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Background: Features characterizing the immune contexture (IC) in the tumor

microenvironment can be prognostic and predictive biomarkers. Identifying novel

biomarkers can be challenging due to complex interactions between immune and tumor

cells and the abundance of possible features.

Methods: We describe an approach for the data-driven identification of IC biomarkers.

For this purpose, we provide mathematical definitions of different feature classes, based

on cell densities, cell-to-cell distances, and spatial heterogeneity thereof. Candidate

biomarkers are ranked according to their potential for the predictive stratification of

patients.

Results: We evaluated the approach on a dataset of colorectal cancer patients with

variable amounts of microsatellite instability. The most promising features that can be

explored as biomarkers were based on cell-to-cell distances and spatial heterogeneity.

Both the tumor and non-tumor compartments yielded features that were potentially

predictive for therapy response and point in direction of further exploration.

Conclusion: The data-driven approach simplifies the identification of promising IC

biomarker candidates. Researchers can take guidance from the described approach

to accelerate their biomarker research.

Keywords: biomarker discovery, cell-to-cell distances, colorectal cancer, digital biomarkers, immune contexture,

spatial heterogeneity, tumor microenvironment, whole-slide image analysis

1. INTRODUCTION

1.1. Motivation
One of the main contributors to cancer progression is an insufficient antitumor immune response,
either because of immunosuppression by the tumor or absent antitumor immunity. The tumor
microenvironment is the main stage of the antitumor immune response and, therefore, reveals
reasons for its insufficiency (1).

In the tumor microenvironment, a multitude of different immune cells interact with the
tumor cells in complex ways. Some immune cells, such as CD8+ T cells, are directly cytotoxic
to tumor cells. Other immune cells, such as CD4+ helper T cells or FOXP3+ regulatory T cells,
or even tumor cells themselves stimulate or suppress the immune response (1).

Three areas of the tumor microenvironment are of particular interest: the tumor cell
compartment, the tumor-associated stroma, and the invasive margin, consisting of the border
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between the tumor lesion and the surrounding tissue. Immune
cell infiltrates in the tumor cell compartment indicate an active
immune response, whereas immune cell infiltrates in the invasive
margin or only in the intratumoral stroma (but not in the tumor
cell compartment) indicate immunosuppression by the tumor.
Missing immune cells in all compartments indicate the absence
of antitumor immunity (1).

The density and spatial organization of the immune infiltrate
in the tumor microenvironment, also called the immune
contexture (IC), often correlates with clinical outcome (2, 3). This
information is therefore used as a prognostic biomarker.

For this purpose, histological sections of the tumor
microenvironment are stained for characteristic antigens of
immune and tumor cells. The sections are then digitized and
the relevant compartments and cells are annotated with image
analysis software (4). From these annotations, a wealth of
different features can be computed which describe the density
and spatial organization of immune and tumor cells in the tumor
microenvironment. In this paper, we use the term “feature” for
general characteristics of the immune contexture, and the term
“biomarkers” for immune contexture features with prognostic
value.

Immunotherapy that resolves immunosuppression by
checkpoint blockade has achieved remarkable clinical success.
Unfortunately, this success only applies to subgroups of patients.
Also, immunotherapy can have severe side effects and be
very expensive. IC biomarkers can not only be prognostic but
also predictive of immunotherapy response (1). When used as
companion diagnostics, such biomarkers can reduce unnecessary
suffering and costs.

1.2. State of the Art
There is a growing body of literature on IC biomarkers (4). The
most simple class quantifies the compartment-specific density
of certain immune cells. Prominent examples are given in the
publications by Galon et al. that describe a semiquantitative
“Immunoscore” derived from the densities of certain immune
cells (e.g., CD3/CD8) in the tumor compartment and invasive
margin. This score was shown to be a better prognostic factor
for colorectal cancer than the established TNM (Tumor, lymph
Nodes, Metastases) staging system (5, 6).

Another class of IC biomarkers is derived from distances
between different types of cells. The assumption is that cell
interactions become apparent through spatial proximity. For
instance, Feichtenbeiner et al. found that CD8+ and FOXP3+
immune cells in the tumor compartment positively impact the
prognosis of human gastric cancer when their shortest average
distance lies between 30 and 110 µm (7). Nagl et al. found
that non-random, short distances between FOXP3+ and CD20+
immune cells were associated with unfavorable prognosis in anal
squamous cell carcinoma (8).

IC features often vary substantially within the tumor. For
example, Krüger et al. report breast cancer cases with substantial
overall inflammation but large areas with sparse immune
infiltrates. They also report cases with little overall inflammation
but focally dense immune infiltrates (9). This has led to the
idea to use the intratumoral heterogeneity of the aforementioned
features as an immune context feature in itself.

Intratumoral heterogeneity can be quantified by dividing
an image into a grid of tiles, and computing statistics about
the feature distribution across the tiles. In the analysis of
radiological images, this approach has revealed several prognostic
biomarkers (10). In pathology, this approach has been used for
the assessment of Ki67 expression heterogeneity (11). Besides
very recent developments (12), heterogeneity appears to be
largely unexplored in the context of IC biomarkers.

Finding novel IC biomarkers is very challenging. On the
one hand, there is still little knowledge about the manifold
interactions between immune and tumor cells and studies often
yield contradictory results (7). This makes it hard to identify
biological effects with prognostic or predictive value. On the
other hand, IC features can be arbitrarily complex and are often
created by combining other IC features, such as densities of
different cell types. IC features also often have parameters, such
as distance thresholds, that are hard to set in advance. The
resulting huge number of possible features makes the selection
of promising biomarker candidates challenging.

1.3. Contributions
To tackle these challenges, we describe an approach for the data-
driven discovery of predictive IC biomarkers. This approach can
be used as part of general hypothesis-free biomarker discovery
studies such as Beck et al. (13), Harder et al. (14).We thus provide
a tool to complement classical, knowledge-driven biomarker
research.

We present a systematic overview of possible IC features,
based on cell densities, cell-to-cell distances, and spatial
heterogeneity, with clear mathematical definitions. We describe
a feature selection process to identify biomarker candidates out
of a large set of possible features. In this context, we discuss the
significance of results obtained from small datasets which are
common in immunotherapy trials.

We evaluated the approach on a cohort of 72 colorectal
cancer patients with highly variable amounts of microsatellite
instability (MSI). MSI colorectal cancers tend to have more
abundant immune infiltrates and are more likely to respond to
immunotherapy than microsatellite-stable (MSS) cancers (15).
Assuming that MSI indicates potential therapy response, we
ranked candidate IC features according to their predictive power
with regard to MSI.

2. MATERIALS AND METHODS

Our approach for computing quantitative features and the
assessment of their predictive power consists of several steps. It
is based on object data extracted from fluorescence microscopy,
an established procedure that we summarize in section 2.1.
After a brief explanation of the biological background of the
object data in section 2.2, we describe the computation of a
number of quantitative “base” features, including global densities,
density ratios, and distance-based features taking into account
the possibility of cell-cell interactions (section 2.3). Evaluating
these features in tilings of the specimen domain and using
techniques from descriptive statistics, we next describe how to
quantitatively characterize different aspects of the heterogeneity
of said features (section 2.4). Finally, we provide an approach for
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quantitatively assessing the discriminatory power of the features
for binary end points (section 2.5).

The approach presented here is generic and modular in
different regards. While we list specific object (cell) types
in the Supplementary Data Sheet 1, Section 1.1, the feature
computation can be applied to any type of point objects in
histology and beyond.

2.1. Data Acquisition
2.1.1. Creating Specimens and Imaging
Surgical samples from primary colorectal tumors were procured
from Avaden and Indivumed with limited attached clinical
data. Surgical samples were collected from consented patients
(informed consent) and under approval from the respective
Institutional Review Board, National Ethics Committee, or
equivalent agency. The samples had been fixed in formalin,
embedded in paraffin and archived prior to shipment.

A total of 72 tissue specimens were obtained and
histologically processed into 2.5 µm thick sections. Fluorescent
immunohistochemistry was used to label Ki67+ cells,
CD3+/CD4+ cells and CD3+/CD8+ cells according to the
procedure described in Zhang et al. (16). The resulting slides
were digitized with a Zeiss Axio Scan.Z1 at 20× magnification,
resulting in a pixel resolution of 325 nm. Additionally, H&E
slides used for a reference were digitized with a Ventana iScan
HT at 20×magnification (pixel resolution of 465 nm).

In addition to creating image data for further analysis, the
slides were classified as MSI or MSS. For this purpose, slides of
the tissue samples were stained and assessed for the presence or
absence of four mismatch repair (MMR) proteins, MLH1,MSH2,
MSH6, and PMS2. Loss of one or more of the mismatch gene
products is highly concordant with DNA-based MSI testing (17–
20). Tumors with loss of one or more of the MMR proteins are
considered MSI, whereas intact MMR staining is classified as
MSS. This resulted in 19 MSI and 53 MSS cases in our dataset.

2.1.2. Image Analysis
The digitized whole-slide images were displayed in a custom
image viewer enabling panning, zooming, and rotating images.
The entire tissue was detected automatically, the tumor
compartment of the tissue and tissue compartment to be
excluded from the analysis (e.g., necrotic regions) were drawn
and labeled by human experts using said image viewer.

Different cell objects were detected by a custom written
machine learning algorithm based on color, intensity, texture,
and shape of the objects appearing in the fluorescence images.
The algorithmic results were verified by a human expert
(pathologist) by visual assessment of the detected objects.

Figure 1 illustrates the data acquisition workflow and shows
two object visualizations for an example case.

2.2. Data Interpretation
Based on the annotations described in section 2.1.2, three tissue
regions are defined: the “entire tissue” (non-excluded, non-
necrotic) in the slide, the intersection of the entire tissue and
the annotated tumor region as the “tumor compartment,” and

the entire tissue without the annotated tumor region as the
“non-tumor compartment.”

Moreover, we consider following types of objects,

• Ki67: Ki67 single-positive (i.e., proliferating) cells used as a
surrogate for tumor cells;

• CD4any, CD4prolif., CD4non-prolif.: CD4 immune cells (T helper
cells and regulatory T cells), distinguished in proliferating and
non-proliferating cells (CD4+ cells that are Ki67+ and Ki67-,
respectively); and

• CD8any, CD8prolif., CD8non-prolif.: CD8 immune cells
(cytotoxic T cells/effector cells), distinguished in proliferating
and non-proliferating cells (CD8+ cells that are Ki67+ and
Ki67-, respectively).

For a more detailed description of the object types, we refer to the
Supplementary Data Sheet 1, Section 1.1.

Mathematically, the tissue regions are represented as the
interior of polygons denoted as R. The cell objects are represented
as points denoted as ω, the set of all objects of a certain
type is denoted as �. For notational convenience, we use the
“intersection” � ∩ R as shorthand for all objects of type �

geometrically located in tissue region R (entire tissue, tumor
compartment, or non-tumor compartment), i.e., mathematically
we identify object sets and their types as well as objects and their
geometric location.

2.3. Global Features
We compute two categories of global features, i.e., features
evaluated for the entire tissue or the entire tumor or non-tumor
compartment:

• “density-based features” (7, 8) comprising densities of objects
and object combinations as well as various ratios of object
(combination) counts; and

• “distance-based features” or “features based on cell-to-cell
distances” (7, 8).

For these categories, we consider different feature types. We
describe each feature type in two steps, first explaining it in
text form, then providing a precise and detailed mathematical
definition in a separate paragraph.

2.3.1. Density-Based Features

2.3.1.1. Counts
As the most basic features, we count the number of objects of
each type in each tissue region, e.g., the number of CD8 immune
cells in the non-tumor compartment.

Mathematically, these features are defined as

#(� ∩ R) , (1)

where R is either the entire tissue, the tumor compartment,
or the non-tumor compartment, and � is any of the
10 individual object types or object combinations explained in the
Supplementary Data Sheet 1, Section 1.1. Clearly, such counts
are dimensionless. By themselves, marker counts are of limited
use for characterizing the tissue as they neglect the tissue size,
but can be verified easily by counting the respective strings in the
input data.
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FIGURE 1 | Basic analysis workflow. Top row, from left to right: H&E-stained slide for visual assessment of the specimen; synthetic overlay of the fluorescence images

of different cell protein stainings; automatically detected tissue and annotated tumor compartment of the tissue. Bottom row: visualization of three examples of

detected cell object types. This case was classified as MSI.

2.3.1.2. Densities
Object densities and densities of object combinations are
computed as object counts divided by the area of the respective
tissue region, e.g., the density of proliferating CD8 immune cells
in the entire slide.

Mathematically, densities are defined as

#(� ∩ R)

area(R)
, (2)

where, as above, R is either the slide, the tumor, or the non-
tumor compartment, and � is any of the 10 individual
object type or object combinations explained in the
Supplementary Data Sheet 1, Section 1.1. Region area is
measured in millimeters squared, so the densities are given in
units 1 per mm2.

2.3.1.3. Ratios of cell types
For certain object combinations, we compute the ratios of the
respective object counts in the tissue regions, e.g., the ratio of
CD4 immune cells and Ki67 single-positive cells in the tumor
compartment.

Mathematically, these ratio features are

#(�a ∩ R)

#(�b ∩ R)
, (3)

where (�a,�b) is one of the 156 distinct object combinations
listed in the Supplementary Data Sheet 1, Section 1.1, and R is,
as above, either the slide, the tumor, or the non-tumor tissue. The
counts and thus their ratios are dimensionless. Note that these

ratios include the special case of where �a is a subset of �b, e.g.,
the ratio of proliferating CD4 over all CD4, which can also be
denoted as the “fraction” between 0 and 1 of proliferating CD4
cells.

2.3.2. Distance-Based Features
In order to model limited spatial influence of cells in their
neighborhood, we also compute features taking into account
minimal or maximal distances of object types to the closest object
of a different type (denoted as “reference objects”). Examples
include the number of CD4 immune cells no farther than
30 µm from the closest Ki67 single-positive cell, or Ki67 single-
positive cells at least 50µm away from the closest CD4 immune
cell.

Mathematically, we distinguish two cases of increasing
complexity: single and combined reference object types.
The previous examples contain Ki67 single-positive as a
single reference object type, and (proliferating and non-
proliferating) CD4 immune cells as a combined object
type.

2.3.2.1. Cell-to-cell distance criteria
Mathematically, distances to single reference object types can
be expressed by equipping the numerator and denominator in
Equation (3) with distance criteria. In the simplest case, the count
is restricted to objects of type �a whose distance to the closest
object of type �b (reference objects) is within a given threshold,

#{ωa ∈ �a ∩ R : dist (ωa,�b) ≤ θ} , (4)
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where we consider thresholds in the range of a few typical cell
sizes,

θ ∈ {15, 20, 25, 30, 35, 50, 100}µm , (5)

in order to capture interactions of directly adjacent cells as well
as, e.g., interactions via cytokines in the vicinity. A restriction to
objects with distance above a threshold is obtained by replacing≤
by > in Equation (4).

2.3.2.2. Adjacency to multiple cell types
Mathematically, distances to combined reference object types
(e.g., proliferating and non-proliferating and CD4 immune cells)
provide a richer set of features, but are also more complicated to
describe. For reference objects in the distance criterion being a
combination M of object sets � ∈ M, one can either require
that a proliferating or a non-proliferating CD4 object need to be
closer than θ , or that both a proliferating and a non-proliferating
object are needed. For the “or” case, this results in features of the
form

#
{

ωa ∈ �a ∩ R :

∨

�∈M
dist (ωa,�) ≤ θ

}

. (6)

For, e.g., M =
{

�β ,�γ ,�δ

}

, we here use the notation
∨

�∈M dist (ωa,�) ≤ θ as shorthand for

(

dist
(

ωa,�β

)

≤ θ

)

∨
(

dist
(

ωa,�γ

)

≤ θ

)

∨
(

dist (ωa,�δ) ≤ θ

)

.

(7)
The “and” case, in analogy to Equation (7), uses the notation
∧

�∈M dist (ωa,�) ≤ θ . Moreover, one can require minimum
rather than maximum distances. In total, this translates to four
possible distance criteria:

#

{

ωa ∈ �a ∩ R :

{∨

�∈M
∧

�∈M

}

dist (ωa,�)
{≤

>

}

θ

}

. (8)

2.3.2.3. Distance-based rwith the distancesatios
As distance-based features involving distance criteria, we
compute a number of ratios of marker counts involving distance
criteria (of the form introduced above) in the numerator and
(optionally) in the denominator. Two examples (cf. Figure 2)
are

• the number of CD4 immune cells in the tumor compartment
no farther than 35 µm from the closest Ki67 single-positive
cell, divided by the total number of CD4 immune cells in the
tumor compartment; and

• the number of Ki67 single-positive cells in the tumor
compartmentmore than 50 µm from the closest (proliferating
or non-proliferating) CD4 immune cell, divided by the
number of (proliferating and non-proliferating) CD8 immune
cells in the tumor compartment more than 50 µm from the
closest (proliferating or non-proliferating) CD4 immune cell.

Following a data-driven approach, the combinations and
distance thresholds considered here were chosen regardless

whether any biological mechanisms are known that would
motivate the specific choice.

Mathematically, such features in the most general form
considered in this study can be expressed as

#

{

ωa ∈ �a ∩ R :

{∨

�∈M
∧

�∈M

}

dist (ωa,�)
{≤

>

}

θ

}

#

{

ωb ∈ �b ∩ R :

{∨

�∈M
∧

�∈M

}

dist (ωb,�)
{≤

>

}

θ

} , (9)

where the choices of “or”/“and” and ≤ / > are independent of
each other.

We used the 5,859 object combinations explained in
the Supplementary Data Sheet 1, Section 1.2 and Table S1,
combined with the distances from Equation (5) as upper and
lower thresholds, respectively.

In principle, the reference objects M and the distance
thresholds θ could, of course, be chosen independently for the
denominator and the numerator as a further generalization
of Equation (9). To keep the total number of distance-based
features and the computational workload manageable, we use
the slightly restricted form of Equation (9). This, however, is
not a general limitation of our approach, merely of our current
implementation, and has no biologically motivated reason. Note
that distance-free object counts and global ratios introduced
above can be viewed as a special case of a distance-based fraction
using, e.g., an upper threshold for the distance larger than the
specimen size or a lower threshold smaller than the minimal cell
distance, so that all objects are included in the count.

2.3.3. Implementation
Our feature analysis is implemented in Python in two main
steps:

1. Data is imported, tissue compartments and the point
objects contained therein are determined, and object-to-object
distances are computed.

2. The features defined above are computed.

For the Boolean operations on polygons representing the tissue
regions, we use the shapely library (21), which in turn uses
the GEOS library (22). We also use shapely to determine the
respective areas and the point-in-polygon relations representing
whether an object lies in the tumor or the non-tumor tissue.
For efficiently computing object-to-object distances, we use the
KDTree data structure of SciPy (23). For storing the input data
and the results obtained in the first analysis step, we use sqlite
databases (24).

In the subsequent feature computation, we combine Python
code and SQL database queries from within Python, e.g.,
for counting the number of objects with different distance
thresholds. Due to the amount of data and the number of
features, the feature analysis is computationally expensive.
Profiling at the Python level helped us to find performance
bottlenecks and optimize the implementation of the database
interaction for speed. For this purpose, we mainly use two
techniques: indexing of the database tables where appropriate,
and caching of database query results: if no data gets written
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FIGURE 2 | Example analysis results. For the slide with object data visualized above, the table shows six example features computed by our analysis.

between repeated identical queries, the result can be assumed
to be the same and can hence be cached. Write access can
be prevented if only a single process at a time works with a
given database. To further improve computational performance,
we parallelize at the process level, i.e., we treat different slides
separately in the feature analysis and write the results to separate
databases that are merged only at the end.

2.3.4. Example Values of Global Features
We obtain a total of 6,387 distance-based and density-based
features (equipped with different distance thresholds), cf. Table 1
and the Supplementary Data Sheet 1, Table S1. There are strong
redundancies between part of the different features considered,
so any subsequent analysis should not view them as independent
of one another. This is intended, so that biological effects can
be pinpointed by single features rather than a combination of
multiple orthogonal features.

As example results, six of the feature values computed for one
example slide are shown in Figure 2.

2.4. Heterogeneity Features
The computation of the features above only yields average
values for the slide, tumor and non-tumor tissue; it does not
capture heterogeneity across the tissue. Heterogeneity, however,
might also contain valuable information that can be used to
discriminate different types of cases. We thus define tilings

TABLE 1 | Number of features and percentages of different classes considered.

Class Density-based Distance-based Sum

Global 528 5,859 6,387

Heterogeneity 8,448 93,744 102,192

Sum 8,976 99,603 108,579

Generally, different values for distance and heterogeneity parameters lead to larger

numbers of features in these classes.

of the tissue regions and compute different measures from
descriptive statistics to quantitatively characterize heterogeneity
of the spatial object distributions. We will refer to these features
as “heterogeneity features” as opposed to the global features
introduced above.

2.4.1. Tile-Based Analysis
To characterize the heterogeneity of the global features
introduced above at different length scales, we define square
tiles covering the tissue regions with edge length 250, 500,
and 1,000 µm. The tile sizes are chosen to be both large
enough for the robust computation of features and small enough
for the assessment of heterogeneity. In each tile for a fixed
size, we first compute values of the base features. This is
achieved by evaluating the formulas 1–4 and 6–9 for each tile
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FIGURE 3 | Square-based analysis. Computing a square-based feature (density of proliferating CD8 objects) in squares of different size captures clusters of different

size. Note that the color maps are scaled to a maximum range for each image separately to enhance the visibility of variability. By using measures from descriptive

statistics, we quantify heterogeneity independent of spatial patterns one might observe in the tile-based values.

as a region R. Subsequently, we compute descriptive statistical
measures capturing different aspects of heterogeneity for the
values of a fixed feature over the tiles of a fixed size, see
section 2.4.2.

Distance thresholds in the global features do not respect tile
boundaries. Respecting them would not be useful since biological
cell-cell interactions happen in the tissue regardless of a tiling
defined purely for assessment purposes. Hence, no additional
computation of object-to-object distances is necessary.

Figure 3 shows the visibility of clusters (peaks of the density
of proliferating CD8 objects as an example feature) at different
square tile sizes. In order to rule out artifacts due to tiles with
only small overlap with the tissue, only those tiles whose overlap
with the tissue is at least 10% of the tile area are considered in the
statistical computations. An example for such an artifact can be
seen in the left image in Figure 3 where the maximum is attained
in a barely visible sliver at the top left where the tumor boundary
hits the tissue boundary. This lower threshold of 10% overlap
in the analysis is a rather arbitrary example choice and could
be adapted. Also, it could be replaced by using the area overlap
values as weighting factors in the statistical measures introduced
below.

In addition to computing the statistical measures for all tiles,
we restrict the evaluation to those tiles lying entirely inside the
tumor part (i.e., not those overlapping with both tumor and non-
tumor tissue). We hence capture the heterogeneity in the entire
slide and only within the tumor, the non-tumor tissue alone was
not considered in the tile-based evaluation. One consequence of
this approach is that the tumor tissue is not represented fully and,
in particular, that different parts of the tumor are considered at
different length scales. This could be ameliorated by intersecting
tiles with the tumor, however at the cost of more variable effective
tile size for a given tile size.

This approach using tools from descriptive statistics
intentionally drops the spatial information about the tiles, e.g.,
about whether “hot spots” of the feature are located in adjacent
tiles or spread out through the tissue.

2.4.2. Heterogeneity Measures

2.4.2.1. Variation
As an immediate measure of the variation, we compute the
coefficient of variation (COV; standard deviation divided by

arithmetic mean) and the quartile coefficient of dispersion,

QCD =
p75 − p25

p75 + p25
, (10)

where pi is the ith percentile.
The COV includes all data, but is sensitive to outliers

and might be misleading as the underlying data is not
necessarily normally distributed. In contrast, the QCD makes no
assumptions about the distribution of values and is robust to
outliers, but does not capture the data beyond the 25th and 75th
percentile.

To reduce redundancy and make the heterogeneity values
more comparable between different features, we compute the
variation and percentiles relative to “typical values.” More
precisely, we use the coefficient of variation (as described above)
rather than the variance; and the QCD rather than the inter-
quartile range (p75 − p25).

2.4.2.2. Extrema
To quantify the relative values of extrema, i.e., the “height of
peaks” and “depth of troughs,” we compute fixed percentiles (3,
5, 10, 90, 95, 97) divided by the median, resulting in relative
percentiles RP 3, . . . , RP 97.

For each of the 2,129 global features per region (cf.
Supplementary Data Sheet 1, Table S1), eight heterogeneity
values in three different tile sizes are obtained, each of which is
computed in the entire slide and restricted to the tumor, resulting
in 2129× 8× 3× 2 = 102, 192 heterogeneity features. Together
with the global features in the slide, tumor, and non-tumor tissue,
this yields a grand total of 108,579 features. An overview of
the number of features considered in these classes is given in
Table 1.

2.4.3. Implementation
The tile-based feature computation is implemented as part of the
two steps explained above, the computation of heterogeneities is
a subsequent third step.

1. In addition to the tissue regions, tiles and object-in-tile
relations are computed.

We represent the square tiles as polygons and compute
their intersection with the tissue again using the shapely
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library. The implementation from here onwards is generic in
the sense that the tile polygons could have arbitrary shape and
could overlap. Point-in-polygon (tile) relations are computed
also using the shapely library. The tiles, their areas, and the
object-in-tile relations are stored in the same sqlite database
as introduced above.

2. Features are also computed per tile.
Feature values per tile are computed in the same way as

for the tissue regions, but now with counts restricted to the
respective tiles, and also stored in the database. One difference
is that this analysis frequently produces non-finite values due
to division by zero (no objects of specific type in a tile,
in particular for less frequent objects and small tiles). We
handle this transparently using standard IEEE floating point
arithmetics (via numpy in Python), resulting in x/0 = ∞, x 6=

0 and 0/0 = NaN (not a number) and suitable conversion
when storing/retrieving data from the sqlite databases.

3. Heterogeneities are computed.
This is based on querying the database for the per-tile

values of each global feature and for each tile size. We
filtered out the non-finite values before computing statistical
quantities. The different heterogeneity quantities are also
stored in the database.

2.5. Identification of Discriminatory
Features
After computing 108,579 features for a dataset, we rank all
features according to their discriminatory power. This takes into
account two effects: how well can a single threshold separate the
feature values of the two classes, MSI and MSS, and to what
extent can the feature be computed for the cases in the first place.
More generally, this also enables the identification of predictive
biomarkers by comparing features between responders and non-
responders, or the identification of markers capturing treatment
effects, by comparing features pre-treatment and post-treatment,
given suitable data.

2.5.1. Quantification of Discriminatory Power
For a simple decision rule whether a case should be considered as
MSI or MSS based on a single feature, one could apply a decision
tree classifier of depth 1, also denoted decision stump (25).
This algorithm would determine a single threshold upon which
the two classes are separated best. However, there is no unique
criterion for “good” separation of the classes, all conceivable
criteria require a trade-off between specificity and sensitivity, i.e.,
a compromise to what extent MSI cases mis-classified as MSS can
be tolerated and vice versa. A useful compromise depends on the
specific biological question and the potential imbalance (different
number of cases for the classes) at hand.

A standard approach to quantify the well-posedness of binary
classification tasks (i.e., how good such compromises can be
at all) is to compute the area under the curve of the receiver
operating characteristic curve (ROC-AUC) (26). The ROC-AUC
is a number between 0 and 1, where 0.5 is the worst case
indicating that no separation is possible, and the extreme values 0
and 1 are the best cases indicating that all feature values for one
class are smaller or larger than all the feature values for the other

class. As these two cases are equivalent in terms of separation
performance, we replace ROC-AUC by 1 minus ROC-AUC if
ROC-AUC < 0.5.

2.5.2. Quantification of Overall Performance
Features that can only be computed on a subset of the available
data (e.g., due to the lack of a non-tumor region in the slide or a
zero object count appearing in the denominator of a ratio feature)
are less useful than features that can always be computed.

To obtain a more useful overall performance measure (OPM)
taking into account the availability of features on the set of slides,
we define an overall performance measure as follows: We scale
the ROC-AUC to a range between 0 (worst performance) and 1
(best performance), scaled by the availability of the features in the
two classes.

Mathematically, this OPM is defined as

OPM = 2 ·
(

(ROC-AUC)− 0.5
)

·
C1,f

C1
·
C2,f

C2
, (11)

where R is the ROC-AUC, C1 and C2 are the total counts of
available slides of classes 1 and 2, respectively, and C1,f resp.
C2,f are the counts of the respective slides for which feature f is
available. This formula scales the ROC-AUC to a range between 0
and 1 (mapping the “worst” value for R, 0.5, to a performance
measure of 0), and scales the performance by the fractions of
slides for which the feature is available in the classes of interest.
Separating these two fractions rather than using an overall feature
computability fraction is capable of reflecting imbalanced class
sizes.

2.5.3. Implementation
This evaluation is implemented using the ROC-AUC
computation of scikit-learn (27, 28) in Python as the basis
for our overall performance measure. We obtain the individual
feature values from the database containing the feature results,
and store the ROC-AUC values in the database for all features.
We compute OPM values for each of the 108,579 features
obtained in the analysis above in a postprocessing step, and rank
the features according to these OPM values.

3. RESULTS

As a verification, we first applied our analysis approach to a
targeted synthetic dataset designed such that a given feature
is known to be perfectly discriminatory (section 3.1). We
then applied the analysis to the MSI/MSS dataset described in
section 2.1, reporting five features of high discriminatory power
(section 3.2), and giving an overview on the performance of
different types of features (section 3.3). Finally, we estimated
the significance of these results, i.e., whether this discriminatory
power was really due to structure in the data and not merely
a consequence of computing a large number of features
(section 3.4).

3.1. Verification of the Approach
To verify the overall approach, we picked one specific feature,
generated synthetic slides differing in this specific feature,
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and checked that the assessment of discriminatory power
found this feature to be highly discriminatory. This analysis
also demonstrates that the data-driven approach is capable of
discovering discriminatory features that are hard to discern or
assess visually.

As synthetic slides without any intended biological meaning,
we used simple square tissue sections of 1mm edge length
without tumor compartment with generally realistic object
densities for exactly two object types (1,000 Ki67 objects, 50
proliferating CD8 objects). To construct slides in a detectably
different way, we uniformly distributed objects within the tissue,
subject to two different distance constraints: In group A of
synthetic slides, a distance >15 µm between Ki67 and all 50
CD8 objects was enforced. In group B, this criterion was used
for 45 CD8 objects, 5 of the CD8 objects were positioned within
15µm of a Ki67 object. Additionally, a minimum distance of
10 µm between all object points was enforced in both groups.

This led to two groups of slides that are not easily
distinguished by visual assessment (cf. Figure 4), but where the
fraction of Ki67 objects within 15 µm of the closest proliferating
CD8 object clearly discriminates the two groups: by construction,
this feature is exactly 0 in group A and at least 5/50 = 0.01 in
group B.

In fact, the analysis of discriminatory power identified this
feature as perfectly discriminatory with an OPM of 1.0 (ROC-
AUC 1.0, feature available on all slides). There were no other
object types (e.g., CD4) present in the synthetic slides, but the
full set of features was computed. Hence, multiple features were
equivalent (e.g., CD8any = CD8prolif. in these synthetic slides)
and thus equivalently discriminatory.

3.2. Discriminatory Features for the
MSI/MSS Dataset
For our case study using the MSI/MSS dataset described in
section 2.1, five features with high discriminatory power in terms
of OPM are described below. Figure 5 lists the quantitative
results of this assessment and shows scatter plots visualizing
the feature values, as well as a mathematical description of the
features as formulas:

(a) Fraction of Ki67 single-positive markers in the tumor at most
15 µm from closest non-proliferating either CD4 or CD8
marker (i.e., ratio of the number of these over the number
of all Ki67 single-positive markers in the tumor).

(b) Ratio of the number of non-proliferating CD8 markers in
the tumor at least 100 µm from the closest non-proliferating
CD4marker over the number of Ki67 single-positivemarkers
in the tumor subject to the same distance criterion (at least
100 µm from the closest non-proliferating CD4 marker).

(c) Fraction of Ki67 single-positive markers in the tumor at
most 20 µm from closest non-proliferating CD8marker (i.e.,
ratio of the number of these over the number of all Ki67
single-positive markers in the tumor).

(d) The 97th relative percentile of the following ratio in squares
of 1,000 µm edge length across the entire slide: the number
of non-proliferating CD4 markers at most 20 µm from
the closest Ki67 single-positive marker over the number of
(proliferating or non-proliferating) CD8 markers subject to
the same distance criterion (at most 20 µm from the closest
Ki67 single-positive marker).

(e) The coefficient of variation of the following ratio in squares
of 1000 µm edge length across the entire slide: the number
of (proliferating or non-proliferating) CD4 markers at most
30 µm from the closest Ki67 single-positive marker over
the number of proliferating T cell (CD4 or CD8) markers
subject to the same distance criterion (at most 30 µm from
the closest Ki67 single-positive marker).

These five features were selected from the 20 features with
largest OPM values (listed in the Supplementary Data Sheet 1,
Figures S1– S3) by omitting a number of features conceptually
similar to feature (a). The five features selected here were
available for almost all cases. One of the MSS cases did not have
a tumor compartment annotated, so the features (a–c) could be
computed for all except one MSS case.

3.3. Overall Feature Performance
To compare the general discriminatory power of features
in different classes (cf. Table 1), we report the numbers of
potentially predictive features in the respective classes in Table 2.

FIGURE 4 | Slides for verification experiment. The synthetic slides using 1mm2 tissue in two groups are constructed such that the fraction of Ki67 objects (orange)

within 15 µm of the closest proliferating CD8 object (dark violet) differs the two groups: This fraction is 0 in group A and ≥ 0.01 in group B. The digital approach

successfully discriminates the visually similar slides.
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FIGURE 5 | Selected features with high discriminatory power. Of the 108,579 features included in our analysis, the figure shows five selected features of high

discriminatory power. The parameters for the features shown are explained in the text. The scatter plots show the feature values of the respective feature (all of which

are dimensionless), with MSI and MSS as crosses and circles, respectively. Data points are uniformly randomly scattered in vertical direction and plotted on a

logarithmic horizontal scale.

TABLE 2 | Numbers of potentially predictive features in the different classes of

features.

Class Density-based Distance-based

Global 0 157

Heterogeneity 35 323

The total numbers of features per class are listed in Table 1.

In order to further investigate the influence of the threshold
in cell-to-cell distances, we compared how many potentially
predictive features we obtained depending on the distance
thresholds and for the density-based features. For this purpose,
we considered a threshold of OPM ≥ 0.6. In case of features
available on all slides, this corresponds to ROC-AUC ≥ 0.8, an
even higher ROC-AUC is required for features not available on all
slides. With this criterion, 515 of the 108,579 biomarkers in total
were found to be potentially predictive. The results in Table 3

indicate that there were few potentially predictive density-based

features and that more potentially predictive features for very
small distance threshold were obtained.

3.4. Estimated Significance of the
Discriminatory Power
We further assessed our feature selection method and the
results for the MSI/MSS use case to show that the observed
discriminatory power is meaningful and not merely a random
finding in our large number of features. For this purpose, we
followed a validation strategy similar to the ones suggested
in Horvatovich and Bischoff (29), Guyon and Elisseeff (30), using
pseudo-randomly generated data of the same size as the real
feature data. Our ROC-AUC-based assessment is invariant under
monotonic transformations of the feature values, so we chose
a uniform distribution for the random data. It had the same
assignment to classes (MSI/MSS) as the real data, was fed to the
feature selection method, and finally the respective OPM values
were computed.
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TABLE 3 | Numbers of potentially predictive features based on cell-to-cell distances with different distance thresholds and density-based features.

Distance threshold θ in µm 15 20 25 30 35 50 100 (none)

# Potentially predictive features 94 69 62 55 70 67 63 35

The total numbers of features included in our analysis were 14,229 for each of the distance thresholds and 8,976 density-based features.

FIGURE 6 | Significance assessment of the discriminatory power. Comparing

the OPM values obtained for the MSI/MSS data to OPM values obtained for

comparable random feature values, we can see that features with OPM ≥ 0.6

are virtually guaranteed to be true positives in terms of discriminatory power.

Figure 6 shows the distributions of OPM values for the
real data and the randomly generated data. The histogram of
the randomly generated data does not include any possible
biomarkers and therefore gives a good indication for the number
of false positives to expect in the real data (29). Comparing the
histograms, we can conclude that features with OPM ≥ 0.6
virtually eliminated the chance of false positives.

4. DISCUSSION

4.1. Data-Driven Feature Discovery
The results in section 3.1 show that the proposed approach can
identify cell interactions of predictive relevance that are hard to
find visually (cf. Figure 4). Thus, our data-driven approach can
serve as a useful tool complementary to visual exploration and
knowledge-based biomarker discovery.

4.1.1. Results for the MSI/MSS Dataset
The results obtained for the MSI/MSS dataset in section 3.2
reveal general insights about immune contexture features. Very
different features can exhibit high discriminatory power (cf.
Figure 5).

Both features (a) and (c) reflect differences between MSI and
MSS cases in term of infiltrating T cells among proliferating
tumor cells. Biologically, both CD8 and CD4 T cells are expected
to be highly discriminatory since co-localization of T cells and
tumor cells reflects the presentation of tumor antigens, which is

presumably higher in MSI cases, and the subsequent response of
the immune system.

Feature (b) potentially reflects the role of CD4 T cells in
modulating the function of CD8 T cells, assuming that distances
above 100 µm are sufficiently far to prevent said modulation.
One could interpret it in a way that CD4 T cells that are close
to CD8 T cells modulate their function which in turn influences
CD8 engagement with proliferating tumor cells cf. (31).

Features (d) and (e) are heterogeneity features and thus less
intuitive to interpret. In a nutshell, feature (d) quantifies peaks
(at the millimeter length scale) of the ratio of the number of non-
proliferating CD4 T cells ajdacent to tumor cells over the number
of T effector cells adjacent to tumor cells. Feature (e) quantifies
the variation (also at the millimeter length scale) of the ratio of
the number of CD4 T cells in the vicinity of tumor cells over the
number of proliferating T cells in the vicinity of tumor cells.

The high discriminatory power of features (b, d, and e)
corroborates the importance of CD4 cells, whose interactions
have been investigated (32) but not fully understood yet. Further
investigations are needed to elucidate the role of heterogeneity of
the cell populations involved in features (d) and (e).

4.1.2. Assessment of Different Feature Classes

4.1.2.1. Density-based vs. distance-based features
All features with OPM > 0.7 (including the five shown
in Figure 5) are based on cell-to-cell distances. Tables 2, 3

corroborate that distance-based features generally have higher
discriminatory power than density-based features. This confirms
previous findings (7, 8) that cell-to-cell distances may contain
essential predictive information.

4.1.2.2. Distance thresholds
The distance threshold occurring in the five features shown in
Figure 5 are generally small, ranging down to theminimum value
of 15 µm we used in the feature analysis. The typical cell size
is a lower bound for meaningful thresholds in this context, so
no benefit can be expected from even smaller thresholds. This
observation is corroborated by the numbers in Table 3, showing
that more potentially predictive features are found for distance
thresholds of 15 µm than for other thresholds. However, these
cumulative numbers do not differentiate between different cell
types. These findings suggest that direct interactions between
neighboring cells are most relevant for the distinction of MSI and
MSS cases.

4.1.2.3. Global and heterogeneity features
The highly discriminative features shown in Figure 5

comprise both global and heterogeneity features. This trend
is corroborated by the numbers in Table 2, indicating that
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measuring feature heterogeneity is useful for assessing the tumor
microenvironment.

4.1.2.4. Tissue compartments
The OPM does not only take the predictive power of features into
account, but also the number of cases for which a feature can be
computed. Since only 16 of the 19MSI and 42 of the 53MSS slides
contain any non-tumor tissue regions, features derived from the
non-tumor compartment generally had lower OPM values.

Non-tumor regions being available only in part of the dataset
is not an inherent limitation of these features, but a limitation of
the evaluation data. The most predictive feature derived from the
non-tumor compartment is the fraction of Ki67 single-positive
markers at most 15 µm from the closest non-proliferating either
CD4 or CD8 marker, i.e., the same feature as in (a) but evaluated
in the non-tumor compartment. This feature has ROC-AUC =

0.890, which is comparable to the ROC-AUC values of the highly
discriminative features derived from the tumor compartment
or the entire tissue listed in Figure 5. This confirms previous
findings (33–35) that not only inflammation in the tumor itself
but also immune infiltration in its surrounding stroma has
prognostic and predictive value.

4.1.2.5. Feature values
In Figure 5, one can observe that the feature values of the MSI
cases are generally larger than the feature values of the MSS cases
(the crosses tend to the right of the threshold, the dots to the left).
This is not a meaningful trend and does not generalize beyond
the five features shown, it is merely a consequence of the terms in
the numerator and denominator in the fractions describing the
respective feature.

4.2. Limitations and Outlook
Our findings of potentially predictive features for the MSI/MSS
dataset (section 3.2) should be interpreted and generalized with
care. On the one hand, only a single, small cohort was used for
the evaluation. On the other hand, the predictive power was not
assessed toward actual therapy response but toward MSI as a
surrogate target variable.

The large number of features included in the analysis, and
the numbers of features in the respective classes (cf. Table 1)
should be compared with care. By design, our data-driven
approach included a large number of features because they could
be computed from the input data and not because they were
expected to be predictive based on prior knowledge.

The findings about feature classes (sections 3.3 and 4.1.2)
should also be interpreted with care, again due to the limited
scope of the evaluation. We can conclude that considering spatial
context, i.e., cell-to-cell distances and feature heterogeneity,
yielded potentially predictive biomarkers for our dataset. Thus,
such features may be useful for other datasets as well.

4.2.1. Feature Analysis
In this study, cells of a limited number of types are considered.
Further cell types and features are conceivable, reflecting more
general relations between different object types. Moreover, the
cell objects are represented by point objects. This could be

extended by including cell morphological features, taking into
account the key information a pathologist would use for visual
assessment of the tissue. However, this requires a reliable
segmentation of cell shapes which is generally very challenging.

Our approach to quantify heterogeneity uses tools from
descriptive statistics. Hence, spatial patterns with the same
distribution of feature values cannot be differentiated by
this approach. This could be tackled by texture features
that characterize the spatial arrangement of tile values in a
quantitative manner (10).

Further features could potentially be derived by comparing
the same heterogeneity measure for the same base feature for
more different tile sizes, which could help identify “characteristic
length scales” in the object data.

The tiling approach in the heterogeneity characterization
is generic in the sense that arbitrary polygons can be used,
e.g., hexagons (11), bands near a tumor boundary (if any), or
approximations of circles. Some possibilities are illustrated in
Figure 7, but also overlapping tilings are conceivable (albeit not
straightforward to visualize).

The ring-based analysis indicated in Figure 7 gives rise to
the possibility of considering further features with distances to
the tumor boundary, or an invasive margin which could also be
annotated in the slides and considered in the feature analysis.
This would be of high biological interest. However, it requires
a robust annotation of said invasive margin and moreover has
the difficulty that distances to tumor boundaries can only be
computed for the tumor and non-tumor tissue present in the
specimen at hand which typically is a 2D section through part
of the tumor.

4.2.2. Assessment of Discriminatory Power
The prognostic or predictive power of a biomarker critically
depends on the classification method. To enable the formulation
of useful clinical decision rules, the assessment of discriminatory
power was limited to single features and cutoff-based decision
rules. It would be straightforward to assess the predictive power
of feature combinations or more complex classifiers. Such a
more complex approach may be useful in cases where single
features are not prognostic, but bivariate classification allows
patient stratification (36). However, more complex approaches
make it more difficult to translate results into clinical practice.
Also, an increased number of feature combinations and more
complex classifiers greatly increase the risk of random findings,
thus making a significance assessment even more important.

For more complicated classifiers, cross-validation techniques
would have to be employed to mitigate the risk of overfitting
for more complex classifiers (30). Moreover, the approach for
estimating significance of the discriminatory power would have
to be adapted. In this case, the significance assessment described
in section 3.4 would have to take into account the distribution of
the actual feature values, estimated based on the observed feature
values oblivious to the classes.

Furthermore, our OPM to quantify the predictive power is just
one possibility; feature availability could be considered differently
to assess overall performance. Our criterion of OPM ≥ 0.6 used
in the assessment in section 3.3 was confirmed to be useful in
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FIGURE 7 | Potential extension of the tile-based analysis. Densities of proliferating CD8 objects (top left) can be computed in generic tiles, e.g., geometrically defined

squares (top right) used in this study, hexagons (bottom left, mock-up), or biologically motivated equidistant rings at the tumor boundary (bottom right).

Figure 6, but is still a somewhat arbitrary choice that may need
to be changed for other applications.

4.2.3. Robustness
Only robustly computable features are useful for classification of
future, yet unknown, data. A number of aspects needs to be taken
into account in this context. Regarding the input to the feature
discovery, histological specimens are only incomplete samples
of the diseased organs; staining and imaging in different labs
may introduce variation in the image data; and the annotation
of tissue regions and detection of cell objects and their types
may be imperfect. The latter is particularly relevant for rare cell
types. Also within the feature discovery process, parameters of
the analysis may have an impact on the feature results: distance
thresholds; shape, orientation, and position of the tiling relative
to the tissue specimen; percentiles; but also parameters of the
cross-validation.

Using estimates of the variability of the data in the respective
aspects, one could assess the robustness by suitable Monte Carlo
simulations. A thorough robustness investigation, however,
should also include the interplay of different sources of variability
and goes beyond the scope of the present study.

4.2.4. Application for Biomarker Discovery
The biomarker discovery approach presented in this study is used
for an example application using histologies of a specific cancer
type (human colorectal cancer), with specific cell types stained
and detected (Ki67, CD4, CD8), considering specific binary end
points (MSI, MSS), in one specific patient cohort. The approach
is oblivious to all these aspects and can be applied for other cancer
types, cell types, end points, and cohorts–provided that suitable
data is available.

Besides the full discovery approach, also the individual
building blocks can be applied in biomarker research. Precisely
describing features derived from cell markers is also applicable
for hypothesis-driven research based on hand-designed features.
Quantitatively assessing discriminatory power is generally
useful in case of incompletely available feature data and
imbalanced class sizes. Carefully assessing the significance of
discriminatory power is beneficial in exploratory, data-driven
research where large numbers of potential biomarkers are
considered.

5. CONCLUSION

The data-driven approach simplifies the identification
of promising IC biomarker candidates from histological
datasets with immune cells annotations, tumor compartment
annotations, and clinically relevant endpoints. It works without
having a specific hypothesis about the prognostic or predictive
value of an immunological process and does not require defining
features to capture this process. The approach is agnostic
toward tumor biology and can identify cell interactions of
predictive relevance that are not straightforward to find by visual
inspection.

In an evaluation on a cohort of colorectal cancer patients,
the identified promising biomarker candidates include features
based on cell-to-cell distances and spatial heterogeneity. This
finding corroborates earlier findings that spatial tissue context is
essential for predicting therapy response. In fact, most methods
used to describe the tumor immune status today rely on quantity
and ignore the spatial relationship. This underlines the value of
histology complementary to diagnostic methods without spatial
resolution, such as genetic sequencing.
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It appears unlikely that all identified biomarkers are false
positives, even though they are identified in a data-drivenmanner
using a small dataset. Nevertheless, biological interpretation and
further prospective studies are necessary to confirm their validity.
Themost promising biomarker candidates in our example cohort
comprise quantitative descriptions of co-localizations between
CD8 and tumor cells (confirming previously known relevance)
and the impact of CD4 cells on the anti-tumor immune response
(pointing in a promising new research direction).

Most biomarker studies share the same challenges, including
finding the right candidate features and feature selection strategy.
Researchers can therefore take guidance from the described
approach to accelerate their biomarker research.
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Data Sheet 3.zip | The MSI/MSS dataset used for the identification and

assessment of discriminatory features (sections 3.2, 3.3, and 3.4) is provided as a

collection of text files describing regions, markers, and metadata (part 1/3).

Data Sheet 4.zip | MSI/MSS dataset, part 2/3.

Data Sheet 5.zip | MSI/MSS dataset, part 3/3.
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