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Quantitative characterization of the tumor microenvironment, including its

immuno-architecture, is important for developing quantitative diagnostic and predictive

biomarkers, matching patients to the most appropriate treatments for precision

medicine, and for providing quantitative data for building systems biology computational

models able to predict tumor dynamics in the context of immune checkpoint blockade

therapies. The intra- and inter-tumoral spatial heterogeneities are potentially key to

the understanding of the dose-response relationships, but they also bring challenges

to properly parameterizing and validating such models. In this study, we developed

a workflow to detect CD8+ T cells from whole slide imaging data, and quantify the

spatial heterogeneity using multiple metrics by applying spatial point pattern analysis

and morphometric analysis. The results indicate a higher intra-tumoral heterogeneity

compared with the heterogeneity across patients. By comparing the baseline metrics

with PD-1 blockade treatment outcome, our results indicate that the number of

high-density T cell clusters of both circular and elongated shapes are higher in patients

who responded to the treatment. This methodology can be applied to quantitatively

characterize the tumor microenvironment, including immuno-architecture, and its

heterogeneity for different cancer types.

Keywords: digital pathology, spatial patterns, spatial statistics, immuno-architecture, systems biology

INTRODUCTION

The tumor microenvironment (TME) governs tumor development as a result of the interaction
between cancer cells, various stromal cells, and immune cells mounting the anti-tumor immune
response (1). Thus, deciphering the characteristics of TME, especially its spatial intra-tumoral
heterogeneity (ITH), can potentially lead to predictive biomarkers for cancer treatments (2–4).
Among characterizations of ITH, immuno-architecture is of particular interest in the setting of
mono- or combination cancer therapies involving immune checkpoint blockade, as they reflect the
dynamic balance between cancer and immune cells and can provide guidance for interventions
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to tip this balance (5). The density of tumor infiltrating
lymphocytes (TIL) and level of PD-L1 expression, along with
their geographical relation to the invasive fronts, are being
actively studied as potential biomarker candidates for different
cancer types, including melanoma and breast cancer (6, 7).

Digital Pathology is a growing field and has been used in a
few specific areas, such as in cancer diagnosis and biomarker
analysis for decision making in cancer treatment (8, 9). The
process starts with digitization of patient pathology samples,
followed by pathological interpretation on a computer screen, or
image analysis using algorithms to extract information of interest
(10, 11). The benefits of digital pathology are multifold. Using
this technique, both data acquisition and interpretation can be
more easily standardized, which increase the reproducibility of
the analysis. Whole scanned slides give more complete, wider
fields of view, views that are not possible with a light microscope.
Combined with image registration tools, multiple layers of
whole slide images obtained from the same sample can be
mapped together, allowing functional annotation with multiple
channels and spatial analysis among different labels (12, 13).
The available image analysis algorithms have also progressed
significantly in recent years. Deep learning and other Artificial
Intelligence (AI) algorithms can be trained to perform tasks
such as nuclei/cell/gland segmentation and tissue classification,
based on which further assessment of disease progression can
be made (14, 15). Assisted by modern image analysis tools,
pathologists are able to examine patient histological data with
higher throughput, and in a more quantitative and objective
manner (16). With the increased accessibility of data storage and
data transfer bandwidth, the management and sharing of such
image data are mademuch easier, fostering collaborations among
researchers from a wider range of fields and locations (17).

However, against the background of the growth in
characterization of tumor microenvironment in patient
tissue samples with digital pathology and its potential to enhance
the area of cancer prognosis and treatment outcome (18–20),
the link between disease mechanisms, treatment response
and pathological images is still underexplored. An ideal tool
to bridge our knowledge of basic cancer biology and cancer
histopathology clinical data is computational systems biology,
which can mechanistically integrate multiple components of
the system to reproduce spatio-temporal dynamics of tumor
development (21). In particular, agent-based models (ABM)
incorporate local interactions between cells and the environment
in a computer simulation to generate and analyze the global
emergent properties of the tumor microenvironment and its
spatial heterogeneity (22–26). Due to the explicit spatial nature
of such methods, comparisons between pathological images and
model outputs can be readily achieved, providing a means to
setup initial conditions for the computational models, as well
as calibrate and validate them. Two different approaches are
available to achieve this goal: first, after image segmentation,
the detected objects such as cancer cells and immune cells can
create an exact mapping for the corresponding agents in model
simulation (27); second, further quantification of the spatial
patterns can be performed based on the segmentation output,
which is then used for parameter estimation or compared

with the same quantification of model-generated images
(28–30). Because the second approach makes comparisons
of parameters, it takes into account the potential uncertainty
arising from limited tissue sampling, and can thus benefit
from reduced risks of overfitting and an increased predictive
power. Such quantification is applicable at multiple biological
scales; immuno-architecture mainly corresponds to tissue-scale
patterns formed by collections of individual cells.

In order to characterize the spatial heterogeneitry of the
tumor microenvironment with respect to clusters of cells, various
metrics can be used. For example, morphometric analysis can
help quantify the shape of cell clusters (31); using spatial point
pattern analysis, one can quantify the underlying interaction
between cells leading to such patterns (32, 33).

In this study, we developed a computer-aided workflow to
quantitatively characterize the spatial heterogeneity of tumor
microenvironment, and apply this framework to digitalized
histopathology data generated using whole slide imaging of
tissues from patients in a clinical trial on PD-1 blockade in
cancer with mismatch repair deficiency (34). In that clinical
trial, intratumoral tissue-infiltrating lymphocytes (TIL) CD8+ T
cell density is found to associate with a trend toward objective
response, which motivates us to further look into the spatial
heterogeneity of T cell distribution and search for measurements
with higher predictive power for patient responsiveness to PD-1
blockade therapy. In this workflow, image analysis algorithms are
employed to identify and locate CD8+ cells in the patient tissue
sample, mapping out spatial point patterns for cells of interest.
The spatial point patterns are then subject to spatial point process
model fitting and morphometric analysis to extract information
regarding interactions among cells as well as the geometric
properties of cell clusters arising from such interactions. Using
this workflow, digitized image data are converted to quantitative
and interpretable measurements, which are essentially a high-
level representation of intra- and inter-tumoral heterogeneity.
These metrics can then help guide the construction, calibration
and validation of systems biology models for immuno-oncology
research and clinical applications. We also explore how the
metrics generated from the analysis could suggest predictive
biomarkers of responsiveness to immune chekcpoint blockade
treatment for patients.

METHODS

The input data to our analysis are brightfield
immunohistochemistry (IHC) images with CD8+ staining
of tissue excised from patients with mismatch repair deficient
colorectal cancer, mismatch proficient colorectal cancer or
mismatch deficient noncolorectal cancer (34) prior to the
onset of PD-1 based Immunotherapy (pembrolizumab). For
each patient slide (N = 29 patients with known outcomes and
successful CD8+ staining, one slide is available for each patient),
we performed image segmentation to obtain coordinates of
CD8+ T cells. The locations of T cells from each slide are
analyzed using two methods: spatial point pattern analysis
and morphometric analysis. In spatial point analysis, the full
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point pattern is divided into sub-regions, and each sub-region
is tested for complete spatial randomness (CSR) and fitted to
a point process model if CSR is rejected. In morphometric
analysis, cluster analysis is performed for the full point pattern
map, and a series of shape descriptors are calculated for each
cluster. The arrays of fitted parameters from spatial point
analysis and shape descriptors from cluster analysis constitute a
quantitative representation of the intra-tumor heterogeneity. We
then repeat the process for each slide to obtain information on
population variation and calculate inter-tumor, or inter-patient
heterogeneity. The overall workflow is shown in Figure 1.

Segmentation of Patient IHC Pathological
Slides
The original images are in Aperio format (.svs), where CD8+
T cells are stained using immunohistochemistry. The images
received for the computational analysis have been fully de-
identified. The methods for staining the tissue are described in
Le et al. (34). Briefly, the expression of CD8 diaminobenzidine
(DAB)-stained cells was evaluated within the tumor and at
the invasive fronts of the tumor in an immunohistochemical
analysis. The CD8-stained slides were scanned at 20x equivalent
magnification (0.49 micrometers per pixel) on an Aperio
ScanScope AT.

We use the software HALO (v2.2.1870.31) from Indica
Labs (Corrales, NM) to perform segmentation of digitized
pathological images, using the module “Indica Labs–
CytoNuclear v1.6.”To evaluate the performance of our
segmentation algorithm, manual segmentation is performed
in randomly selected subregions of each patient slide. Samples
(N = 100) are taken from each slide using systematic sampling
scheme and CD8+ T cells are manually identified and compared
with CD8+ T cells detected with HALO. The number of cells
detected both manually and by software (true positive, TP) is
denoted with xi,j, where i indicates the patient and j indicates
the sample. The number of cells identified manually (including
both TP and false negative, FN, which are missed by algorithm)
or by software (including both TP and false positive, FP, which
are detected by algorithm but rejected in manual approach) are
denoted with mi,j and ni,j, respectively. The overall Sensitivity
(recall rate, R) and Precision (P, or 1-false discovery rate) of the
segmentation algorithm and their standard error of mean are
expressed as:

R =
TP

TP + FN
=

∑

i,j xi,j
∑

i,jmi,j
(1)

P =
TP

TP + FP
=

∑

i,j xi,j
∑

i,j ni,j
(2)

seR =

√

R(1− R)

TP + FN
(3)

seP =

√

P(1− P)

TP + FP
(4)

The numerical estimates of the segmentation process are
presented in the Results section below.

Spatial Point Process Model Fitting
Spatial statistical analysis is performed on point pattern of CD8+
T cells, which is created from coordinates obtained from image
segmentation. We define local point pattern as the pattern of the
subset of CD8+ T cells within a sub-regions of the full image.
Sub-regions are taken using a rectangular moving window with
edge lengths of xwindow and ywindow and step size of xstep and ystep.
The window size should be large enough so that each window
properly include local density variability required for analysis,
while at the same time not too big so that we can make the
assumption that the underlying spatial point process is stationary
(Figure S1). In this study, we set the window and step size to be
xwindow = ywindow = 0.5mm and xstep = ystep = 0.25mm.

Each local point pattern is first tested for Complete Spatial
Randomness (CSR) using Clark-Evans test (one-tailed, HA:
clustered distribution, siginificance level α = 0.05) (35). If
the pattern diverges significantly from a homogeneous Poisson
point process and is thus deemed to show aggregation, we fit
a Thomas point process model to the local point pattern and
record the fitted parameter values (36–38). In doing this, we are
assuming a two-stage process to generate the point pattern: in
the first stage, a homogeneous Poisson process with intensity κ

determines the parent points within the sub-region; and in the
second stage, child points are generated with another Poisson
process of intensity µ and location determined following an
isotropic Gaussian distribution centered at each parent point
with variance σ 2. The theoretical Ripley’s K function describing
the expected number of other points within distance r of any
chosen point divided by intensity is:

K(r) = πr2 +
1

κ
(1− e

− r2

4σ2 ) (5)

For each sub-region, we obtain the fitted parameters κ , µ, and σ ,
and use them to interpret the clustering of CD8+ T cells within
this sub-region. κ is the number of CD8+ T cells clusters per
unit area; µ is the number of CD8+ T cells within each cluster.
Because the second stage is an uncorrelated bivariate Gaussian
with 0 mean and equal variance, the distance of each cell toward

the cluster center, r, follows a Rayleigh distribution r
σ 2 e

− r2

2σ2 ,
whose first moment (average distance) can be calculated as
µ(r) = σ

√
π/2, and the radius of the circle covering 95% points

of each cluster can be calculated as r0.95 = σ
√
2ln(20).

The CSR testing and model fitting are performed using
function “kppm” from R package “spatstat,” with cluster model
argument “Thomas” (39).

Cluster and Morphometric Analysis
Cluster analysis is performed to directly identify CD8+ T
cell clusters from the point pattern generated from image
segmentation. We use the clustering algorithm Hierarchical
DBSCAN (HDBSCAN) (40) to extract CD8+ T cell clusters.
This method constructs cluster hierarchy from density-adjusted
distance connectivity, and extracts clusters by comparing parent
and child cluster stabilities. R package “largeVis” (41) is used for
cluster analysis, in which a variation of the HDBSCAN algorithm
is implemented. Parameters used for HDBSCAN are minPts =
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FIGURE 1 | Overall workflow of tumor spatial heterogeneity quantification. The analysis starts with brightfield IHC with CD8+ staining. For each patient slide, we

perform image segmentation to obtain coordinates of CD8+ T cells. The coordinate list from each slide is fed to two sub-procedures: spatial point pattern analysis

and morphometric analysis. In spatial point pattern analysis, local patterns are obtained using a moving window, tested for complete spatial randomness (CSR) and

fitted to a clustering point process model if it is aggregated. In morphometric analysis, the full coordinate map is divided into clusters, and a series of shape

descriptors are calculated for each cluster. The arrays of shape descriptors and fitted parameters constitutes a quantitative representation of the intra-tumoral

(intra-slide) heterogeneity for that patient. We repeat the process on each slide to obtain measures of the inter-tumoral (inter-slide) heterogeneity.

30 (minimum point per cluster) and K = 4 (core neighborhood
range).

Each CD8+ T cell cluster identified in the aforementioned
cluster analysis is subject to morphological analysis to obtain
quantification of the cluster shapes. We determine the shape of
a cluster with alpha-shape, in which the edges are defined as the
set of segments between each pair of points that are located on
circles of a given radius α. Alpha-shapes are calculated using R
package “alphahull” (42). For each cluster, we increase the α value
starting from 10µm until the alpha-shape is one single connected
region containing all the points from the cluster. After obtaining
the alpha-shape, we calculate various metrics for each cluster, as
follows.

Convexity:

fconv =
Aα

Aconv
, (6)

where Aα is the area of the alpha-shape and Aconv is the area of
the convex hull. Circularity:

fcirc =
4πAα

P2α
, (7)

where Pα is the perimeter of the alpha-shape.

We also fit ellipses to each cluster. Assuming the points within
one cluster follow bivariate normal distribution X ∼ N (µ,6),
the ellipse can be constructed as a contour of a given confidence
level (1-α), e.g., 95% CI, whose semi-major and -minor axis
lengths can be calculated as:

a =
√

λ1χ
2
2 (α) (8)

b =
√

λ2χ
2
2 (α), (9)

where λ1 and λ2 are eigenvalues of 6, and λ1 ≥ λ2. Thus,
eccentricity can be calculated as:

e =

√

1−
b2

a2
=

√

1−
λ2

λ1
(10)

Measuring Intra- and Inter-tumoral
Heterogeneity
The aforementioned metrics from both spatial point process
model fitting and morphometic analysis can be utilized to gauge
the spatial heterogeneity within a patient slide (intra-tumoral)
as well as among different patients (inter-tumoral). In the point
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pattern analysis step, the statistics obtained from each window
reflect local spatial properties of CD8+ T cell at the location
of that window. In the morphometric analysis, the shape and
density of CD8+ T cell clusters in different regions of the slide
is assessed.

Without assuming a distribution of these assessments, we
use quartile coefficient of dispersion (QCoD) to evaulate
their variability across a slide to calculate the intra-tumoral
heterogeneity. Similarly, for each patient slide, we use the median
value of each metric as a proxy for that patients’s overall CD8+
T cell spatial property, and calculate the QCoD among all the
patients as the inter-tumoral heterogeneity. QCoD is calculated
using the following formula:

QCoD =
Q3 − Q1

Q3 + Q1
, (11)

where Q1 and Q3 are the first and third quartiles of each metric.

Correlating Morphological Metrics to
Treatment Outcomes
Each tumor slide contains regions corresponding to different
tissue context. Regions corresponding to tumor and normal
tissue were annotated on separate layers using Aperio
ImageScope v12.1.0.5029. Computer algorithms are used to
determine the invasive front by drawing a band of 250 micron
width on both sides of the edge of the tumor where it meets with
the non-tumor regions. Because not every patient’s tissue image
has all three types of regions (tumor, normal, and the invasive
front), we define regions of interest (ROI) for each patient sample
so that comparison can be made across all patients: the ROI
includes all the invasive fronts within a slide if any such region is
present; or all the tumor regions if invasive front is not found but
tumor regions exist; or all the normal regions if neither invasive
front nor tumor region exists. We map this information onto
segmentation results to determine intra-tumoral, peritumoral or
stromal tumor infiltrating lymphocytes, defined as CD8+ T cells
within a tumor region, invasive front, or a non-tumor region,
respectively. For each cluster, if any of its cell is peritumoral,
the cluster is considered as invasive front associated; otherwise,
if the cluster has intra-tumoral CD8+ T cells, this cluster is
considered tumor associated; the rest of the clusters are normal
tissue associated.

For each patient, the responsiveness to the immunotherapy
during the clinical trial is available in the format of Response
Evaluation Criteria in Solid Tumors (RECIST). The trial
includes patients who are either mismatch-repair deficient and
microsatellite instable (MSI), or mismatch-repair proficient
and microsatellite stable (MSS) (34). For the MSI cases,
the outcomes of complete response and partial response are
considered responsive to treatment; patients with a stable
or progressive disease are considered non-responders because
further mutations are likely to arise to trigger a relapse.
On the contrary, for MSS patients, stable disease can be
considered responsive to the treatment. We group the patients
into responders and non-responders regardless of their intial
cohort designations, and compare how different metrics separate

patients between the two groups. We use nonparametric
Wilcoxon rank-sum test for this task, due to the small
number of samples and the lack of evidence to assume normal
distribution.

RESULTS

Image Segmentation
We started the analysis with brightfield IHC imaging results from
29 slides from patients stained for CD8 (34). A low-resolution
version of one of these images is shown in Figure 2A. Using
the software HALO, we performed image segmentation and
obtained the coordinates of CD8+T cells within each IHC image.
Figure 2B shows one snippet of the original image superimposed
with detected CD8+ T cells. The coordinates of detected CD8+
T cells in the full image are obtained from the segmentation, as
shown in Figure 2C. The number of CD8+ T cells identified
in each slide ranges from 98 to 106,271, with the median count
11,371. Detailed CD8+T cell counts and densities are listed in
Table S1.

After segmentation, we evaluated the performance by
sampling the original patient IHC imaging result and comparing
the segmentation outcome with manually identified CD8+ T
cell location. Twenty samples are taken from each patient slide
following the Latin Hypercube Sampling (LHS) scheme (shown
as red boxes in Figure 2A) and CD8+ T cells are manually
identified, as shown in Figure 2D. From the 620 sample regions,
we detected the following number of cells for different categories:
TP = 2,904; FN = 1,010; FP = 394. Using Equations 1–4, we
can calculate the point estimate and their standard error to be
Recall R (%) = 74.2 ± 0.7 and Precision P(%) = 88.1 ±
0.6. To assess the level of agreement between the segmentation
outcome by HALO and that by manual counts, the Spearman’s
rank correlation coefficient was calculated between the number
of CD8+ cells by HALO (i.e., TP+ FP) and the number of CD8+
cells by manual identification (i.e., TP + FN). The estimate is
0.985, which indicates a very strong relation between these two
outcomes. Most of the false negatives happen in regions with
very high density of CD8+ T cells due to the limitation of the
segmentation algorithm; however, the detected density in these
regions is still much higher compared to other regions despite
the underestimation.

Tumor Spatial Heterogeneity Assessed
With Spatial Point Process Models
With the spatial point patterns of CD8+ T cells obtained from
segmentation and its quality evaluated, we use two different
methods to quantify the spatial characteristics of these patterns,
as shown in Figure 1. In the first approach, we examine
the pattern from each patient with a moving window. For
each window, we estimate the first-order property, i.e., the
intensity for each window, and test whether the point pattern
within the window is random or aggregated (Figures 3A–D).
If Complete Spatial Randomness (CSR) is rejected for that
window (Figures 3E–H), we further characterize the point
pattern by fitting a spatial point process model to it. In this
study, we use modified Thomas model for this procedure to
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FIGURE 2 | Image segmentation and segmentation quality evaluation. (A) IHC whole slide, red boxes indicate sampled location for quality evaluation. (B)

Segmentation result of a sub-region. Orange and red correspond to positive staining with thresholds of OD > 0.5 and OD > 0.7, respectively. (C) Full point pattern.

Color indicates cell density (mm−2 ). (D) In each sampled region, manual identification of CD8+ T cells (red circles) is performed and compared with segmentation

result (green dots) to evaluate performance. Four sampled windows are shown.

reveal the properties of clusters behind the patterns. The fitted
parameters for each window serve as quantification for the local
characteristics of the point patterns. Some of these parameters
are directly used, such as µ from Equation 5, which indicate the
number of CD8+ T cells per cluster; others can be transformed
for more straightforward interpretation, such as σ 2, from which
we calculate the average distances to cluster center and cluster
areas.

As such quantifications are performed in a sliding
window across each patient slide, and for every metric
taken into consideration we obtain an array of values
corresponding to different spatial locations within the
patient sample. The variability within each array captures
the intra-tumor spatial heterogeneity with regard to that
metric. Furthermore, the differences across the probability
density distribution of each metric among patients can
be used to evaluate the inter-tumoral, population scale
heterogeneity.

In this study, we quantified the aggregation pattern of CD8+
T cells from patients using the following metrics: CD8+ T cell
density, number of CD8+ cells per cluster, and the average radius
and area of clusters from each window. The results are shown in
Figures 4A–D, where the range of each measurement is captured
in a Box plot for each patient. The patients are sorted in the
order of the overall density of CD8+ T cells in the entire slide. As
shown in Figure 4, the number of CD8+ T cells in each cluster
range from a few to hundreds, with the medians being <10. The
medians of mean distance to cluster center are between 0.2 and
0.3mm, and the median area of clusters are between 0.5 and 1
mm2. For all the four metrics shown here, the variability within
each patient sample is high; however, except CD8+ T cell density,
the other three examined metrics are relatively consistent across
the population in terms of median value and IQR. The quartile
coefficient of dispersion (QcoD) within a slide and the QCoD of
the median values for each metric across slides are summarized
in Table 1.
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FIGURE 3 | Estimating spatial statistics from sub-regions of point pattern. A moving window is used to quantify sub-regions of each slide, with edge length of 0.5mm

and steps of 0.25mm. (A) Original IHC sub-region. (B) Point pattern within the same sub-region. (C) Ripley’s K estimation using isotropic edge correction for pattern

in (B). (D) L-transformation of K function (red). When testing for CSR, no significant aggregation pattern is detected, thus no clustering model fitting is performed for

pattern (B). Black dashed line is theoretical value of L(r)-r for Poisson process (random), and gray envelope is 95% confidence interval obtained from Monte-Carlo

simulations. (E–H) is the same process performed over another region. Pattern F is tested as aggregated, and fitted to modified Thomas process model (green line).

Green envelope is the global envelope from Dao-Genton goodness-of-fit test.

Tumor Spatial Heterogeneity Assessed
With Cell Cluster Morphometrics
The second approach we took in this study to evaluate tumor
spatial heterogeneity involves two main steps: first, we detected
CD8+ clusters from the full CD8+ point patterns, as shown
in Figures 5A,B; after that we determine the alpha-shape
(Figure 5C) and fitted ellipse (Figure 5D) characteristics and
perform morphometric analysis for detected clusters in patients
slides. By comparing the concave and convex hulls generated
from the subset of points of a cluster, we calculated convexity
(Equation 6) and circularity (Equation 7) of a cluster. Using
ellipse fitting, we evaluated the elongation of a cluster by
calculating its eccentricity (Equation 10). These shape descriptors
can be further utilized to categorize the immuno-architecture of
the clusters: highly elongated or concave CD8+ T cell clusters
(Figures 5F,H) are likely to belong to an invasive front as opposed
to a circular one (Figures 5E,G).

In this process, multiple measurements are taken for
each cluster, including cluster properties (Figure 6) and shape
descriptors (Figure 7). The distribution of the values for
each metric taken from all the detected clusters in one
patient can represent one measurement of intra-tumoral spatial
heterogeneity, and inter-tumoral population scale heterogeneity
can be evaluated by comparing such distributions across patients.
For cluster basic properties, we included the following metrics
in our analysis: CD8+ T cell density within clusters, number
of cells per cluster, and cluster areas calculated using α-shapes

and fitted ellipses. Patients are sorted in the order of increasing
overall CD8+ densities. As shown in Figure 6, the median
density of cells within clusters ranges 100–1,000 mm−2 and is
positively correlated with the overall density. The number of cells
per cluster is relatively consistent across patients, but is quite
heterogeneous within the same slide, ranging from a few tens to
hundreds. The median area of each cluster ranges from 0.1 to 0.5
mm2 (measured from α-shape) or 0.2–1.2 mm2 (measured from
fitted ellipses), and correlates negatively with overall density.

For shape descriptors, we measured circularity, convexity
and eccentricities of each cluster and plotted their intra- and
inter-tumoral heterogeneities. As shown in Figure 7, median
circularity ranges from 0.3 to 0.4; median convexity ranges from
0.6 to 0.7; median eccentricity ranges from 0.8 to 0.9. Those
metrics are uncorrelated with overall CD8+ T cell density,
and are relatively consistent across the population. The quartile
coefficient of dispersion (QCoD) within a slide and the QCoD of
the median values for each metric across slides are summarized
in Table 2.

Tumor Heterogeneity Quantification
Improves Prediction of Immunotherapy
Treatment Outcome
With shape descriptors calculated for each cluster, we can use
such information to characterize each patient and determine if
these descriptors can add to the predictive power of existing
biomarkers for treatment outcomes. Metrics of cell markers
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FIGURE 4 | Intra- and inter-tumor heterogeneity quantification using spatial statistics. Patients are sorted by overall CD8+ T cell density. In the box plots, upper and

lower hinges indicate 25th and 75th percentiles, respectively. Red dot indicate the mean value. (A) Cell density within each window. (B) Cell/cluster is fitted parameter

from modified Thomas process model. (C) Mean distance is the average distance from each point to cluster center. (D) Cluster area is calculated at 95% level of the

bivariate normal distribution.
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TABLE 1 | Intra- and inter-tumoral QCoD for spatial statistics.

Metrics QCoD, intra-tumoral (%) QCoD, inter-tumoral (%)

Density 46.7–68.2 50.0

Cell/cluster 55.1–76.0 22.1

Mean distance 14.1–27.1 5.65

Cluster area 27.6–50.4 11.3

restricted to certain tissue contexts have been found to better

predict treatment outcomes, thus we performed tissue annotation

to decide which tissue context is each T cell located: tumor,

normal, or the invasive front (Table S1), (Figure 8A). Based on

this, we determined the tissue association of the cell clusters using

criteia introduced in section Correlating Morphological Metrics

to Treatment Outcomes (Figure 8B).

FIGURE 5 | Cluster analysis and shape descriptors. (A) Point pattern of a region for illustration. (B) Clustering results. Each color correspond to a detected cell

cluster. (C) For each cluster, we determined the alpha-shape (concave outline). (D) For each cluster, ellipse fitting is performed at a 95% level. (E,F). Convex hull

(dashed line) and concave shapes of two selected clusters. Convexity is calculated to be 0.76 and 0.41, and circularity is calculated to be 0.42 and 0.12, respectively.

(G,H). Ellipse fitting for the same clusters. Eccentricity is calculated to be 0.88 and 0.99.
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FIGURE 6 | Intra- and inter-tumoral heterogeneity quantification using cell cluster statistics. Patients are sorted by overall CD8+ T cell density. In the box plots, upper

and lower hinges indicate 25th and 75th percentiles, respectively. Red dots indicate the mean value. (A) Within-cluster density of CD8+ T cells. (B) Number of cells

per cluster. (C) Cluster area, measured as areas of alpha-shape. (D) Cluster area, measured as the area of 95% level fitted ellipses.

For 28 out of the 29 patients whose CD8+ stainings are
analyzed, the treatment outcome from the trial is available
(Table S1). We examined the ability of various metrics
to differentiate responders from non-responders among the
patients. We first checked the density of CD8+ T cells within
each region. The results are shown in Figure 8C; CD8+ T cell
densities in none of the regions are different for responders
and non-responders. Then we take into account information
we obtained in the previous section. We first focus on the
maximum of densities within clusters (excluding very small
clusters, e.g., clusters with less than 50 cells) for each patient. The
density within invasive front and ROI are significantly higher in
responders compared to non-responders (α= 0.05) (Figure 8D);

the results for tumor and non-tumor tissue are not significant.
These results indicate that using this measurement, if we focus on
the invasive front (or tumor/normal regions if no invasive front
is identified), the highest density of CD8+ T cell found is likely
to correlate with reponsiveness.

We then incorporated the shape descriptors to look for more
factors that could be predictive of treatment outcomes. We
searched for clusters of the following two types and counted
their numbers in different regions of each patient sample:
(1) High density, circular clusters that resemble the shape of
lymphoid folicles; (2) High density, elongated and irregular
clusters. Between MSS and MSI patient groups, those metrics
are significantly higher in tumor center, but not in the invasive
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FIGURE 7 | Intra- and inter-tumoral heterogeneity quantification using cluster shape descriptors. Patients are sorted by overall CD8+ T cell density. In the box plots,

upper and lower hinges indicate 25th and 75th percentiles, respectively. Red dot indicates the mean value. (A) Circularity. (B) Convexity. (C) Eccentricity.

TABLE 2 | Intra- and inter-tumoral QCoD for cluster statistics and shape

descriptors.

Metrics QCoD, intra-tumoral (%) QCoD, inter-tumoral (%)

Density 2.9–69.6 56.7

Cell/cluster 0.52–65.0 9.4

Alpha-shape area 2.4–86.7 44.0

Fitted ellipse area 7.6–84.2 46.4

Circularity 4.4–32.6 5.3

Convexity 0.19–16.9 1.7

Eccentricity 1.1–11.8 1.2

front (Figure S2). We tested the difference of the number of
qualifying clusters in patients who do or do not respond to the
treatment, and results are shown in Figures 8E,F. The results
indicate that the number of cell clusters of both types are higher
in invasive front and ROI for patients who respond better to
the treatment. As a comparison, the total number of CD8+
T cell clusters is not significantly different for the two groups
(data not shown). When we base the analysis on raw RECIST
criteria regardless of patient cohort and their mismatch-repair
deficiency status using Jonckheere’s trend test, the trend toward

objective response and stable disease is also significant in tumor
region in addition to the invasive front (Figure S3). Due to
the different implication of stable disease for a mismatch-repair
deficient or proficient paitent, using invasive front as opposed
to tumor center metrics could lead to improved treatment
strategies.

DISCUSSION

We developed a workflow to evaluate whole slide images of
cancer immunohistochemistry and quantitatively expressed their
intra- and inter-tumoral spatial heterogeneity using different
metrics. We applied the method to image data from MSI and
MSS cancer patients, starting with segmentation of CD8+ T cells
to map out the coordinates of each cell in the slides. By fitting
spatial point process models to a sliding window of the full point
pattern, we calculated spatial statistics for different locations in
the patient tissue to describe intra-tumoral heterogeneity. We
also detected cell aggregates using cluster analysis, and used
the calculated shape descriptors for each cluster to capture
the intra-tumoral heterogeneity. Inter-tumoral heterogeneity is
calculated for each metric from the average value within each
patient. Results indiate that compared with the variability of the
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FIGURE 8 | Relationship between region specific metrics and responsiveness to immune checkpoint blockade therapy. (A) Patient tissue annotation. Green: tumor;

yellow: normal tissue; red: invasive front. (B) CD8+ T cell cluster tissue association. Transparency indicates density in each cluster. (C–F) Various metrics in different

tissue regions for responders vs. non-responders. (C) Average CD8+ T cell density. (D) Maximum cluster density. (E) Number of circular clusters. Criteria: eccentricity

< 0.8 AND convexity >0.8 AND circularity > 0.5. (F) Number of elongated/irregular clusters. Eccentricity > 0.9 OR convexity < 0.3 OR circularity < 0.3.
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mean values from individuals among a population, the variability
within each patient is even higher.We also tested how themetrics
we obtained could be suggestive of anti-tumor immunotherapy
treatment outcomes. Our results show that although average
CD8+ T cell density in different tissue regions does not correlate
with responsiveness, high density clusters, especially the number
of circular and elongated clusters, are significantly higher in
patients who respond to the treatment. The sample we analyzed
is relatively small, but the methods used can be applied to
larger patient cohorts where statistical methods could be applied
to draw clinically-relevant conclusions by taking into account
additional clinical parameters such as patient progression free
and overall survival.

In this study, only CD8+ cells are subject to analysis, but
the framework can also be applied to multiplex datasets. This
will further increase the dimensionality of the analysis, which
could lead to novel and more in-depth findings. In order to
do this, all three modules, i.e., image segmentation, spatial
point pattern analysis, and cell cluster morphometric analysis
should be further extended. In this particular dataset, because T
lymphocytes have relatively regular shapes compared with cancer
cells and CD8+ staining is mostly confined to the membrane,
we can effectively segmented these cells using traditional image
processing techniques. However, when additional proteins are
stained for, it is possible that the boundaries of individual cells
may be difficult to determine, due to the irregular expression
patterns and levels of certain proteins. In those scenarios,
the image segmentation stage could involve utilization of
more sophisticated deep learning algorithms trained with the
assistance from pathologists for better detection of objects of
interest. In the step where we performed spatial point process
model fitting, we used a univariate model to analyze the
clustering properties of CD8+ T cells. Point pattern analysis
of multiple cell types, such as PD-L1+ cells, and Tregs,
will open up opportunities to use multivariate point process
models to assess interactions between different cell types and
quantify these interactions with fitted parameter values (43). The
aforementioned extensions of our presented workflow can lead
to a deeper understanding of tumor spatial heterogeneity.

By quantifying the inter-tumoral heterogeneity, we are also
aiming to evaluate the population scale variability using different
metrics. A limitation of this study is the small number of patients
involved. The heterogeneity in mismatch repair status among the
patients further limit the number of availabe patients within each

cohort. In fact, such limitation is almost ubiquitous, considering
the vast number of ongoing clinical trials in the field of immuno-
oncology. Computational systems biology models, especially
spatial agent-based models, is one possible tool to help with this
situation. The numerical representation of 2D image data can
help with calibration and validation of such spatially explicit
systems biology models by ensuring that the heterogeneity is
accounted for. Due to the mechanstic nature of such models,
after being trained on the relatively small number patients, they
can serve as a platform for virtual clinical trials by generating
cohorts of simulated patients with in silico cancer devleopment
dynamics and immunotherapy treatment responses. Using such
models, it is possible to investigate the causaility between
functionality (which in this study is responsiveness to PD-1
blockade treatment) and mechanisms, gaining insight into the
underlysing biological system. By simulating a large number of
tumors, such model can also generate spatial patterns in very
large numbers (compared to the small patient number used for
model parameterization), which can then be fed to a datamining
pipeline to help identify predictive biomarkers.
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