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Although lymphoma is a very heterogeneous group of biologically complex malignancies,

tumor cells across all B cell lymphoma subtypes share a set of underlying traits that

promote the development and sustain malignant B cells. One of these traits, the ability

to evade apoptosis, is essential for lymphoma development. Alterations in the Bcl-2

family of proteins, the key regulators of apoptosis, is a hallmark of B cell lymphoma.

Significant efforts have been made over the last 30 years to advance knowledge of

the biology, molecular mechanisms, and therapeutic potential of targeting Bcl-2 family

members. In this review, we will highlight the complexities of the Bcl-2 family, including

our recent discovery of overexpression of the anti-apoptotic Bcl-2 family member Bcl-w

in lymphomas, and describe recent advances in the field that include the development of

inhibitors of anti-apoptotic Bcl-2 family members for the treatment of B cell lymphomas

and their performance in clinical trials.
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INTRODUCTION

Acquiring resistance to apoptosis, a highly-regulated, evolutionarily conserved process, is a
characteristic shared among all types of cancer, including B cell lymphomas (1). For a cell to
divide and grow uncontrollably, as malignant cells do, it must not only hijack the normal cellular
growth pathways, but it must also avoid cellular death signals. During lymphomagenesis, B cells
encounter a broad range of stress stimuli, including oncogene activation, DNA damage, and oxygen
and cytokine deprivation, all of which can elicit an apoptotic cell death response. Apoptosis is
regulated by complex interactions between pro-apoptotic and anti-apoptotic members of the B
cell lymphoma-2 (Bcl-2) protein family (2). Thus, a delicate balance between members of the Bcl-
2 family dictate whether the B cell will live or die under stress conditions. As such, alterations
that deregulate the apoptotic process lead to increased survival and facilitate lymphomagenesis (3).
Moreover, these alterations can render lymphoma cells refractory to therapies that are designed to
induce death (4). Specifically, overexpression of the anti-apoptotic Bcl-2 family members and/or
reduced expression of specific pro-apoptotic members are a common feature shared among B
cell lymphomas (4, 5). Much of what we know today about the Bcl-2 family and its role in
B cells and B cell lymphoma comes from decades of research utilizing genetically engineered
mice and a mouse model of Myc oncogene-induced B cell lymphoma [Eµ-myc transgenic mice,
(6)]. However, recent discoveries and low complete response rates in clinical trials with targeted
therapy against BCL-2 in lymphoma reveal significant gaps in knowledge remain (7–9). This review
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comprehensively examines each member of the Bcl-2 protein
family, defining their contribution to B cell lymphomagenesis
through mouse models and the alterations that occur in them in
human B cell lymphomas, including our recent discovery of Bcl-
w overexpression. In addition, this review also describes current
therapeutic efforts to target specific anti-apoptotic Bcl-2 family
members in lymphoma patients alone or in combinations to
improve survival.

BCL-2 PROTEIN FAMILY AND APOPTOSIS

B cells continuously monitor their environment and make
decisions as to whether they should live or die. The Bcl-2
protein family are the central gatekeepers of the intrinsic or
mitochondrial apoptotic response. The family is comprised of
structurally-related proteins with opposing functions that either
promote or inhibit apoptosis by interacting with one another
(10). The Bcl-2 family is typically classified into three groups,
including pro-apoptotic initiators, pro-apoptotic effectors, and
anti-apoptotic proteins (Figure 1A). The apoptotic-promoting
effects from the pro-apoptotic initiators and effectors are
countered by their direct interaction with the anti-apoptotic
family members. It is this delicate and dynamic balance between
the pro- and anti-apoptotic Bcl-2 family members that governs
whether a B cell undergoes apoptosis or survives. We discuss the
consequences of alterations for each of the Bcl-2 family members
in lymphoma in mouse models and make comparisons to what is
observed in human lymphomas (see Table 1).

Pro-apoptotic Bcl-2 Family Members
Members of the Bcl-2 protein family share sequence homology
within conserved regions known as Bcl-2 homology (BH)
domains, which dictate structure and function (67, 68). All
anti-apoptotic family members and a subset of pro-apoptotic
members aremulti-domain proteins, sharing sequence homology
within three to four BH domains. A subset of pro-apoptotic Bcl-
2 family members known as BH-3 only proteins only contain the
BH-3 domain, which is known as the minimal death domain that
is required for binding the multi-domain Bcl-2 family members
(69).

BH-3 Only Proteins: Initiators of Apoptosis
The BH-3 only group of pro-apoptotic Bcl-2 proteins consists of
Bim (BCL2L11), Puma/BBC3, Bad (Bcl-2/Bcl-x-associated death
promoter), Bid (BH-3 interacting-domain death agonist), Bik
(Bcl-2-interacting killer), Noxa/PMAIP1, Bmf (Bcl-2-modifying
factor), and Hrk (Harakiri) [Figure 1A, (70)] and are essential for
initiating the apoptotic cascade. While the BH-3 only proteins
can initiate apoptotic signaling by binding directly to the anti-
apoptotic Bcl-2 proteins, thereby freeing up Bax and Bak to
undergo homo-dimerization, some have been reported to bind
directly to and activate Bax and Bak (71). Years of studies using
mouse models have revealed certain BH-3 only proteins are
preferentially solicited in response to different apoptotic stimuli
(72–76).

BH-3 only proteins serve as the first responders to cellular
insults, including from dysregulation of oncogenes, such as

FIGURE 1 | Bcl-2 family members regulate apoptosis. (A) Various cellular

stressors induce apoptosis through the intrinsic, mitochondrial pathway, which

is regulated by the Bcl-2 family of proteins. These stress signals activate

pro-apoptotic BH-3 only initiators (red), which inhibit the anti-apoptotic

proteins (green). This, in turn, allows the pro-apoptotic effectors (blue) to be

activated. Activation of the effector proteins results in their oligomerization and

subsequent mitochondrial outer membrane permeabilization (MOMP),

enabling the release of apoptotic factors that initiate the caspase cascade and

final stages of cellular destruction. (B) Pro-apoptotic BH-3 only proteins bind

to anti-apoptotic Bcl-2 family members with different affinities. BIM, PUMA,

and BID bind strongly to all anti-apoptotic Bcl-2 proteins, whereas BAD binds

preferentially to BCL-2, BCL-X, and BCL-W, and NOXA binds preferentially to

MCL-1 and A1/BFL-1.

Myc, and serve as a blockade against the development of B
cell lymphoma. For example, loss of Bim or Puma accelerated
Myc-driven B cell lymphoma development in a mouse model
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TABLE 1 | Alterations in Bcl-2 family members in mouse models and human lymphoma.

Family

member

Mouse models Human patients

PRO-APOPTOTIC

BIM Loss accelerates Myc-driven BCL (11) Deleted in 20% MCL (12);

SNPs present in FL, DLBCL, CLL (13);

Low mRNA expression in 40% BL (14)

PUMA Loss accelerates Myc-driven BCL (15, 16) Low mRNA expression in 40% BL (15)

NOXA Loss does not accelerate Myc-driven BCL, but does increase B cell

numbers (16)

Unknown

BAD Loss accelerates Myc-driven BCL (17);

25% with deletion develop DLBCL at old age (18)

No known link with DLBCL

BID Loss causes CMML (19) Unknown

BIK Loss does not accelerate Myc-driven BCL (20) and has no effect on

hematopoietic cells (21)

Somatic missense mutations in FL, MZL, and DLBCL (22)

BMF Loss accelerates Myc-driven BCL and increases B cell numbers (17) Reduced protein levels in BL (17)

BAK Null mice are phenotypically normal (23);

Unknown effects on Myc-driven BCL

Unknown

BAX Null mice have mild lymphoid hyperplasia (24);

Loss accelerates Myc-driven BCL (25)

Unknown

BOK Loss does not accelerate Myc-driven BCL (26) Unknown

ANTI-APOPTOTIC

BCL-2 Null mice have a premature death (27);

Overexpression increases B cells and accelerates Myc-driven BCL (28)

Translocated in 90% FL (29) and 20% DLBCL (30);

Somatic mutations in FL associated with transformation and reduced

survival (31); Increased mRNA levels linked to reduced survival (31);

Increased mRNA in a subset of MZL (32) and protein in MCL (33)

BCL-X Null mice are embryonic lethal (34, 35);

Loss delays Myc-driven BCL (36);

Overexpression increases mature lymphocytes (37); overexpression with

Myc causes lymphoproliferation and plasma cell malignancy (38)

Overexpressed in subset of BL (9), FL (9, 39), DLBCL (9, 39), and

MCL (9, 40);

Low protein expression in MZL (33); Increased mRNA in MZL (9);

High mRNA and protein expression in MM (41–44)

MCL-1 Null mice are embryonic lethal (45–47);

Loss delays Myc-driven BCL (48, 49); Overexpression increases B cells

(50, 51) and accelerates Myc-driven BCL (52)

Amplification or chromosomal gains in 20–25% ABC DLBCL (53);

Increased mRNA in CLL (54, 55) and MM (56) and correlated with disease

progression in MM (57); Low protien levels in MCL (33)

A1/BFL-1 Null mice are embryonic lethal (58, 59);

Overexpression does not accelerate Myc-driven BCL (60)

No change (9) or elevated mRNA in DLBCL (61); Elevated mRNA in CLL

(62, 63); Low mRNA levels in BL (9)

BCL-W Null male mice are sterile (64, 65); Loss delays Myc-driven BCL (8);

Overexpression accelerates Myc-driven leukemogenesis (66)

Overexpressed in BL, DLBCL, FL, MZL, and MCL (8, 9)

BCL, B cell lymphoma; MCL, mantle cell lymphoma; SNP, single nucleotide polymorphism; FL, follicular lymphoma; DLBCL, diffuse large B cell lymphoma; CLL, chronic lymphocytic

leukemia; BL, Burkitt lymphoma; CMML, chronic myelomonocytic leukemia; MZL, marginal zone lymphoma; MM, multiple myeloma; ABC, activated B cell subtype of DLBCL.

engineered to overexpress Myc in B cells (Eµ-myc transgenic)
(11, 15, 16). Loss of BIM may also contribute to human
lymphomas, as ∼20% of mantle cell lymphomas (MCL) have
deleted both alleles of BIM (12). In addition, single nucleotide
polymorphisms in the BIM gene have been associated with
risk of developing follicular lymphoma (FL), diffuse large B
cell lymphoma (DLBCL), and chronic lymphocytic leukemia
(CLL) (13). Furthermore, ∼40% of human Burkitt lymphomas
express very low levels of BIM or PUMA mRNA, which may
be the result of epigenetic silencing (14, 15). In contrast to Bim
and Puma, loss of Noxa had no effect on Myc-induced B cell
lymphomagenesis in mice, but did increase the number of B
lineage cells (16). It is unknown whether NOXA loss contributes
to human B cell lymphoma. A quarter of mice with deletion of
Bad develop DLBCL at old age, suggesting that it may have a
tumor suppressive function in mature B cells (18). Deletion of
Bad also accelerated Myc-induced B cell lymphoma (17). Despite

the findings in mice, BAD loss has not been linked to DLBCL
in humans. Deletion of Bid did not result in B cell lymphoma
development inmice. Instead, chronicmyelomonocytic leukemia
emerged in Bid-null mice after a long latency period, indicating
Bid function is critical for the myeloid lineage (19). It is unknown
if alterations in BID contribute to human lymphoma. In mice,
loss of Bik alone had no effect on hematopoietic cells and
did not accelerate Myc-induced B cell lymphoma development,
suggesting that it has no role in B cells (20, 21). However,
somatic missense mutations have been observed in BIK in
B cell lymphomas in humans, including FL, marginal zone
(MZL), and DLBCL (22), suggesting that its loss may contribute
to these lymphomas. Loss of Bmf in mice increased B cell
numbers and cooperated with Myc overexpression to accelerate
lymphomagenesis; preferentially developing an IgM+ B cell
lymphoma (17). Reduced levels of BMF were observed in Burkitt
lymphoma patient samples and cell lines (17). Together, the data
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indicate that each pro-apoptotic BH-3 only family member may
facilitate tumor suppression in specific hematopoietic cells, but
not all may have a role in B cells.

Bax, Bak, and Bok: Effectors of Apoptosis
Activation of Bax and Bak, and possibly the lesser-studied Bok,
involves homo-dimerization followed by oligomerization
within the outer mitochondrial membrane (71). This
conformational change induces mitochondrial outer membrane
permeabilization (MOMP) by creating a pore and triggering
the release of apoptosis-inducing proteins, such as cytochrome
c and second mitochondria-derived activator of caspase
(Smac)/direct IAP-binding protein with low pI (DIABLO)
from the mitochondria [Figure 1A, (77)]. Following this
release, the caspase cascade is activated, ultimately resulting
in the proteolysis of intra-cellular proteins and cellular
destruction.

The combined function of Bax and Bak is critical for
development and mediating apoptosis. Mice lacking both
Bak and Bax have severe developmental defects and have
hematopoietic cells that are resistant to diverse stimuli that
activate the intrinsic apoptotic pathway (23, 78). Mice lacking
either Bak or Bax are phenotypically normal (23) or have
mild lymphoid hyperplasia, respectively (24). Using the Eµ-myc
mouse model of Myc-driven B cell lymphomagenesis, loss of
Bax accelerated lymphoma development (25), but the effects of
inactivation of Bak in Myc-induced B cell lymphoma have not
been reported. Loss of Bok did not alter Myc-induced B cell
lymphoma development (26). In humans, mutations in BAX
that caused a frameshift were detected in cell lines derived from
hematologic malignancies that did not include lymphoma and
were associated with resistance to cell death and microsatellite
instability (79–81). Alterations of BAX, BAK, or BOK have not
been reported in human lymphoma; thus, loss/inactivation of
BAX, BAK, or BOK either does not occur or is a rare event in
human B cell lymphoma.

Anti-apoptotic Bcl-2 Family Members
Acquired resistance to apoptosis is regarded as one of the
hallmarks of cancer (1). Accordingly, evidence continues to
reveal that elevated expression of anti-apoptotic Bcl-2 family
members (Bcl-2, Bcl-x, Bcl-w, Mcl-1, A1/Bfl-1) is one of the
major contributing factors to B cell lymphomagenesis (2).
Distinct biological roles for the individual anti-apoptotic Bcl-2
family members have been unveiled by genetically-engineered
mouse models (3). Additionally, it has been hypothesized
that levels of expression of individual anti-apoptotic Bcl-2
family proteins may be an indication of how dependent a
cell is on the protein to maintain its survival (82). The
mechanism by which the anti-apoptotic Bcl-2 family proteins
inhibit apoptosis is predominately governed by their capacity
to bind and sequester the pro-apoptotic BH-3-only proteins or
Bax and Bak, ultimately preventing mitochondrial membrane
permeabilization [Figure 1A, (83)]. The ability of the anti-
apoptotic Bcl-2 proteins to bind pro-apoptotic Bcl-2 proteins
does vary and depends, at least in part, on the apoptotic stimuli
and which BH-3 only proteins are expressed and/or activated

[Figure 1B, (10, 84, 85)]. We will discuss each of the anti-
apoptotic Bcl-2 family members, focusing particular attention
on Bcl-w to highlight its newly-exposed contributions to B cell
survival and lymphomagenesis.

BCL-2
BCL-2 is translocated t(14;18)(q32;q21) to the immunoglobulin
heavy chains, resulting in its constitutive expression in 90%
of FL (29, 86–90). Bcl-2 knockout mice showed that Bcl-2 is
required for normal B cells to survive (27), providing evidence
for why B cell lymphomas would select for its overexpression.
Somatic mutations in BCL-2 in FL are often associated with
transformation of this indolent disease to more aggressive diffuse
large B cell lymphoma (DLBCL) and decreased patient survival
(31). Some of these mutations increased the affinity of BCL-2 to
pro-apoptotic BH-3 only proteins and have also been detected in
lymphoid cell lines (91, 92).

Approximately 20% of de novo DLBCL also harbor BCL-

2 translocations (30). Increased BCL-2 expression has been
linked to reduced survival of patients with DLBCL (93, 94).
The first large-scale gene expression profiling studies classified
DLBCL into two major molecular subgroups, germinal center
B cell (GCB) and activated B cell (ABC) subtypes (95). GCB
DLBCL that have increased levels of BCL-2 is most often
due to a t(14;18) translocation (96), whereas in ABC DLBCL,
amplification of the BCL-2 gene is more often observed (93,
97). Using gene expression profiling, Iqbal and colleagues
reported a significant correlation between elevated BCL-2mRNA
expression and poor overall survival within the ABC subtype
(93). We also observed elevated levels of BCL-2 in both
subtypes of DLBCL, but BCL-2 was more highly expressed in
the ABC subtype than the GCB subtype (9). More recently,
new classifications of DLBCL subtypes have been reported by
two groups (98, 99). Shipp and colleagues described a new
classification of DLBCL subtypes based on genetic signatures
of low-frequency alterations, recurrent mutations, somatic copy
number alterations, and structural variants. One of their two
distinct subtypes of GCB-DLBCL (cluster 3) has structural
variants of BCL-2 and correlate to poor risk (98). Their ABC-
DLBCL subtype (cluster 5) had amplification of BCL-2 (98), as
previously described (93). Staudt and colleagues also reported
new classifications of DLBCL that include four new genetic
subtypes, one of which is EZB, which has EZH2 mutations and
BCL-2 translocations (99).

DLBCL lymphomas that contain both rearrangements in
BCL-2 and translocation of MYC are classified as “double
hit lymphomas” (DHL) and represent ∼10% of DLBCL cases
(100, 101). DLBCLs that co-express high levels of MYC and
BCL-2 proteins due to mechanisms other than chromosomal
translocations are referred to as “dual expresser lymphomas”
(DEL) and represent ∼30% of DLBCL (102, 103). Both DHL
and DEL tend to be clinically more aggressive and have a higher
frequency of treatment failure than those that are non-DHL or
non-DEL (102, 103). Because of this, these subtypes of DLBCL
have become a new biomarker-defined subset, which illustrates
the importance of knowing the status of MYC and BCL-2 to
help guide treatment and monitoring of patients. These results
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also provide impetus to investigate the expression of other anti-
apoptotic BCL-2 family members in lymphomas, as others may
also alter prognosis.

Besides BCL-2 translocation and amplification, additional
mechanisms are reported to contribute to its increased
expression, including BCL-2 gene rearrangement (104),
promoter hypomethylation (105), promoter hypermutation
(106), and phosphorylation (107). A small subset of mantle cell
lymphoma (MCL) have increased expression of BCL-2 (33).
Additionally, BCL-2 can also become overexpressed in the
indolent MZL (32). For patient samples of both MCL and MZL,
BCL-2 overexpression is reportedly caused by non-genomic
changes to BCL-2 (33, 108). BCL-2 expression can also be
regulated by non-coding RNA. In B cells, BCL-2 expression is
negatively regulated by the miR-15a/miR-16-1 cluster (109, 110).
This region is deleted or inactivated by mutations in ∼70%
of CLL (110); however, no other B cell malignancy has been
associated with loss of the region (111, 112).

Although the belief in the importance of BCL-2 in human
B cell lymphomas is firmly embedded, two different transgenic
mice generated ∼30 years ago revealed that Bcl-2 is not a driver
of B cell lymphoma, but increased levels in B cells did lead to their
accumulation (113, 114). Bcl-2 overexpression did cooperate
with Myc overexpression to accelerate B cell lymphomagenesis
(28). The requirements of BCL-2 in the continued survival of
human B cell lymphomas is just now being explored with some
surprising results, as described below.

BCL-X
Shortly following the cloning of the BCL-2 gene, the gene coding
for BCL-X (BCL2L1 for Bcl-2 like 1) was discovered due to its
high level of sequence similarity to BCL-2 (115, 116). Similar
to Bcl-2 transgenic mice, mice engineered to overexpress Bcl-x
renders lymphoid cells resistant to numerous apoptotic stimuli
and causes an abnormal accumulation of mature lymphocytes,
but not overt lymphoma development (37). However, mice
double-transgenic for Bcl-x and Myc in B cells developed
lymphoproliferative disease and plasma cell malignancies (38).
Knocking out Bcl-x revealed that it is not required for lymphocyte
development, but is critical for erythropoiesis and platelets
(34, 35, 117, 118). Loss of Bcl-x did delay Myc-induced B cell
lymphoma development, suggesting that under conditions of
oncogenic stress, B cells may rely on Bcl-x for survival (36).

Burkitt lymphomas can select to overexpress BCL-X (9).
Elevated BCL-X expression has been detected in other B cell
non-Hodgkin lymphomas, including FL and DLBCL, as well
as T cell non-Hodgkin lymphomas (39). Moreover, it has been
demonstrated that in DLBCL, elevated expression of BCL-X
mRNA is associated with a chemoresistant, short-lived group of
patients (119). Like BCL-2, selection for BCL-X overexpression
occurs in a subset of MCL (40). Moderate levels of BCL-X protein
were reported in several cases of CLL, FL, and MCL, but it
was lowly expressed in MZL (33). In a large-scale analysis of
gene expression profiling data, we reported that BCL-X mRNA
was significantly elevated compared to normal human B cells
in multiple types of non-Hodgkin B cell lymphoma, including
Burkitt, DLBCL, FL, MCL, and MZL (9). Unlike BCL-2, which is

lowly expressed in multiple myeloma (MM), levels of BCL-X are
much higher and may therefore be a critical survival factor for
MM (41–44). To date, no chromosomal translocation involving
BCL-X has been reported in human tumor samples, but somatic
copy number amplifications have been detected in hematopoietic
malignancies, including non-Hodgkin lymphomas (120). High
levels of BCL-X have also been attributed to the loss or silencing
of the let-7 family of miRNA that targets BCL-X (109, 121, 122).
Therefore, BCL-X likely contributes to B cell lymphomas.

MCL-1
Upregulation of the anti-apoptotic Bcl-2 family member Mcl-
1 likely also contributes to lymphomagenesis. Mcl-1 was first
identified in an immortalized myeloid leukemia-derived cell
line, and consequently named myeloid cell leukemia 1 (123).
Consistent with Bcl-2 and Bcl-x overexpression models, Mcl-1
overexpression in transgenic mice renders hematopoietic cells
largely resistant to varying apoptotic stimuli and causes the
accumulation of mature B and T lymphocytes (50, 51). In
addition, half of the Mcl-1 transgenic mice develop B cell
lymphomas within two years (52). Mcl-1 knockout mice are
embryonic lethal, but conditional knockout of Mcl-1 in mice
shows a requirement for Mcl-1 in hematopoietic stem cell and
neutrophil survival (45–47). Furthermore, loss of Mcl-1 inhibited
Myc-induced B cell lymphomagenesis in mice (48, 49).

A somatically acquired increase in MCL-1 copy number
has been documented in a variety of non-hematopoietic
malignancies, but only in a limited number of non-Hodgkin
lymphomas (120). Gene amplification or chromosomal gains of
MCL-1 occur in 20–25% of the activated B cell (ABC) subtype
of DLBCL (53). Although individual lymphomas may select for
overexpression ofMCL-1, we determinedMCL-1 expression was
not elevated in a cohort of Burkitt lymphomas compared to
normal human B cells, and that it was also not significantly
different in patient samples of DLBCL, FL, MZL, and MCL
compared to normal B cells (9). However, increased levels of
MCL-1mRNA are suggested to be essential for sustained growth,
survival, and resistance to chemotherapeutics in multiple types
of lymphoma as well as CLL (54, 55). Unlike BCL-2 and BCL-X,
which are overexpressed in a subset of MCL, MCL-1 expression
is typically low in this lymphoma (33). Increased levels of MCL-
1 have been observed in multiple myeloma (56) and shown to
correlate with disease progression (57).

The expression of Mcl-1 is tightly regulated at both the
transcriptional and post-transcriptional level. In contrast to Bcl-
2 and Bcl-x, Mcl-1 is a short-lived protein with a half-life of
∼30min compared to the >6 h half-lives observed for Bcl-2
and Bcl-x (124–126). Mcl-1 levels are also regulated by miRNA.
Loss of miR-29 and decreased levels of miR-125b and miR-133b,
miRNA that bind and negatively regulate MCL-1 expression
(127–130), have been reported in many lymphomas, including
Burkitt, anaplastic large cell, and DLBCL, which may also
contribute to increased MCL-1 expression (131–133). Elevated
expression of MCL-1 can also be the result of aberrant post-
translational mechanisms. For instance, increased expression of
the deubiquitinase USP9X, which is responsible for removing
polyubiquitin chains that target MCL-1 protein for degradation,
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correlates with increased MCL-1 protein in FL, DLBCL, and
multiple myeloma (134). In addition, increased protein stability
of MCL-1 can also lead to protein overexpression as a result of
genetic inactivation of FBW7, a ubiquitin ligase (135, 136).

A1/BFL-1
Protein-based structural analyses indicate, A1 (BCL2A1), the
mouse homolog of human BFL-1, is most highly related to
the anti-apoptotic Mcl-1 (137). Because A1/Bfl-1-null mice are
embryonic lethal, recently, an A1/Bfl-1-conditional knockout
mouse was generated that was viable, fertile, and only showed
minor defects in the hematopoietic system (58, 59). A1/Bfl-1
transgenic mice demonstrated that overexpression of A1/Bfl-1
did not cooperate with Myc to drive B cell lymphomagenesis
(60). However, overexpression of A1/BFL-1 in lymphoma cell
lines provided protection from apoptosis induced by a number
of stimuli, including ligation of the B cell receptor (138),
cytokine deprivation (139), and treatment with staurosporine
or etoposide (139, 140). In contrast, knocking down A1/BFL-
1 resulted in increased sensitivity of B cell lymphoma cells to
cell death caused by CD20 cross-linking and DNA-damaging
drugs (141).

Increased levels of A1/BFL-1 mRNA have been reported
in DLBCL and CLL (61–63). However, our analysis of public
gene expression data showed that compared to normal B cells,
A1/BFL-1 was not overexpressed in DLBCL, FL, MZL, and MCL
(9). We also observed reduced A1/BFL-1 expression in Burkitt
lymphoma patient samples compared to normal human B cells
(9). A1/BFL-1 protein can be post-translationally regulated by
ubiquitin-mediated proteasomal degradation (139, 140). While
regulatory mechanisms, including ubiquitination/proteasomal
degradation (139, 140) and direct transcriptional activation by
NF-κB (nuclear factor-kappaB) (142) have been reported, the
contributions of these mechanisms to increased levels ofA1/BFL-
1 in B cell lymphomas have not been evaluated. Based on the
available data, the contribution of A1/BFL-1 to B cell lymphomas
does not appear to be significant.

BCL-W
The gene encoding BCL-W (BCL2L2 for Bcl-2 like 2) was
initially discovered via a PCR-based strategy while searching
for additional BCL-2 related genes (143). Mice lacking Bcl-
w were determined to be essentially normal, except for a
profound block in male spermatogenesis (64, 65). Several
observations have pointed to a potential role for Bcl-w in
tumorigenesis. For example, in a mouse model of Myc-driven
myeloid leukemogenesis, Bcl-w overexpression cooperated with
Myc to accelerate leukemia development (66). In addition,
high levels of BCL-W were present in cell lines derived from
human lymphomas, leukemias, and multiple solid organ cancers
(66). Similar to its anti-apoptotic relatives, overexpression of
Bcl-w in mouse B and T lymphocytes imparted resistance to
cytotoxic agents (143, 144). Recently, we discovered Bcl-w has
a critical, previously unexplored function in B cell survival
and lymphomagenesis (8, 9). We demonstrated with mouse
models that loss of Bcl-w profoundly delayed Myc-induced B cell
lymphoma development and sensitized B cells to Myc-induced

apoptosis (8). We also evaluated the importance of BCL-W in
human lymphomas known to be driven by or reliant on MYC
expression, specifically Burkitt and DLBCL. The vast majority
of Burkitt lymphoma patient samples examined overexpressed
BCL-W at both the mRNA and protein levels (8). When BCL-W-
specific shRNA was introduced into human Burkitt lymphoma
cell lines, they rapidly underwent apoptosis, indicating BCL-
W is essential for their continued survival. Additionally, we
determined BCL-W was frequently overexpressed in DLBCL.
We detected BCL-W mRNA and protein were as often and as
highly expressed as BCL-2 in DLBCL, where BCL-2 has long
served as the hallmark of a prognostically unfavorable subset
(94). Notably, we also observed that increased BCL-W mRNA
expression correlated with poor patient survival when levels of
BCL-2mRNA were lower in DLBCL (8).

More recently, we expanded our analyses to explore the
additional contributions of BCL-W in other non-Hodgkin B
cell lymphomas. We performed an unprecedented analysis of
all anti-apoptotic BCL-2 family members across different B cell
lymphomas, including Burkitt, DLBCL, FL, MZL, and MCL (9).
In all five types of B cell lymphomas, BCL-W was overexpressed
compared to normal B cell controls. Increased levels of BCL-
W mRNA and protein mirrored those of BCL-2 in FL, which
was unexpected, as FL is historically recognized to be driven
by a BCL-2 translocation (9, 86–90). Of note, and consistent
with previous reports, as the grade of FL increased, levels of
BCL-2 decreased (9, 145), whereas BCL-W expression remained
elevated in both low and high grade FL (9). Taken together,
BCL-W appears to have a critically important, and previously
unrecognized, anti-apoptotic role in B cell lymphoma.

Multiple avenues to regulate levels of Bcl-w have been
proposed. Overexpression of BCL-W can result from increased
activity at the BCL-W promoter (146). A number of studies
using different tumor types have documented that elevated
expression of BCL-W may be attributed to the downregulation
of miRNA that target BCL-W mRNA (128, 147, 148). We
recently demonstrated that tumor suppressive miRNA target
BCL-W, BCL-2, and BCL-X as a novel, miRNA-mediated
mechanism of apoptosis induced by the oncogenic transcription
factor Myc (8, 109, 121). Specifically, in normal cells, Myc
transcriptionally activates the miR-15 family and let-7a, which
bind and negatively regulate the expression of BCL-W, BCL-
2, and BCL-X, causing cells to undergo apoptosis (Figure 2).
However, cancer cells, including lymphoma, inactivate this
mechanism. By means that have not been fully elucidated,
but do involve histone deacetylase (HDAC) enzymes, Myc
switches from a transcriptional activator to a transcriptional
repressor of the miR-15 family and let-7a in lymphoma. This,
in turn, allows the expression of anti-apoptotic BCL-W, BCL-
2, and BCL-X to increase, thereby facilitating tumorigenesis
(Figure 2). We established a link between regulation of BCL-
W expression and Myc. Identifying this novel mechanism of
miRNA-mediated apoptosis also answered a question that has
remained largely unexplored. Previously, it was shown that
Myc suppressed the expression of Bcl-2 and Bcl-x through
an unknown, indirect mechanism (149, 150). These recent
studies provide direct evidence of a mechanism whereby Myc
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FIGURE 2 | MicroRNA mediate a novel mechanism of Myc-induced apoptosis that is inactivated in malignant cells, but re-activated by HDAC inhibition. In normal B

cells (top), MYC transcriptionally upregulates the miR-15 family and let-7a to target and reduce BCL-2, BCL-W, and BCL-X levels, thereby promoting apoptosis.

However, in lymphoma cells (bottom), MYC, in complex with histone deacetylases (HDAC), transcriptionally repress the same miRNA, causing increased levels of

anti-apoptotic proteins and reduced apoptosis. This mechanism can be re-activated in lymphoma cells by inhibiting HDACs (purple arrow).

transcriptionally modulates miRNA expression leading to altered
expression of Bcl-w as well as Bcl-2 and Bcl-x (8, 109, 121).
Therefore, increased expression of anti-apoptotic Bcl-2 family
members, through a variety of mechanisms, are essential survival
factors to B cell lymphoma.

TARGETING ANTI-APOPTOTIC BCL-2
FAMILY MEMBERS IN LYMPHOMA

Biological Rationale, Drug Development,
and Early Clinical Studies for Targeting
BCL-2
Due to the persuasive in vitro and in vivo evidence that anti-
apoptotic BCL-2 family members confer a survival advantage to
neoplastic cells, and contribute to chemotherapeutic resistance
in different types of hematologic malignancies, including B
cell lymphomas, several strategies have been developed to
target them. Since BCL-2 was considered the most important
anti-apoptotic BCL-2 family member in B cell lymphoma, it
was targeted first. Initial attempts to pharmacologically target
BCL-2 consisted of decreasing the intracellular levels of BCL-2
with the delivery of RNA antisense molecules (Figure 3).
Several of these antisense molecules had encouraging preclinical
efficacy and entered clinical trials, including Oblimersen
(G3139/Genasense) (151, 152), PNT2258 (NCT02226965)
(153, 154), and SPC2996 (NCT00285103) (155). Of the three
anti-BCL-2 antisense oligonucleotides, the best characterized
was Oblimersen sodium (G3139, Genasense; Genta Inc.).
Oblimersen was the first drug to demonstrate proof-of-principle
specific down-regulation of BCL-2 protein in human tumors
(156, 157) and provided initial preclinical and clinical evidence
of synergy with cytotoxic drugs, biological agents, and steroids in
a variety of human cancers, including non-Hodgkin lymphoma,
multiple myeloma and acute myeloid leukemia (AML)
(156–159).

FIGURE 3 | Targeting anti-apoptotic BCL-2 family members for therapy.

Therapeutic strategies directed at targeting single or multiple anti-apoptotic

BCL-2 family members include the use of antisense oligonucleotides and small

molecule inhibitors or mimetics. Like the pro-apoptotic BH-3 only proteins,

these small molecules display varying affinities for anti-apoptotic BCL-2 family

members as indicated.

The limited efficacy of Oblimersen in AML (158) and other
hematologic malignancies was attributed, in part, to inefficient
intracellular delivery and led to the search for small molecules
that could target the anti-apoptotic proteins themselves. Each of
the anti-apoptotic proteins has a hydrophobic groove where they
interact with the BH-3 domains of other BCL-2 family members.
With the advances made by structural biology and improved
knowledge of the protein-protein interactions within the Bcl-2
family, small molecule inhibitors, known as BH-3 mimetics were
developed. BH-3 mimetics, based on their functional mimicry of
the BH-3 only pro-apoptotic proteins, can bind with high affinity
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to the same hydrophobic pocket of one or more anti-apoptotic
Bcl-2 family members. The high affinity and specificity of the
BH-3 mimetics displaces already-bound or prevents binding of
newly synthesized pro-apoptotic BH-3 only proteins from their
anti-apoptotic partners, leaving the cells in a “primed” state for
apoptosis. This has proven particularly important in combination
treatments, where the addition of BH-3 mimetics sensitizes cells
to a variety of anti-cancer compounds and aids in circumventing
intrinsic or acquired resistance (160).

The first synthetic BH-3 mimetic was ABT-737, a small-
molecule that binds with high affinity to BCL-2, BCL-X, and
BCL-W, but not MCL-1 or A1/BFL-1 (Figure 3), and was shown
to efficiently induce apoptosis at sub-micromolar concentrations
in a variety of non-Hodgkin lymphoma cell lines (161, 162) and
in primary CLL cells (163, 164). An orally bioavailable derivative
of ABT-737, ABT-263 (navitoclax), was later developed. ABT-
263 (navitoclax) proved to be efficacious in B cell lymphoma
xenograft models as a single agent or in combination with a
variety of cytotoxic drugs, including rituximab (165). Of note,
ectopic overexpression of BCL-2 in B cell lymphoma cell lines
protects from ABT-263 (navitoclax)-induced death in vitro (8,
166). We demonstrated that, similar to BCL-2 overexpression,
BCL-W overexpression in Burkitt lymphoma cell lines conferred
resistance to ABT-737 and ABT-263 (8). Also, ectopic Bcl-
w overexpression in primary murine precursor and mature
B and T cells induced resistance to ABT-737 (144). In early
phase clinical trials, navitoclax showed antitumor activity in
indolent B cell malignancies (CLL and FL) (167–169). However,
the drug was found to induce rapid and severe, dose-limiting,
thrombocytopenia and further studies were stopped. Navitoclax-
induced thrombocytopenia is believed to be due to an on-target
effect on BCL-X, which is a key factor for platelet survival
(165, 170, 171). The hematologic toxicity of navitoclax led to
a significant effort to develop a BH-3 mimetic that selectively
targeted BCL-2. This effort was successful and producedABT-199
(venetoclax), an orally bioavailable BCL-2-specific BH-3 mimetic
[Figure 3, (172)]. Venetoclax (ABT-199) showed promising
efficacy in vitro and in xenografts in vivo for a variety of
hematologic malignancies (e.g., leukemia, CLL, DLBCL) without
inducing severe thrombocytopenia (172–174).

Based on these encouraging preclinical data, further clinical
development of venetoclax was launched in 2011 (Table 2), with
a primary focus on relapsed/refractory (R/R) CLL and NHL
(M12-175). There were high expectations of clinical benefit with
venetoclax in low grade lymphomas, which historically have
served as the canonical disease model for BCL-2 overexpression.
The first subjects treated on the M12-175 venetoclax study, at
daily doses of 100 or 200mg, were R/R CLL patients with high
nodal and blood tumor burden. These patients experienced very
rapid (<12 h) and dramatic reductions in lymphocyte count and
lymph node size, but they also developed severe, life-threatening,
tumor lysis syndrome (TLS). In all cases, the TLS was effectively
managed, and the patients were able to resume therapy on study.
These early data demonstrated the rapid pro-apoptotic effect and
therapeutic potential of venetoclax in R/R CLL, but required the
development of a mitigating strategy to prevent life-threatening
TLS. The strategy included selecting a lower venetoclax starting

dose (50mg) and developing a weekly intra-patient dose ramp-
up scheme, in addition to careful prophylaxis and management
of TLS. Despite the implementation of this strategy, additional
episodes of severe TLS were observed, leading to the death
of one patient at the highest dose level (1,200mg) in a large
(N = 56) cohort of patients with CLL (175). After the starting
dose of venetoclax was further decreased to 20mg and with even
more stringent TLS prophylaxis and monitoring, 60 additional
CLL patients were treated in an expansion cohort, with ramp-
up dosing up to 400mg daily. No additional events of severe
TLS were observed in this group. The most common Grade
3–4 non-TLS toxicity was Grade 3–4 neutropenia (∼40% of
patients) (175), which is believed to be an on-target effect of BCL-
2 inhibition in neutrophil progenitor cells (180). Other common
toxicities included Grade 1–2 gastrointestinal symptoms, such as
nausea and diarrhea (∼50% or patients). From the standpoint
of anti-tumor responses, venetoclax showed highly encouraging
efficacy in R/R CLL, with an overall response rate (ORR) of
79%, and a complete response rate (CRR) of 20%, in 116
patients. Most notably, responses were observed in high-risk
CLL patients, including those with del(17p). These important
early observations in high-risk CLL led to a landmark phase II
study where 107 patients with del(17p) CLL were treated with
venetoclax with the proven ramp-up dosing to 400mg daily,
with an ORR of 79% and a CRR of 8%. Based on the data from
these phase I and II studies, venetoclax received accelerated FDA
approval on April 11, 2016 for the treatment of patients with
del(17p) CLL who have relapsed after, or are refractory to, ≥1
prior line of therapy. Based primarily on data from 389 R/R CLL
patients enrolled in the MURANO clinical trial (NCT02005471),
on June 8, 2018 the FDA expanded the approval of venetoclax,
in combination with rituximab, to include patients with CLL
who progressed after at least one prior therapy, regardless of the
presence of del(17p) (181).

Clinical Trials With Single Agent Venetoclax
in B Cell Lymphomas
In parallel with the clinical development of venetoclax in
CLL, the drug’s profile was also evaluated in patients with
a broad variety of B cell lymphomas, including DLBCL,
FL, MCL, lymphoplasmacytic lymphoma/Waldenström
macroglobulinemia (LPL/WM), and MZL [Table 2, (7)].
The observed toxicity and the efficacy were significantly different
compared to those in CLL. TLS did not occur and severe
neutropenia was only observed in 11% of patients. The ORR
for the entire cohort was 44%, with the best responses seen
in MCL (75% ORR; 21% CRR). Remarkably, despite the well-
characterized overexpression of BCL-2 in FL, ORR in FL was
only 38%. A slightly higher ORR of 44% was noted in patients
with FL treated at ≥1,200mg compared with 27% in those
treated at ≤900mg, suggesting that higher doses could lead to
better efficacy in the nodal disease, which is the primary disease
site in FL. Results in DLBCL were even more disappointing, with
ORR of 18% and no clear association between BCL-2 protein
expression levels and response.
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TABLE 2 | Venetoclax as monotherapy in CLL and B cell lymphoma.

Disease Phase Enrollment Outcomes (%) Common grade 3–4 AEs (%)

R/R CLL (175) I 116 ORR: 79; CR: 20 Neutropenia: 41

Anemia: 12

Thrombocytopenia: 12

CLL (w/ del[17p]) (176) II 158 (153 were R/R & 5 TN) ORR: 77; CR: 20 Neutropenia: 40

Anemia: 18

Thrombocytopenia: 15

R/R CLL (w/prior

BCRi):

II

Prior Ibrutinib (177) 91 ORR: 65; CR: 9 Neutropenia: 51

Anemia: 29

Thrombocytopenia: 29

Prior Idelalisib (178) 36 ORR: 67; CR: 8 Neutropenia: 50

Thrombocytopenia: 25

Anemia: 17

Hypokalemia: 11

>1 Prior BCRi (179) 28 ORR: 39; CR: 4 Neutropenia: 43

Anemia: 39

Thrombocytopenia: 25

Hypokalemia: 21

Hypophosphatemia: 21

R/R NHL (7): I

Overall

MCL

FL

DLBCL

DLBCL-RT

WM/MZL

106

28

29

34

7

4/3

ORR: 44; CR: 13

ORR: 75; CR: 21

ORR: 38; CR: 14

ORR: 18; CR: 12

ORR: 43; CR: 0

—

Anemia: 15

Neutropenia: 11

AE, adverse event; R/R, relapsed/refractory; TN, treatment naïve; ORR, overall response rate; CR, complete response; BCRi, B cell receptor pathway inhibitor; CLL, chronic lymphocytic

leukemia; NHL, non-Hodgkin lymphoma; MCL, mantle cell lymphoma; FL, follicular lymphoma; DLBCL, diffuse large B cell lymphoma; RT, Richter transformation; WM, Waldenstrom

macroglobulinemia; MZL, marginal zone lymphoma.

Combination Treatments With Venetoclax
in Clinical Trials With CLL and B Cell
Lymphoma
In light of the low single agent activity of venetoclax in B cell
lymphomas, combination regimens are now being evaluated,
mostly in the context of the general strategy of adding venetoclax
to well-recognized chemo-immunotherapy combination with
established efficacy (bendamustine and rituximab; CHOP and
rituximab; CHOP and obinutuzumab; EPOCH and rituximab),
or highly promising new drugs (ibrutinib) (Tables 3, 4). A
phase II trial comparing a venetoclax/rituximab doublet to the
three-drug combination of venetoclax/bendamustine/rituximab
is ongoing in patients with R/R FL (NCT02187861), with
preliminary evidence of superior efficacy with the three drug
combination vs. the doublet (ORR 64 vs. 33%) (194). A
combination of venetoclax with obinutuzumab in previously
untreated FL is also currently underway (NCT02877550). As
in CLL, the combination of ibrutinib and venetoclax is being
evaluated in a phase II study in relapsed/refractory MCL
(NCT02471391). The early experience in this trial suggests good
tolerability and promising efficacy of the combination (196).
There are also ongoing studies exploring whether venetoclax may
act as a chemosensitizing agent, such as a study of venetoclax
administered in combination with R-CHOP or obinutuzumab-
CHOP in previously untreated DLBCL (NCT02055820). A

preliminary report indicated that, as expected, CR rates were
high, but follow-up was too short to assess progression-free
survival (PFS). The toxicity profile was acceptable, but venetoclax
dosing had to be reduced to administration only on days 1
to 10 (rather than continuous dosing) to mitigate the rate of
Grade 3–4 neutropenia. A phase II study of venetoclax and
dose-adjusted R-EPOCH in patients with Richter transformation
to DLBCL has begun (NCT03054896), in addition to a
study using a similar regimen for patients with de novo
aggressive B cell lymphomas, including double-hit DLBCL
(NCT03036904). A phase I study is also ongoing to examine
the combination of venetoclax and the SYK tyrosine kinase
inhibitor TAK-659 for patients with R/R DLBCL and FL
(NCT03357627).

Inhibiting Other Anti-apoptotic BCL-2
Family Members
The accompanying toxicities that come with targeting multiple
BCL-2 family members have fueled the development of new
inhibitors to selectively target specific anti-apoptotic BCL-2
family members. Furthermore, individual lymphomas may be
differentially reliant on one or more of the anti-apoptotic BCL-
2 family members, which can be exploited therapeutically. In
addition to the BCL-2 specific inhibitors developed, BCL-X
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TABLE 3 | Venetoclax in combination with anti-neoplastic agents in CLL and B cell lymphoma.

Intervention/Disease Phase Enrollment Outcomes (%) Common grade 3–4 AEs (%)

R + V in R/R CLL (182) Ib 49 ORR: 86; CR: 51 Neutropenia: 53

Thrombocytopenia: 16

Anemia: 14

Febrile Neutropenia: 12

Leukopenia: 12

Pyrexia: 12

R + V vs. R + B in R/R CLL (183) III R + V: 194 24-mo PFS est: 84.9;

ORR: 93.3; CR: 26.8

Neutropenia: 57.7

Anemia: 10.8

Thrombocytopenia: 5.7

Febrile Neutropenia: 3.6

R + B: 195 24-mo PFS est: 36.3;

ORR: 67.7; CR: 8.2

Neutropenia: 38.8

Anemia: 13.8

Thrombocytopenia: 10.1

Febrile Neutropenia: 9.6

I + V in R/R CLL (184) II 38 ORR: 100; CR: 47 Neutropenia: 19/25 pts 76

Infection: 5/25 pts 20

I + V in R/R and TN high risk CLL

(185)

II R/R: 29 ORR: 100; CR: 64

(14 evaluable pts)

Atrial Fibrillation: 11

TN: 32 ORR: 100; CR 56

(16 evaluable pts)

G + V in TN CLL in pts with

coexisting medical conditions (186)

III 12 (from run-in phase) ORR: 100; CR: 58 Neutropenia: 58.3

Febrile Neutropenia: 25

Thrombocytopenia: 16.7

Infection: 16.7

Laboratory TLS: 16.7

Syncope: 16.7

V + BR vs. V + BG in TN or R/R CLL

(187)

Ib 55

V + BR in R/R 30 ORR: 96; CR: 26

(27 evaluable pts)

Neutropenia: 63

Thrombocytopenia: 27

Infection: 27

Anemia: 20

Diarrhea: 10

V + BR in TN 17 ORR: 100; CR: 43

(14 evaluable pts)

Neutropenia: 71

Thrombocytopenia: 24

Anemia: 29

Febrile Neutropenia: 12

V + BG in TN 8 ORR: 100; CR: 43

(7 evaluable pts)

Thrombocytopenia: 63

Neutropenia: 25

Fatigue: 13

Infusion reaction: 13

V + G in TN CLL (188)* Ib 32 ORR: 100; CR: 56.3 Neutropenia: 40.6

Febrile Neutropenia: 12.5

Thrombocytopenia: 12.5

V + G in R/R CLL (189)* Ib 26 ORR: 100; CR: 23.5

(17 evaluable pts)

Neutropenia: 47

Infection: 19

Laboratory TLS: 13

G + I + V in R/R CLL (190) Ib 12 ORR: 92; CR: 42

(6 evaluable pts)

Neutropenia: 33

Lymphopenia: 17

Thrombocytopenia: 17

Hypertension: 25

Fatigue: 17

G + I + V in TN CLL (191) II 25 ORR: 100; CR: 50

(23 evaluable pts)

Neutropenia: 44

Leukopenia: 36

Thrombocytopenia: 36

Lymphopenia: 32

Hypertension: 20

B (debulking) -> G + V in TN and R/R

CLL (192)

II 35 TN ORR: 100; CR: 50

(34 evaluable pts)

Neutropenia: 44

Thrombocytopenia: 12

Infection: 14

(Continued)
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TABLE 3 | Continued

Intervention/Disease Phase Enrollment Outcomes (%) Common grade 3–4 AEs (%)

31 R/R ORR: 90; CR: 28

(29 evaluable pts)

V + R-CHOP vs. V + G-CHOP in TN

(91%) and R/R NHL (193):

I 56

(FL 24; DLBCL 17;

MZL 5; Composite 5;

Other 5)

Neutropenia: 46

Febrile Neutropenia: 29

Thrombocytopenia: 21

V + R-CHOP 21 ORR: 85.7; CR: 67

(21 evaluable pts)

V + G-CHOP 21 ORR: 81; CR: 62

(21 evaluable pts)

V + BR vs. BR vs. V + R in RR FL

(194):

II

V + BR 51 ORR: 68; CR: 50

(22 evaluable pts)

Neutropenia: 59

Thrombocytopenia: 39

Febrile Neutropenia: 10

BR 51 ORR: 64; CR: 41

(22 evaluable pts)

Neutropenia: 24

Thrombocytopenia: 6

V + R 53 ORR: 33; CR: 14

(52 evaluable pts)

Neutropenia: 27

Thrombocytopenia: 8

I + V in R/R or TN MCL (195) 24

(23 were R/R)

ORR: 71; CR: 63

(At week 16)

Neutropenia: 25

AE, adverse event; R/R, relapsed/refractory; TN, treatment naïve; ORR, overall response rate; CR, complete response (includes complete remission with incomplete hematologic

recovery); PFS, progression free survival; BCRi, B cell receptor pathway inhibitor; CLL, chronic lymphocytic leukemia; MCL, mantle cell lymphoma; FL, follicular lymphoma; DLBCL,

diffuse large B cell lymphoma; RT, Richter transformation; MZL, marginal zone lymphoma; NHL, non-Hodgkin lymphoma; TLS, tumor lysis syndrome; pts, patients.

Treatment Abbreviations: V, Venetoclax; R, Rituximab; B, Bendamustine; I, Ibrutinib; G, Obinutuzumab.
*Data were obtained from same trial, but 2017 ASH abstract only contained updated data on TN patients. Abstract from 2015 contained data on R/R (14) and TN (6) patients.

and MCL-1 inhibitors have also been generated (5). There are
currently no known inhibitors specific for BCL-W or A1/BFL-1.

BCL-X Inhibitors
While compounds selective for BCL-2 over BCL-X have shown
anti-tumor effects in vivo with limited platelet toxicities (175,
180), not all cancers express BCL-2 or require BCL-2 for their
continued survival (5, 197). The first reported BCL-X selective
inhibitor with sub-nanomolar affinity and selectivity was WEHI-
539, which antagonized the anti-apoptotic activity of BCL-X
(198). However, WEHI-539 has been limited to in vitro studies
as a tool compound due to its unfavorable chemical properties
for use in vivo (198). Other efforts using high-throughput
screening with nuclear magnetic resonance and structure-based
medicinal chemistry led to the development of the BCL-X
selective inhibitors A-1155463 and its orally bioavailable analog
A-1331852 [Figure 3, (199, 200)]. Cell lines from a variety of
malignancies, including AML showed sensitivity to the BCL-X
inhibitors. In vivo studies in mice indicated inhibition of BCL-X
with A-1331852 as a single agent reduced the volume of a T-
cell leukemia, whereas venetoclax did not (180). In addition, the
mice tolerated the BCL-X inhibitor. These data suggest that some
cancers appear to be dependent on BCL-X and not on BCL-2 and
that targeting one over the other may be beneficial.

MCL-1 Inhibitors
Multiple approaches have been explored to selectively target
MCL-1. Initially, stabilized alpha-helices of BH-3 only proteins

[known as “stapled” peptides (201)] and alpha- or beta-
peptide foldamers (202) were designed to target MCL-1. Several
compounds with affinity for MCL-1 were identified by screening
libraries of natural compounds and small molecules. However,
many of these have reported off-target or minimal effects
(203, 204). Although obatoclax (GX15-070) targets other anti-
apoptotic BCL-2 family members, it was one of the first
BH-3 mimetics reported to inhibit MCL-1 [Figure 3, (205)].
Obatoclax has completed phase I/II clinical trials for a number
of malignancies, including CLL, but with modest efficacy and
neutropenia as a common toxicity (206). At this time, no further
clinical trials with obatoclax are ongoing. Similar to obatoclax,
TW-37, a gossypol derivative, has shown some toxicity, but
has demonstrated potency as a single agent in the treatment of
DLBCL cell lines and synergized with other chemotherapies in
xenograft models [Figure 3, (207)]. Phase I clinical trials for AT-

101, a more refined variant of the gossypol family of pan-BCL-
2 family inhibitors, show that it is well-tolerated with treatable

neutropenia (208). Two clinical trials of AT-101 as a single agent

in R/R B cell lymphomas (NCT00275431) and in combination
with rituximab in CLL (NCT00286780) have been completed, but

final results have not been published.
A-1210477 was the first selective MCL-1 inhibitor to

demonstrate picomolar binding to MCL-1 while maintaining
selectivity for MCL-1 over other anti-apoptotic family members
[Figure 3, (209)]. A-1210477 forms complexes with MCL-
1, thereby disrupting endogenous MCL-1:BIM complexes.
As a single agent, this compound induced apoptosis in
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TABLE 4 | Ongoing venetoclax combination studies in B cell lymphomas and CLL.

Phase N Population Trial number

B CELL LYMPHOMAS

Ven + Ibrutinib I 28 MCL R/R NCT02419560

Ven + Ibrutinib II 24 MCL first line NCT02471391

Ven + Ibrutinib + Obinu I/II 48 MCL R/R NCT02558816

Ven + Benda + Ritux (BR) vs. BR II 164 FL R/R NCT02187861

Ven + Obinu I 25 FL first line NCT02877550

Ven + CHOP + Ritux or Obinu I/II 248 1L DLBCL NCT02055820

Ritux-DA-EPOCH II 20 Richter’s NCT03054896

CLL

Ven + Rituximab Ib 49 R/R NCT01682616

Ven + Benda + Ritux or Obinu Ib 100 First line + R/R NCT01671904

Ven + Obinutuzumab Ib 81 First line + R/R NCT01685892

Ven + Benda followed by Obinu II 66 First line + R/R NCT02401503

Ven + Rituximab III 391 R/R NCT02005471

Ven + Obinu III 445 First line NCT02242942

Ven + Ibrutinib II 78 First line + R/R NCT02756897

Ven + Ibrutinib, Obinu II 40 First line del(17p) NCT02758665

Ven + Ibrutinib, Obinu I/II 68 First line + R/R NCT02427451

N, number enrolled; Ven, Venetoclax; Benda (or B), Bendamustine; Ritux (or R), Rituximab; Obinu, Obinutuzumab; MCL, mantle cell lymphoma; FL, follicular lymphoma; DLBCL, diffuse

large B cell lymphoma; R/R, relapsed/refractory; CLL, chronic lymphocytic leukemia.

MCL-1-dependent multiple myeloma cell lines (210). However,
A-1210477 does not demonstrate the necessary pharmacokinetics
for in vivo use. AMG176 was the first putative MCL-1 inhibitor
to undergo clinical evaluation (NCT02675452) (211), but no
data in humans has been reported. In addition, phase I trials
are actively recruiting or soon to recruit patients for testing
the MCL-1 specific inhibitors S64315 (MIK665) in patients with
R/R DLBCL and multiple myeloma, AML, and myelodysplastic
syndrome (NCT02992483, NCT02979366, and NCT03672695)
and AZD5991 in patients with R/R hematologic malignancies,
CLL, T-cell lymphoma, and multiple myeloma (NCT03218683).
A question that remains largely unanswered is whether normal
cells will tolerate MCL-1 inhibition at the level necessary for
therapeutic benefit. Potential on-target toxicities may include
cardiac (212, 213), hepatic (214, 215), and hematological (45–
47), which are based on those observed inMcl-1 knockout mouse
models (45–47, 212–215).

Combination Treatments With Other
Anti-apoptotic BCL-2 Family Inhibitors
At present, there are a limited number of clinical trials
dedicated to evaluating the effects of anti-apoptotic BCL-2
family inhibitors aside from venetoclax either alone or in
combination with other therapies. Navitoclax, which inhibits
BCL-2, BCL-X, and BCL-W, was being tested in combination
with bendamustine and rituximab in patients with relapsed
DLBCL as part of the NAVIGATE study, but recruitment was
terminated due to non-safety-related reasons (NCT01423539). A
study of navitoclax together with venetoclax and chemotherapy
(including peg-asparaginase, vincristine, dexamethasone, and
tyrosine kinase inhibitor) is ongoing for patients with R/R

ALL or R/R lymphoblastic lymphoma (NCT03181126). A phase
I study evaluating the safety of navitoclax administered in
combination with rituximab is active for patients with CD20-
positive lymphoproliferative disorders and CLL (NCT00788684).
In addition, obatoclax mesylate (GX15-070MS), which inhibits
BCL-2, BCL-X, BCL-W, and MCL-1 (Figure 3) has been
evaluated as a single agent followed by a combination with
rituximab for treatment naive patients with FL (NCT00427856).
Obatoclax has also been combined with bortezomib for the
treatment of R/R MCL (NCT00407303). A phase I/II trial was
initiated to study the side effects and the dose of obatoclax when
given together with rituximab and bendamustine in treating
patients with R/R non-Hodgkin lymphoma including MZL,
FL, and MCL; however, the study was withdrawn due to lack
of patient accrual (NCT01238146). A phase I dose escalation
study of the MCL-1 selective inhibitor S64315 in combination
with venetoclax (estimated start date: December 3, 2018) will
be testing the safety and tolerability in patients with AML
(NCT03672695). The continued efforts to develop novel anti-
apoptotic BCL-2 family protein inhibitors will continue to pave
the way for new clinical trials combining current inhibitors
with both conventional and other novel agents in various
lymphomas.

Resistance Mechanisms for BCL-2 Family
Protein Inhibitors
Given that venetoclax selectively inhibits BCL-2, this compound
should be effective in cancer cells that express BCL-2; however,
this does not always occur. For example, FL expresses high
levels of BCL-2 due to its t(14;18) translocation; yet, the clinical
response rate to venetoclax is quite low in FL patients (7).
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This suggests BCL-2 expression alone is insufficient to predict
BCL-2 dependence. In a recent study, a subset of lymphoma
cell lines expressing BCL-2 protein were resistant to venetoclax,
resulting from acquired mutations in BCL-2 and the pro-
apoptotic protein BAX or a phosphorylation event on BCL-
2 that prevented venetoclax from binding, thereby blocking
apoptosis (216–218). Similarly, upon comparing venetoclax-
resistant FL cells with their parental cell lines, the resistant
FL cells had significantly higher levels of ERK1/2 and BIM
phosphorylation at serine 69, targeting BIM for proteasomal
degradation; thus, reducing the pro-apoptotic nature of the
cells (219, 220). Another study showed increased phospho-
ATK levels in a venetoclax-resistant B cell lymphoma line,
suggesting activation of the PI3K pathway (221). Whole-
exome sequencing and methylation profiling of serial CLL
samples from eight patients before venetoclax treatment
and at the time of venetoclax resistance did not show
genetic alterations in BCL-2 (222). However, most patients
acquired mutations in cancer-related genes, including BRAF,
NOTCH1, RB1, and TP53, and had homozygous deletion of
CDKN2A/B.

Resistance of FL and DLBCL to single agent venetoclax may
be attributed, in part, to elevated levels of other anti-apoptotic
family members. For example, we recently reported that BCL-
W was elevated in both FL and DLBCL at a similar frequency
as BCL-2 (9). Moreover, our recent large-scale evaluation of all
anti-apoptotic BCL-2 family members in multiple non-Hodgkin
lymphomas revealed that many selected for the overexpression of
more than one anti-apoptotic familymember, simultaneously (9).
These data provide a potential explanation into why just targeting
BCL-2 with venetoclax did not result in high complete response
rates for FL or DLBCL (7). Moreover, levels of BCL-X andMCL-1
were upregulated in venetoclax-resistant DLBCL cell lines (221).
Furthermore, in lymphoma cell lines that have become resistant
to navitoclax, increased levels of anti-apoptotic A1/BFL-1 and
MCL-1 are observed (223).

With the increasing focus onMCL-1 as an important regulator
of apoptosis in leukemia and lymphoma (224) and potential
mediator of venetoclax resistance, a number of efforts are in
progress to better define the role of MCL-1 in venetoclax
resistance and to develop strategies to downregulate MCL-
1 levels as a possible way to overcome it. While MCL-1
specific inhibitors are in early phase of development (225,
226), several studies have already shown that downregulation
of MCL-1 mRNA and/or protein levels in BH-3 mimetic-
resistant cells increases the sensitivity to navitoclax and
venetoclax (54, 227). For example, the pan CDK inhibitor
dinaciclib restored sensitivity to navitoclax- and venetoclax-
mediated apoptosis in resistant lymphoma cells via inhibition
of MCL-1 phosphorylation by CDK2/Cyclin E, which in turn
led to the destabilization of MCL-1 protein and release of
BIM from MCL-1 (228). The combination of dinaciclib and
venetoclax resulted in robust synergistic cell death in DLBCL
cell lines and in primary CLL patient samples. Additional
ongoing strategies to enhance the therapeutic efficacy of
venetoclax in B cell neoplasms (increasing response rate, depth
of response, overcoming primary and secondary resistance),

include combinations with BTK inhibitors (229), dual delta-
and gamma-PI3 kinase inhibitors (230), SYK inhibitors (231),
and BET inhibitors (232). While all these studies are of
very high interest, and many of the preclinical concepts are
being evaluated in clinical trials, there is a need to better
understand the specific mechanistic functions of the BCL-2
family members in each of these pro-apoptotic combinations,
where they are redundant and where they may lead to synthetic
lethality.

With clinical trials on-going and many more being developed
using anti-apoptotic BCL-2 family inhibitors for treatment of
B cell lymphoma, as well as other hematologic malignancies
and solid-organ cancers, there remains a significant lack of
knowledge of these proteins and their requirements in non-
Hodgkin lymphomas. Aside from FL and DLBCL, alterations
in specific anti-apoptotic BCL-2 family members have not been
well-characterized or associated with other B cell lymphomas,
which is likely due to the lack of a comprehensive analysis
prior to the one we recently published (9). Therefore, it
is likely necessary to measure and monitor the levels of
BCL-2 family members when enrolling patients onto clinical
trials testing selective anti-apoptotic inhibitors. Inhibiting one
anti-apoptotic BCL-2 family member that is not expressed
in that lymphoma should have no effect on the lymphoma
and be unnecessary treatment for that patient. Additionally,
targeting one anti-apoptotic BCL-2 family member may lead to
the dependency on another, ultimately leading to therapeutic
resistance.

Non-apoptotic Effects of BCL-2 Family
Inhibition
There have been reports suggesting that inhibition of anti-
apoptotic BCL-2 family members may activate cell signaling
pathways, in addition to apoptosis, to further promote survival
and resistance to cell death. For example, a recent proteomic
analysis following treatment of DLBCL and MCL cell lines
with venetoclax showed venetoclax treatment (both short- and
long-term) altered the levels of proteins involved in apoptosis,
but also the expression levels and phosphorylation status of
proteins involved in the DNA damage response (i.e., γH2AX,
CHK2, ATM), growth/survival signaling pathways (i.e., PTEN,
Src, MAPK, AKT), and cellular metabolism (i.e., HK2, PDK1,
PKM2, GCLM) were also affected (233). However, further
studies are necessary to determine whether these effects are
directly attributable to venetoclax-mediated BCL-2 inhibition
and the resulting apoptosis or effects that are independent of
BCL-2. The BCL-2 family of proteins has also been reported to
function in maintaining calcium homeostasis (234). The early
BH-3-only protein mimetic HA14-1 was shown to dysregulate
intracellular calcium signaling in platelets, reportedly due
to off-target effects, but neither navitoclax nor venetoclax
disrupted intracellular calcium transport mechanisms (235, 236).
Furthermore, investigations have shown that BCL-2 family
proteins may be involved in autophagy (237). Specifically,
studies have reported that navitoclax and the BH-3-mimetic
HA14-1 can block the interaction between BCL-2/BCL-X and
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Beclin1, a protein important for the localization of autophagic
proteins, leading to the activation of Beclin1-dependent
autophagy (237–240). BCL-2 family BH-3-only mimetics
can also regulate cell autophagy through activation of the
unfolded protein response signaling pathway PERK-eIF2α-
ATF4, which upregulates expression of the autophagy gene
Atg12 (241–243).

CONCLUSION

Defects in apoptosis are universal to all B cell lymphomas
and defects in apoptotic signaling is frequently associated with
resistance to chemotherapy (2, 4, 244). In this review, we have
highlighted the Bcl-2 family network of proteins in lymphoma,
including the recent discovery of BCL-W overexpression in
B cell lymphomas, and described current clinical strategies
to inhibit anti-apoptotic Bcl-2 family proteins that aim to
develop more effective therapies for B cell lymphoma. Despite
decades of significant progress in identifying the molecular
underpinnings of apoptotic cell death and their contributions
to the pathogenesis, survival, and resistance to treatment of
individual B cell lymphomas, recent efforts have revealed that
several critical factors have been significantly underestimated.
The identification of BCL-W as a previously unrecognized
key contributor to B cell lymphoma has substantially aided
in increasing our understanding of the BCL-2 family and
the alterations in their expression that contribute to B cell
lymphoma survival and therapy resistance. This new knowledge
has opened the door to the development of additional selective
cancer therapeutics and combination therapies that may redefine
the treatment of B cell lymphoma. Revealing the involvement
of BCL-W in many types of B cell lymphoma has also

opened the door to studying its possible role in treatment
resistance. To fully exploit the potential of selective inhibitors
of anti-apoptotic BCL-2 proteins for the treatment of B cell
lymphoma, we must know which inhibitors should be given
to which patients. To guide the use of specific inhibitors in

individual patients, or molecularly defined patient subsets, we
must know which anti-apoptotic BCL-2 protein(s) are the most
relevant target(s). For example, while one malignancy may
have requirements for BCL-2, another might require BCL-
X and/or BCL-W, highlighting the importance of using the
right biomarkers to evaluate each lymphoma. In the era of
personalized medicine, these recent advances attest to the power
of discoveries in basic science being directly translated into the
clinic to improve targeted treatment strategies for individual
lymphomas.
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