis pathway, and the pentose phosphate pathway. This
reprogramming effort promotes the macromolecular synthesis
needed for cell proliferation (i.e., anabolism) (30, 38, 39). As
stated above for desmoplasia (and a common theme for many
of the adaptive reprogramming responses described below),
oncogenic KRAS drives glycolytic activity in PDA. For instance,
KRAS activation leads to increased glucose uptake and elevated
levels of glycolysis-associated metabolites (40, 41). In vivo
models modified by an inducible KRAS extinction mechanism in
pancreatic tumors corroborate these findings (29).

Additional studies show that oncogenic KRAS activity
supports glycolysis by replenishing the supply of NAD+, via
upregulation of NAD(P)H oxidase (42). At a regulatory level, the
Pasteur effect (an increase in glucose consumption and lactic acid
fermentation under low oxygen conditions) is also encouraged
by certain transcription factors and related proteins (34, 43). As
examples, HIF-1α and MUC1 upregulate glucose transporter 1
(GLUT1) and aldolase A, which leads to increased glucose uptake
and glycolysis. MUC1 collaborates with HIF-1α for this purpose.
Additionally, under hypoxic conditions, pyruvate dehydrogenase
kinase 1 (PDHK1) protein expression is increased, leading to a
reduction in pyruvate dehydrogenase (32, 44, 45) activity, and
consequently a reduction in oxidative phosphorylation (46).

THE IMPORTANCE OF MITOCHONDRIAL
FUNCTION IN PDA

As it turns out, the classic Warburg model misses a large part of
the story. Current perspectives maintain that a balance between
aerobic glycolysis and oxidative phosphorylation is much more
complex, and seems to be highly variable between different tumor
types. Moreover, the balance is not fixed in a given tumor. Rather,
the metabolic program is dynamic, and responds to ambient
conditions (47). Contrary to Warburg’s teachings, mitochondria
in cancer are often highly functional, and aerobic respiration is
even critical for cancer cell survival (48). A preponderance of
new evidence shows that pancreatic cancer cells are especially
dependent on mitochondrial oxidative phosphorylation under
low nutrient conditions, and that mitochondrial metabolism
represents a key metabolic vulnerability (47–51).

Diverse macromolecular substrates are utilized by pancreatic
cancer cells for catabolic and anabolic purposes, but glucose
is consistently viewed as the most important nutrient. Glucose
is even likely more limiting in the microenvironment than
oxygen, especially in poorly perfused PDA. Oxygen levels exist
in the microenvironment around 1.5% (compared to 21% in the
atmosphere and 5% in normal tissues (52). At these low levels,

mitochondria still function relatively well. In fact, mitochondria
perform sufficiently at oxygen levels as low as 0.5% (53, 54).
Glucose concentrations frequently dip below 1mM in poorly
perfused tumors, and these levels are profoundly deleterious.
Cell necrosis is the outcome at these levels, even when sufficient
oxygen is present (55).

An siRNA screen of 2,752 metabolic genes revealed that
mitochondrial genes encoding electron transport chain
components were functionally the most important genes in
cancer cell survival under low glucose conditions (51). Moreover,
when 28 cell lines were evaluated for their ability to withstand
low glucose conditions, resistant cell lines consistently increased
oxygen consumption on demand, as compared to the most
vulnerable cell lines. Further, the vulnerable cell lines exhibited
higher rates of genetic mutations in mitochondria-encoded
electron transport genes (51). Studies revealed that under low
glucose, cell proliferation markedly decreases (49, 56, 57). All of
these findings suggest a model where cancer cells that are well-
adapted to harsh and unfavorable metabolic conditions prioritize
the conservation of glucose, and reprogram their biology
to maximize energy yields through enhanced mitochondrial
respiration. This metabolic shift ensures the production of
sufficient ATP to power critical cellular processes. Under austere
conditions, cancer cells choose to divert carbon away from
biosynthetic pathways, which minimizes unnecessary ATP
utilization. Cell proliferation is deferred for a later time when
energy supplies become more available, or the cells become
even more adept at scavenging nutrients from a deprived
microenvironment (Figure 2).

A number of bioenergetic observations support this model.
As glucose levels decline, cellular respiration markedly increases.
Themitochondrial matrix becomesmore acidic as protons return
to the matrix through ATP synthase, and hydroxide anions
are expelled in phosphate/OH− exchangers. This supports ATP
production. A burst of oxidative activity is usually observed
(49). Morphologically, the matrix condenses, and cristae
expand in functional and working mitochondria. Mitochondrial
fusion and elongation are favored over fission events (58–60).
Inhibition of an important fission-related protein, dynamin-
related protein 1 (Drp1), has been shown to shift the balance from
mitochondrial fission to fusion under low nutrient conditions
(61).

We have recently found that an RNA-binding protein and
regulator of acute survival processes, HuR (ELAVL1), plays
an important role in increasing mitochondrial performance
in stressed PDA cells. This occurs over a very short timescale.
We observed that HuR-proficient PDA cells cultured under low
glucose conditions exhibited higher rates of oxygen consumption
and ATP production, as compared to isogenic HuR-deficient
cancer cells (50). Additionally, HuR expression promoted
mitochondrial biogenesis (Vaziri-Gohar, unpublished).
Consequently, HuR-deficient PDA cells were unable to ramp
up mitochondrial activity under metabolic stress, and were
especially vulnerable under low glucose conditions in vitro.

Thus, it stands to reason that mitochondrial biology
represents a promising therapeutic target in nutrient-deprived
cancers (e.g., PDA). There are some clinical studies that support
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FIGURE 1 | Pancreatic ductal adenocarcinoma. (A) Resected human PDA. The arrow identifies the characteristically pale, gray, and hypovascular pancreatic ductal

adenocarcinoma. The asterisk marks pancreatic parenchyma. (B) On CT scan imaging with intravenous contrast, PDA appears hypodense (dark gray), while

well-perfused normal pancreatic parenchyma shows bright enhancement due to penetration by the contrast.

this idea in pancreatic cancer patients. A common diabetic
drug, metformin, inhibits complex 1 of the electron transport
chain. A meta-analysis of nine retrospective studies and two
randomized studies in patients with pancreatic cancer revealed
that metformin use was associated with prolonged survival (62–
64). Notably, however, the two randomized, phase II studies
included in the meta-analysis (both in patients with advanced
PDA) were negative studies (63, 64). Prolonged survival was only
observed in patients with localized PDA, suggesting that the drug
may not be effective in patients with macroscopic distant disease
(62). The strategy may be correct, but for improved efficacy, a
more potent drug may be required.

More recently, a novel mitochondrial inhibitor was tested in
a phase I study of patients with advanced pancreatic cancer.
The results were extremely promising. CPI-613 is a lipoic acid
analog that disrupts the activity of two mitochondrial enzymes:
pyruvate dehydrogenase and α-ketoglutarate dehydrogenase (65,
66). The drug was given to 18 patients at a maximum tolerated
dose of 500 mg/m2 on days 1 and 3, of a 2-weeks cycle, and
in combination with modified FOLFIRINOX (67). The disease
control rate, response rate, and complete response rate were 89,
61, and 17%, respectively. In contrast, the rates for FOLFIRINOX
alone in a prior phase III study are 71, 32, and 0.6%, respectively
(68). A registration phase III trial is planned to begin shortly as
of this manuscript writing, and we are poised to test the same
combination in a phase II trial of patients with locally advanced
PDA at our institution. These studies are expected to be actively
accruing by the start of 2019.

NUTRIENT ACQUISITION PATHWAYS

PDA cells also adapt to low nutrient conditions by recruiting
unconventional nutrient sources or biochemical salvage
pathways to meet bioenergetic demands in a nutrient-deprived
microenvironment. There is a small, but important body of
literature that highlights some of these biologic processes.
Like mitochondrial biology, these non-canonical metabolic
pathways represent novel therapeutic opportunities. We

have categorized them as intracellular processes (intrinsic)
or those dependent on the microenvironment (extrinsic).
While some salvage pathways, like nucleotide salvage,
are not directly addressed here, we have focused on ones
that have received attention in the recent pancreatic cancer
literature.

INTRINSIC NUTRIENT ACQUISITION
MECHANISMS

Autophagy
Autophagy is a cytoplasmic recycling process that breaks
down dysfunctional organelles and unfolded proteins into their
basic components for reuse by cells. Mechanistically, unwanted
structures are enwrapped by a double-membrane structure
called a phagophore to produce an autophagosome. When the
vesicle fuses with a lysosome, the contents are enzymatically
digested. Autophagy is driven by starvation-induced activation
of AMPK, and is suppressed by mTORC1 in normal cells (69,
70). However, oncogenic KRAS signaling appears to regulate or
induce autophagy in PDA cells (71, 72). Conceptually, autophagy
functions as an effective nutrient salvage pathway for KRAS-
driven PDA, especially when extrinsic nutrient sources are
deficient. Cleaved LC3 is an indicator of active autophagy (70, 73)
and is increased in late PanIN lesions, as well as in PDA (74).
Increased autophagy markers have also been associated with
worse prognosis in patients with PDA (75). At the subcellular
level, inhibiting autophagy in PDA cells disrupts mitochondrial
oxidative phosphorylation and exacerbates oxidative damage
(74). Autophagy inhibitors like chloroquine and Bafilomycin A1
have been shown to reduce PDA growth in cell culture and
pre-clinical animal models (74, 76).

NAD+ Salvage Pathway
NADH is an essential cofactor for enzymatic reactions in both
glycolysis and respiration. The molecule provides reducing
equivalents for the electron transport chain, which drives
the proton-motive force to ultimately yield ATP for basic
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FIGURE 2 | Metabolic features in PDA cells under nutrient abundance and deprivation. Under nutrient abundance, PDA cells have a proliferative phenotype and

macromolecular synthesis is prioritized over ATP generation. Under nutrient deprivation, PDA cells have a survival phenotype, and nutrient conservation with maximal

ATP generation are prioritized. OXPHOS, oxidative phosphorylation.

cellular functions. The regeneration of NAD+ as an upstream
substrate of NADH production is, therefore, an absolute
requirement PDA cell survival, particularly when mitochondrial
demands escalate. Tryptophan is the principal source of
NAD+ production through canonical biochemical pathways
(77). However, PDA cells show increased reliance on a
separate NAD+ salvage pathway. In the cancer-associated salvage
pathway, nicotinamide phosphoribosyltransferase (NAMPT)
is the rate-limiting step in the production of the NAD+

precursor molecule nicotinamide mononucleotide (NMN).
NAMPT expression was found to be elevated in PDA cell
lines and tissues (78), and its expression was inversely linked
to miR-206 activity (78). Based on these findings, NAMPT is
recognized as another promising metabolic target against PDA.
Inhibitors like FK866 and STF-118804 reduce NAD+ levels,
glycolytic activity, and mitochondrial function. Importantly,
these drugs reduced PDA growth both in vitro and in vivo
(78–80).

EXTRINSIC NUTRIENT ACQUISITION
MECHANISMS

When glucose is scarce, amino acids are able to fuel
the tricarboxylic acid cycle through various anaplerotic
reactions that involve the conversion of aspartate to
oxaloacetate (aspartate transaminase), glutamate to α-
ketoglutarate (glutamate dehydrogenase), or alanine to
pyruvate (alanine transaminase). Biologic processes exploited
by PDA cells to extract these anaplerotic substrates from the
microenvironment represent additional metabolic dependencies
(81), and consequently are also metabolic vulnerabilities
and therapeutic targets in the context of an austere PDA
microenvironment.

Macropinocytosis
As with so many other adaptive responses used by PDA cells
in the context of severe stress, macropinocytosis is enhanced
by oncogenic KRAS (35, 82). In this cellular process, the
plasma membrane envelops ambient polypeptides, such as
albumin within a macropinosome. Like autophagy, the protein
containing vesicle fuses with lysosomes, and proteins are
proteolyzed into constituent amino acids (83). Glutamine is
the most abundant amino acid released through this process.
As a result of macropinocytosis, PDA cells are able to sustain
the tricarboxylic acid cycle in the absence of glucose or free
glutamine. Targeted inhibition of macropinocytosis with 5-(N-
ethyl-N-isopropyl)amiloride (EIPA) in tissue culture models
impaired PDA growth (35). In vitro studies revealed that
PDA cells experienced sustained viability in the absence of
essential amino acids, as long as albumin was present in the
media (84). When resected PDA tissues were incubated with
tetramethylrhodamine-conjugated dextran (TMR-dextran) for
detection purposes, macropinosomes were clearly visualized by
immunofluorescence microscopy (84).

Pancreatic Stellate-Derived Alanine
While PDA stroma has relatively low levels of free nutrients, the
stroma is, in fact, replete with non-neoplastic cell types that are
potential fuel sources. Pancreatic stellate cells appear important
to PDA cells toward this end. These cells are myofibroblasts
that generate the extracellular matrix in the exocrine pancreas
and provide a scaffold for desmoplasia in PDA. Studies indicate
that pancreatic stellate cells produce alanine by autophagy.
Interestingly, PDA cells appear to stimulate this process, possibly
through paracrine signaling, although the inducing factor
remains unknown. Free alanine excreted by pancreatic stellate
cells is imported into PDA cells and converted into pyruvate
by alanine transaminase. Alanine anaplerosis than supplies the
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FIGURE 3 | Intrinsic and extrinsic nutrient acquisition pathways in PDA cells. PDA cells hijack stromal elements to fuel the tricarboxylic acid (anaplerosis) and other

biochemical processes when nutrients are limited. Carbon is extracted by macropinocytosis (A) and autophagy (B) after auto-digestion by lysosomes. PDA cells also

stimulate pancreatic stellate cells to produce and excrete free alanine (C). Non-functional mitochondria are dark in the figure and are targeted for autophagy.

Functional mitochondria are colored pink. TCA, tricarboxylic acid.

tricarboxylic acid cycle to sustain it under nutrient stress (85).
The authors refer to the communication and interdependence
between PDA cells and pancreatic stellate cells as an example of
metabolic cross-talk. It is becoming increasingly clear that multi-
lineage 3-D models to study metabolic cross-talk in PDA may
yield new key insights into additional metabolic vulnerabilities.

In summary, macropinocytosis and metabolic cross-talk
between PDA cells and pancreatic stellate cells offer two
compelling examples of how PDA cells hijack existing biologic
processes or resources from the microenvironment for their own
survival advantage. By recruiting these pathways, PDA cells have
discovered alternative strategies to fuel the tricarboxylic acid
cycle and meet their bioenergetic when the pantry is otherwise
bare (Figure 3).

Redox Homeostasis
PDA cells utilize a positive feedback loop between oncogenic
KRAS signaling and reactive oxygen species (ROS) to sustain
tumor growth (86, 87). This interplay seems to be especially
important early in the adenoma-to-carcinoma progression

sequence when ROS levels are manageable. ROS stimulates other
pro-growth pathways early on in cancer progression as well, like
PI3K signaling (88). The generation of genetic mutations by ROS
may also play a tumor-promoting role in cancer development
(89). The link between ROS and early cancer progression fits
with the timing of KRASmutations, which first appear in PanIN1
lesions. Along these lines, a reduction in mitochondrial ROS
using a mitochondrial antioxidant, mitoQ, actually thwarted
PanIN formation in an animal model (86).

However, as PDA precursor lesions advance, and invasive
PDAmatures, the stroma becomes more pronounced, conditions
are more severe, and nutrients are in shorter supply. The
nutrient-deprived stroma becomes more oxidative under these
conditions. More specifically, low glucose conditions drive a
surge in ROS levels (50, 90–92), principally because glucose is
the main substrate for multiple NADPH-generating pathways.
The pentose phosphate pathway and serine biosynthesis
with one-carbon metabolism are perhaps the best-studied
examples (90). Chemotherapy adds to ROS levels in the PDA
microenvironment, which further compounds the oxidative
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FIGURE 4 | Signaling pathways that restore redox homeostasis in PDA. Nutrient scarcity in the PDA microenvironment augments oxidative stress. Multiple adaptive

strategies are recruited by PDA cells. KRAS signaling promotes NADPH production through glutamine catabolism, followed by ME1 activity. In addition, NRF2 and

NADK are upregulated. HuR cytoplasmic translocation stabilizes IDH to enhance reductive power. GLS, glutaminase; GOT, aspartate transaminase; ME1, malic

enzyme 1; IDH1, isocitrate dehydrogenase 1; TCA, tricarboxylic acid; ROS, reactive oxygen species; NADK, NAD+ kinase.

TABLE 1 | Metabolic dependencies in PDA.

Event Mediated by References

MITOCHONDRIAL METABOLISM

Increased oxidative

phosphorylation

Down regulation of Drp1 (61)

HuR (50)

Increased biogenesis HuR Unpublished

NUTRIENT ACQUISITION

Autophagy Oncogenic KRAS (74)

NAD+ salvage pathway miR-206 (78, 79)

Macropinocytosis Oncogenic KRAS (35)

Increased alanine uptake Oncogenic KRAS (85)

REDOX HOMEOSTASIS

Upregulation of ME1 Oncogenic KRAS (57)

Upregulation of NRF2 Oncogenic KRAS (97)

Upregulation of IDH1 HuR (50)

perils routinely faced by these malignant cells (93). Thus,
as the dangers of ROS mount, adverse consequences and
toxicities associated with ROS start to outstrip any pro-survival
benefits favoring tumor growth. Enhanced antioxidant defense
mechanisms become paramount to PDA cells for survival
(94).

KRAS-driven pancreatic cancer cells bypass the oxidative
phase of the pentose phosphate pathway (29). Therefore,
alternative NADPH-generating pathways are likely to be
important for maintenance of cellular reductive power. There are
13 different metabolic enzymes known to directly interconvert

NADP+ to NADPH, and augment the basic reducing currency
in cells. These enzymes include: ME (1, 2, and 3), IDH (1
and 2), MTHFD (1 and 2), G6PD, PGD, NNT, GLUD (1
and 2), and ALDH3A1. Reducing equivalents from NADPH
maintain glutathione in its reduced form. Glutathione and
NADPH collaborate to biochemically prime the remainder
of the antioxidant defense system, which consists of roughly
40 enzymes including superoxide dismutases, catalases,
glutathione peroxidases, thioredoxins, peroxiredoxins, and
glutaredoxins (95).

Son and colleagues demonstrate that malic enzyme 1 (ME1)

plays an especially key role in augmenting NADPH levels in PDA.

In this non-canonical NADPH biosynthesis pathway, glutamine
is converted to glutamate by GLS1 in the mitochondria.

Glutamate is generated and transports out of the mitochondria

into the cytosol through the malate-aspartate shuttle, where it
is converted to cytosolic oxaloacetate (OAA). Mitochondrial and
cytosolic aspartate transaminase (GOT2 and GOT1, respectively)
are required for this sequence (57). After additional oxidative
reactions in the cytosol, ME1 finally yields NADPH. As seen
before, oncogenic KRAS appears to influence this adaptive PDA
redox program. The authors, and others identified GOT1 and
GOT2 as promising therapeutic targets based on these biologic
insights (57, 96).

Oncogenic KRAS also induces the transcription of the NRF2
transcription factor (97). NRF2 positively regulates antioxidant
defense elements, such as genes that drive glutathione synthesis,
glutathione peroxidase, glutathione reductase, glutathione
transferases, thioredoxins, and several NADPH-generating
enzymes (G6PD, GPD, IDH1, and ME1) (98, 99). Additionally,
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TABLE 2 | Clinical trials targeting key steps of PDA metabolism.

Target Agent Phase and status NCT no. References

MITOCHONDRIAL OXPHOS

ETC Metformin + gemcitabine + ertotinib II; Completed NCT01210911 (63)

Metformin + paclitaxel II; Completed NCT01971034 (103)

Metformin + gemcitabine/nab-paclitaxel I; Recruiting NCT02336087

Metformin + mFOLFIRINOX II; Active NCT01666730

Metformin + rapamycin Ib; Active NCT02048384

Metformin + radiosurgery I; Active NCT02153450

TCA cycle CPI-613 I; Completed NCT01839981

CPI-613 + mFOLFIRINOX I; Active NCT01835041 (67)

CPI-613 + gemcitabine/nab-paclitaxel I; Active NCT03435289

NUTRIENT ACQUISITION

Autophagy HCQ II; Completed NCT01273805 (104)

HCQ + gemcitabine I/II; Active NCT01128296

HCQ + gemcitabine + abraxane I/II; Active NCT01506973

CQ + gemcitabine I; Completed NCT01777477 (105, 106)

REDOX HOMEOSTASIS

Glutaminase CB-839 I; Active NCT02071862

HCQ, hydroxychloroquine; CQ, chloroquine; mFOLFIRINOX, modified FOLFIRINOX.

NAD+ kinase (NADK) was recently identified as an additional
component of PDA antioxidant defense. The enzyme converts
NAD+ to NADP+, and is upregulated in PDA cells, as compared
to normal cells. Silencing NADK increased ROS levels, and also
diminished PDA growth in cell lines and in vivo (100).

We recently reported that HuR enhances antioxidant defense
through post-transcriptional stabilization of the NADPH-
generating enzyme, IDH1 (50). When PDA cells are exposed
to an acute oxidative stress, HuR rapidly binds to the 3′-
untranslated regions of IDH1 transcripts, stabilizes the transcript,
increases IDH1 protein expression and activity, augments
NADPH levels, and reduces intracellular ROS (50). The whole
process is executed in just a few hours, which enables PDA
to respond to acute oxidative stress in short order. Genetic
modulation of IDH1 with siRNAs reduced PDA survival under
glucose withdrawal more than any other NADPH-generating
enzyme (Vaziri-Gohar, unpublished). While IDH1 mutations
are oncogenic in other cancer types, our work highlights the
importance of wild-type IDH1 in PDA pathogenesis. Moreover,
while IDH1 is cytosolic, enhanced reductive power related to this
enzyme also appears to impact redox levels in the mitochondria
[Vaziri-Gohar, unpublished, and also (101, 102)]. Figure 4

summarizes PDA adaptations that restore redox balance.

CONCLUSION AND SUMMARY OF
METABOLIC VULNERABILITIES IN PDA

While the molecular determinants of aggressive PDA biology
have not been definitively determined, it seems plausible that
the adaptive mechanisms used by PDA cells to overcome the
harsh metabolic milieu also contribute to the aggressive and
chemotherapy-resistant phenotype responsible for poor patient

outcomes. PDA’s transformation toward a seemingly invincible
state is akin to a runner training at high altitudes or a cactus
surviving in a desert. These performance enhanced cells simply
cannot be eradicated by conventional DNA targeting agents (i.e.,
chemotherapy) currently in use. A better understanding of the
metabolic dependencies needed to survive harsh conditions will
likely uncover metabolic vulnerabilities, and these alternative
therapeutic strategies are not likely to be as critical to well-
perfused normal cells.

In this review, we highlighted mutant KRAS as an important
player in adaptive metabolic reprogramming to the PDA
microenvironment. However, new targets or strategies have also
come to light, including NRF2, HuR, mitochondrial biology,
non-canonical nutrient acquisition processes (autophagy,
macropinocytosis, alanine uptake), and antioxidant defense
(NADPH-generating enzymes like ME1 and IDH1) (Table 1).
There is a growing interest in exploiting new insights into
cancer metabolism with good reason. A number of clinical trials
targeting metabolic pathways in patients with PDA have been
completed or are underway (Table 2).
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