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Glioblastoma is the most common adult primary brain tumor and carries a dismal

prognosis. Radiation is a standard first-line therapy, typically deployed following

maximal safe surgical debulking, when possible, in combination with cytotoxic

chemotherapy. For other systemic cancers, standard of care is being transformed

by immunotherapies, including checkpoint-blocking antibodies targeting CTLA-4 and

PD-1/PD-L1, with potential for long-term remission. Ongoing studies are evaluating

the role of immunotherapies for GBM. Despite dramatic responses in some cases,

randomized trials to date have not met primary outcomes. Challenges have been

attributed in part to the immunologically “cold” nature of glioblastoma relative to

other malignancies successfully treated with immunotherapy. Radiation may serve as

a mechanism to improve tumor immunogenicity. In this review, we critically evaluate

current evidence regarding radiation as a synergistic facilitator of immunotherapies

through modulation of both the innate and adaptive immune milieu. Although current

preclinical data encourage efforts to harness synergistic biology between radiation and

immunotherapy, several practical and scientific challenges remain. Moreover, insights

from radiation biology may unveil additional novel opportunities to help mobilize immunity

against GBM.

Keywords: radiation, glioblastoma, GBM, PD-1/PD-L1, CTLA-4, immunotherapies, innate and adaptive immune

responses

INTRODUCTION

Glioblastoma (GBM) is a deadly and highly infiltrative tumor. It is the most common primary
brain tumor in adults, causing about 3–4% of all cancer-related deaths (1). Surgery followed by
fractionated radiotherapy (RT) and temozolomide (TMZ) has been standard of care for newly
diagnosed GBM since 2005 (2). To date, scientific advances in genomics and immunotherapy
have failed to translate into effective therapies for GBM, with median survival of just over a year
from diagnosis. Once recurrence has occurred, prognosis is extremely guarded with a minority of
patients responding meaningfully to second-line therapies or surviving >6 months from time of
recurrence (3). Novel approaches to treat GBM are urgently needed and much effort has sought to
determine whether immunotherapy may provide a useful adjunct.

Immunotherapies, epitomized by successful trials with checkpoint blockade, have been
widely hailed as a breakthrough in cancer therapy over the past decade. Seminal work from
the Allison laboratory in 1996 showed that the antibody-blocking cytotoxic T-lymphocyte
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antigen-4 (CTLA-4) could elicit regression of murine colon
carcinoma and fibrosarcoma (4). Since then, several other
preclinical models have further validated the effectiveness of
blocking CTLA-4 and supported the clinical development of
anti-CTLA-4 therapy. The first human phase III study of anti-
human CTLA-4 (Ipilimumab) demonstrated improved survival
in patients with advanced melanoma (5). Subsequent successes
followed with antibodies against programmed cell death-1 (PD-
1) and programmed death ligand-1 (PD-L1) (6, 7), confirming
the broad utility of blocking inhibitory pathways that interfere
with anti-tumor T cell responses.

There is a strong correlation between high somatic mutation
burden and the clinical response to immune checkpoint
monotherapies (8). Non-synonymous somatic mutations lead to
an altered amino acid sequence and give rise to neoepitopes
that can serve as neoantigens recognized by the immune
system (9, 10), triggering an anticancer immune response. In
contrast, GBM has a relatively low burden of neoantigens
(11), yielding “cold tumors” for which clinical response
immune checkpoint monotherapy is infrequently observed. The
“cold” phenotype of GBM is also attributed to recruitment
of immunosuppressive immune cell types and secretion of
immune suppressive cytokines (12–14). Much work has sought
to convert the “cold” GBM phenotype into a “hot” phenotype
more responsive to immune checkpoint blockade. To this
end, radiation and radiation-induced immune processes have
demonstrated particular promise.

Immune infiltration is a doubled sword. Despite the benefit
of immune infiltrate for a successful immune therapy response,
more aggressive tumors, such as mesenchymal subtype GBM,
are typically heavily infiltrated by immune cells (15). In this
setting, immune cells are believed to be reprogrammed by the
tumor to perform pro-tumorigenic functions. However, whether
the presence of robust immune infiltrate is a cause or effect of
GBM aggressiveness has been controversial. Mutations in the
gene isocitrate dehydrogenase (IDH) are very common in World
Health Organization classification of Grade II and III gliomas
and in 10% of GBM that have evolved from lower-grade tumors
(16, 17). Overproduction of oncometabolite 2-hydroxyglutarate
(2HD) in the D-enantiomer is a major hallmark of these glioma
subtypes (18). IDH mutation status is an important classifier
in stratifying glial tumors. Patients with IDH-mutant gliomas
have a substantial survival benefit following chemotherapy and
radiation compared to patients with IDH wild type tumors
(19). A study by Amankulor et al. used this model to help
shed light on the role of immune cells in tumor aggressiveness
(20). It is known that IDH-mutant gliomas have fewer tumor-
infiltrating immune cells, including T cells, microglia, and
macrophages, compared to IDH wild-type tumors; thus IDH-
mutant tumors typically exemplify “cold tumors” and may not
respond to immunotherapies. The authors generated genetically
engineered mice that were identical, except for the presence
or absence of IDH mutation, with concomitant increase in
2-HG levels. Decreased leukocyte chemotaxis and prolonged
survival was seen in the IDH-mutant tumors supporting the
concept of immune infiltration as causatively pathologic in more
aggressive gliomas. Whether IDH-mutant gliomas or tumors

with inherently lower immune infiltration (e.g., proneural) are
inherently less responsive to immunotherapy due to their “cold”
phenotype is hypothesized, but remains to be demonstrated
clinically. Nevertheless, since radiation is currently standard of
care for all subtypes of infiltrative glioma, potential synergy
between immunotherapy and radiation is an opportunity to
be exploited therapeutically. In such work, the goal will be to
promote and maintain an anti-tumorigenic rather than pro-
tumorigenic phenotype of recruited leukocytes, even long after
completion of radiotherapy.

Preclinical data have provided robust proof of principle
that radiation can boost both the local and systemic antitumor
immune response to augment tumor control even at sites
distant from radiation—eliciting the so-called “abscopal effect.”
Although radiation and immunotherapy are both currently
employed in early clinical trials of immunotherapy, it is less
certain whether their potentially synergistic biology is optimally
harnessed using current protocols. Emerging preclinical data
suggest that established standards of care for GBM—including
radiotherapy fractionation regimens, use of systemically
immunosuppressing TMZ, and frequent use of steroids—may
need to be revisited before the potential of immunotherapy
is fully realized for GBM. This review begins by addressing
the current understanding of immune-modulatory effects
of radiation and highlights the salient features of the highly
immunosuppressive microenvironment of GBM. We then
discuss preclinical data supporting the synergistic combination
of radiotherapy with immunotherapies targeting both innate and
adaptive immune modulators and explore important challenges
yet to be overcome in search of a clinically optimal regimen.

GBM AND THE ADAPTIVE IMMUNE
SYSTEM

Brain: No Longer an Immune-Privileged
Organ
The central nervous system (CNS) has long been considered
immune privileged due in part to the presence of the blood
brain barrier, a unique structural feature that restricts entry of
molecules and immune cells into the brain. This view was further
supported by relatively low numbers of antigen presenting cells
(APCs) and T cells in the brain parenchyma, as well as the
historically perceived lack of lymphatic vessels to drain APC
and antigen to regional lymph nodes (21). Findings in recent
years have challenged long-standing thinking by demonstrating
that even the healthy brain is in fact under constant immune
surveillance. Brain-derived antigens can entrain peripherally-
derived immune cells that in turn penetrate the blood brain
barrier (22, 23). Identification of a novel CNS glymphatic
system, wherein most APCs could travel from the brain into the
cervical lymph nodes and prime T lymphocytes (24, 25), forced
reconsideration of the supposedly immune privileged status of
the CNS. The revised model is in line with empiric findings of
tumor-infiltrating lymphocytes detected in human GBM after
vaccination with autologous tumor lysate-pulsed dendritic cells
(DCs) (26, 27). It is within this dynamic scientific era that insights
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are sought from the brain and tumor microenvironments to
optimally harness immunotherapy for GBM.

Immune-Suppressive Microenvironment of
GBM
Tumors subvert systemic and local immune mechanisms to
establish an immune tolerant microenvironment permissive to
infiltration and proliferation. The following sections outline
several of the immunosuppressive mechanisms defined to
date; the extent to which radiation may help attenuate the
immunosuppressive microenvironment of GBM is discussed in
section Radiation and GBM.

Like many tumors, GBM express relatively low levels of
histocompatibility complex (MHC) class I and II molecules,
thereby minimizing display of tumor-associated antigens (28).
GBM also secrete immunosuppressive cytokines, such as IL-10
and TGF-β (29). TGF-β is a pleiotropic cytokine that blocks the
cytotoxic T cell response and promotes the activity of CD4+
regulatory T cells (Tregs).

Tregs express CD25+ and the transcription factor FoxP3+
(30) and may derive from the periphery (pTregs) from
conventional T cells or from the thymus (tTregs) (31). Tregs
can be recruited to the tumor or generated via proliferation
of pre-existing Tregs in the tumor microenvironment and de
novo conversion of tumor-infiltrating CD4+ lymphocytes (TIL)
into pTregs (32, 33). Tregs exert their suppressive activity
through cell surface molecules such as CTLA-4, perforin, and
CD73. These inhibit maturation of APCs and block B7-CD28
co-stimulatory signals. ATP released from dying cells is pro-
immunogenic, but is degraded by Tregs. In addition, Tregs can
also mediate their suppressive activity via contact-independent
mechanisms, secreting inhibitory cytokines that suppress effector
T cell function (34).

The enzyme indoleamine 2,3 dioxygenase (IDO) can be
produced by both tumor and tumor APCs, including DCs
and macrophages (35), to induce immune suppression. IDO
contributes to immune tolerance by catabolizing tryptophan to
catabolites, such as kynurenine (36). Deprivation of the critical
amino acid tryptophan and exposure to metabolites inhibits the
proliferation of cytotoxic CD4+ and CD8+ T cells (37), as well
as natural killer (NK) cells (38). Preclinical work by Wainwright
et al. has demonstrated that GBM tumor-derived IDO increased
the recruitment of Tregs and decreased survival of mice with
intra-cranial tumors (39). Of note, IDO expression levels tends
to positively correlate with glioma grade (40).

Although GBM is confined to the brain, patients with
GBM may be profoundly immunosuppressed systemically with
decreased numbers (41) and function (42) of circulating
lymphocytes. GBM accumulate robust numbers of intra-tumoral
activated Tregs that impede the proliferation of, and cytokine
secretion by, autologous lymphocytes (43, 44). Furthermore,
depletion of Tregs using anti-CD25 antibodies augmented
anti-tumor CD4+ and CD8+ T cell responses (45, 46).
These studies emphasize the role of GBM-associated Tregs in
maintaining a systemic tolerogenic environment that impedes
anti-tumor immunity.

T Cell Exhaustion in GBM
Viruses have evolved highly effective strategies for establishing
chronic infection and avoiding clearance by the immune
response (47, 48). During chronic viral infections, persistent
antigen exposure drives CD8+ T cells to increase the expression
of inhibitory receptors, dampening their ability to clear
the infection (49). This state of decreased proliferation and
decreased effector function, including reduced cytokine secretion
accompanied by metabolic and transcriptional changes, has
been termed “exhaustion” and is also induced by cancers
to avoid immune clearance (50, 51). Targeting such T cell
exhaustion may be more complex in cancer due to intra-tumoral
heterogeneity, resulting from stochastic tumor evolution and
spatial gradients within the tumor microenvironment (51). The
exhausted T cell phenotype is characterized by upregulation of
multiple inhibitory immune checkpoint receptors, such as PD-
1 (52), CTLA-4 (4), T cell immunoglobulin 3 (TIM-3) (53),
lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor
with immunoglobulin and ITIM domains (TIGIT), V-domain
Ig Suppressor of T cell Activation (VISTA), and CD39 (54–56).
These molecules are prominently expressed on CD8+ TILs from
human GBM (57) with stably elevated checkpoint expression
restricted TCR repertoire clonality throughout the stages of GBM
progression (58). Under normal homeostasis, these molecules
play critical immune regulatory roles in mediating tolerance to
self-antigens and preventing auto-immunity (59, 60). While it
has been known that multiple tumors induce T cell exhaustion
to promote survival (61), the degree of T cell exhaustion in
patients with GBM was recently determined to be particularly
severe (57). To date, the predominant strategy investigated to
attenuate T cell exhaustion has included one or more immune
checkpoint inhibitors (62). However, modulating metabolic and
stromal components in the tumor microenvironment may prove
synergistic (51). The potential role of radiation to facilitate such
modulation is discussed below.

Role of Immune Checkpoints in GBM
Numerous preclinical studies have demonstrated efficacy of
antibodies targeting CTLA-4 or the PD-1/PD-L1 axis (4, 63,
64). Subsequently, these antibodies have also demonstrated
clinical benefit in multiple tumor types, particularly including
“hot” tumors with innately high immunogenicity. Monotherapy
with ipilimumab, an anti-CTLA-4 antibody, yielded a durable
response in ∼10% of patients with advanced metastatic
melanoma (5). Additionally, lambrolizumab (anti-PD-1) yielded
a robust and durable response in about 35% of patients with
advanced melanoma (65). Based on numerous such encouraging
trials, several immune checkpoint inhibitors have now been
FDA approved for multiple cancers. Examples include inhibitors
targeting CTLA-4 (ipilimumab), PD-1 (pembrolizumab and
nivolumab), and PD-L1 (atezolizumab and avelumab), that have
collectively yielded profound impacts on the management of
multiple systemic malignancies.

The dysregulation of immune-checkpoint pathways in GBM
has provided ample proof of principle suggesting checkpoint
inhibitors could also offer a therapeutic avenue for GBM (66).
Indeed, in addition to upregulation of inhibitory checkpoint
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molecules, such as PD-L1 on T-regs and exhausted T-cells,
these are also expressed on tumor-associated macrophages and
microglia (TAMs) isolated from human GBM (67). Moreover,
immunosuppressive cytokines in the GBM microenvironment,
including IL-10, promote expression of checkpoint inhibitor
expression on GBM itself (67). Despite promising responses in
a subset of patients (68), benefits of checkpoint inhibition have
yet to be observed in any phase III clinical trial for GBM.

Nevertheless, immune checkpoint dysregulation alone in
GBM may be insufficient to portend reliable responses via
checkpoint blockade. Increasing data suggest that an elevated
tumor mutational burden (69, 70) and a robust lymphocytic
infiltrate within the tumor microenvironment (“hot tumors”)
correlate with improved clinical response to checkpoint
blockade (69, 71, 72). Indeed, consistent with the relatively
immunologically “cold” nature of GBM, including modest levels
of tumor neoantigens and lymphocytic infiltrate, several late
stage clinical trials have failed to demonstrate clinical benefit (see
Supplementary Table 1). Nevertheless, promising responses in a
subset of patients continue to foster enthusiasm for harnessing
checkpoint inhibitors in GBM. The portfolio of checkpoint
inhibitors is continuing to expand with preclinical and efficacy
data in targeting LAG-3 (73), TIM-3 (74), and TIGIT (75),
each showing particular promise in combination with PD-1
inhibition. Moreover, harnessing the use of immunostimulatory
strategies, such as radiation, to augment checkpoint responses
has generated particularly promising preclinical data (76).
The following sections offer additional details regarding
the more thoroughly studied checkpoint molecules CTLA-4
and PD1/PDL1 that have provided a foundation for GBM
immunotherapy efforts to date.

Cytotoxic T-Lymphocyte Antigen-4
(CTLA-4)
T cells are typically activated when an MHC-bearing APC
presents an antigenic peptide and engages a T cell receptor
(TCR). Full activation of T cells requires engagement of the
co-stimulatory T cell receptor, CD28, with its ligands, CD80
and CD86, expressed on APC (77). CTLA-4 primarily regulates
the early stages of T cell activation. CTLA-4 begins as an
intracellular protein, but upon T cell activation translocates to
the immunological synapse and co-localizes with TCRs (78,
79). CTLA-4 outcompetes the co-stimulatory TCR CD28 by
binding with higher affinity to the ligands CD80 and CD86
expressed onAPCs (80). CTLA-4 can also limit conjugation times
between T cells and APCs, limit T cell proliferation, and reduce
cytokine production (81). CTLA-4 inhibits Akt phosphorylation
by activating protein serine/threonine phosphatase PP2A, but
does not alter phosphatidylinositol3-kinase (PI3K) activity (62,
82). The intracellular domain of CTLA-4 can recruit the protein
phosphatase 2A to decrease phosphorylation of proteins in
the TCR signaling cascade (83). CTLA-4 plays a key role
in maintaining immune-regulated homeostasis by enhancing
suppressive functions of Tregs (84) and impeding the function
of CD4+ helper T cells (85). Anti-CTLA-4 antibodies can
mitigate T cell exhaustion by attenuating the inhibitory functions

of CTLA-4 and suppressive actions of Tregs. Ipilimumab and
tremelimumab were the first anti-CTLA-4 antibodies to enter
clinical trials in patients with advanced cancer. Ipilimumab is
currently FDA approved for metastatic melanoma and renal
cell carcinoma.

Programmed Cell Death-1 (PD-1) and
Programmed Death Ligand-1 (PD-L1)
In contrast to CTLA-4, which largely regulates T cell activation,
PD-1 plays a prominent role in inhibiting proliferation and
functions of effector T cell responses. PD-1 is absent on resting
naïve and memory T cells, but expressed on tumor infiltrating
lymphocytes (TILs) (86). PD-1 is upregulated on activated T
cells upon TCR engagement and mediates T cell suppression
(87) upon binding PD-L1 (52) or PD-L2 (88). PD-L1, also
known as CD274 and B7-H1, is largely undetectable in most
normal tissues, but is expressed on macrophages and APCs,
particularly in the context of classical (M1) activation (89). PD-
L1 is elevated in tumors—not only on APCs, but also tumor
cells themselves, promoting tumor cell survival (90, 91). PD-L2
expression is limited to certain immune cell types, mostly DCs,
mast cells, and macrophages (87). Both PD-1 and PD-L1 are
expressed on Tregs (92). Binding of PD-1 on activated T cells to
PD-L1 decreases TCR-mediated signaling by antagonizing PI3K,
leading to decreased Akt phosphorylation and thus decreased
levels of activation, including decreased IL-2 production and
decreased T cell proliferation (62). Engagement of PD-L1 on
macrophages to PD-1 promotes IL-10 production, which further
promotes immune suppression (93). Currently FDA-approved
drugs targeting PD1/PD-L1 for other cancers include the anti-
PD1 drug Nivolumab and the anti-PD-L1 drugs pembrolizumab,
atezolizumab, and avelumab. No immunotherapeutic drug has
been approved to date for glioma.

TIM-3 and Other Candidates for Adaptive
Immune Regulation
As exemplified by exhausted T cells, several additional
checkpoint molecules exist besides CTLA-4 and PD-1/PD-
L1 that regulate T cell activation and are being assessed as targets
for immunotherapy (94). Among these, TIM-3 is expressed by
IFNγ-secreting T-helper 1 (Th1) cells, DCs, monocytes, CD8+ T
cells, and other lymphocyte subsets (95, 96). TIM-3 is expressed
on dysfunctional CD8+ T cells in preclinical models of both
solid and hematological malignancies (74, 97). Upregulation of
TIM-3 is associated with exhaustion of tumor antigen-specific
CD8+ T cells in human melanoma and tumor-induced T
cell exhaustion is reversed by administration of anti-TIM-3
antibodies (98, 99). TIM-3 is also expressed on Tregs, with
TIM-3+ Tregs identified in solid tumors, such as ovarian, colon,
and hepatocellular carcinomas (100). As with other checkpoint
molecules, including LAG-3 (73) and TIGIT (75), combination
therapies blocking TIM-3 in combination with PD-1 exhibited
synergistic effects in preclinical tumor models (74, 101).
Kim et al. demonstrated that combination therapy of anti-
TIM-3 and anti-PD-1 improved survival in mice with GL261
intra-cranial tumors with optimal outcomes observed using both
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in combination with stereotactic radiosurgery (76). Several of
these checkpoint inhibitors are in clinical trials for GBM (see
Supplementary Table 1). Available preclinical data suggest a
combined strategy of multiple checkpoint inhibitors with pro-
immunogenic interventions, such as stereotactic radiosurgery
or oncolytic therapy, may yield optimal outcomes. Much
work lies ahead to critically and mechanistically evaluate such
combinatorial approaches in clinical trials.

GBM AND THE INNATE IMMUNE SYSTEM

Roles of Innate Immune System in GBM
The innate immune system, comprising CNS-derived microglia,
peripherally-derived neutrophils, macrophages, and lymphoid-
derived NK cells, has a central role in both glioma and radiation
biology (15). In response to CNS inflammation, activated
microglia proliferate, secrete cytokines and chemokines, and
upregulate cell surface markers such as CD80, CD86, and
MHC-II. Microglia also express pattern recognition receptors
and cross-present antigens to activate T cells within the
CNS (102, 103). Normally absent from the healthy brain,
peripherally-derived macrophages are recruited into the GBM
microenvironment where they facilitate antigen presentation,
immune induction, and removal of cellular debris. Microglia-
derived and infiltrating TAMs can comprise up to half the
cells in GBM and play a prominent role in tumor growth
and invasion (104). Two distinct polarization states of activated
macrophages have been frequently described: classically activated
“pro-inflammatory” (M1) and alternatively activated “anti-
inflammatory” or “chronic inflammatory” (M2) macrophages
(105). M1 macrophages serve an important role in phagocytosis
of neoplastic cells (106, 107). However, glioma cells can secrete
suppressive immune cytokines, such as IL-10 (108), and TGF-
β (109), that promote M2 polarization and suppress the M1
phenotype (110). Characterization of TAMs within human
GBM has revealed impaired production of pro-inflammatory
cytokines, defective antigen-presentation, and poor induction of
T cell proliferation (104). Similarly, the GBMmicroenvironment
can also directly render TAMs tolerogenic. GBM cells can induce
downregulation of TNF-alpha production, concomitant with
induction of anti-inflammatory cytokine IL-10 from microglia
through upregulation of STAT 3 and 5 (108).

Another population of peripherally-derivedmonocytes within
GBM are myeloid-derived suppressor cells (MDSCs) that also
act to suppress adaptive immunity (111). MDSCs accumulate in
GBM, express PD-L1, and impair CD4+ T cell memory function
(112). MDSCs lack macrophage-specific markers, such CD68,
CD16, and S100A9 (113), and secrete suppressive cytokines,
such as TGF-β (114). Though originally described as pleiotropic
cells simultaneously expressing both M1 and M2 polarization
markers, more recent work has suggested that MDSC are
malleable in their polarization phenotype with M1-polarized
MDSCs exhibiting tumoricidal properties (115).

Collectively, these studies illustrate the substantial cross-
talk between the multiple constituents of the GBM ecosystem
in maintaining a milieu conducive to GBM. The therapeutic
potential to reprogram TAMs andMDSCs from pro-tumorigenic

to tumoricidal polarization states is an area of intense interest.
The following sections provide example mechanisms of innate
immune system regulation that could be harnessed to anti-tumor
effect. To date, radiotherapy has provided a relatively blunt
instrument via which to activate the innate immune system.
However, limitations include CNS including CNS toxicity and
potential for inadvertent activation of pro-tumorigenic sequelae
(15). Improved understanding of innate immune mechanisms
may provide opportunities to more effectively attack the
tumor, whilst protecting against cognitively deleterious effects
of radiation.

Toll-Like Receptor Agonists
Toll-like receptors (TLRs) are pattern recognition receptors
(PRRs) expressed by a variety of cell types comprising the
innate immune system. The primary function of TLRs is to
sense damage and mediate response to pathogens and tumors.
TLRs bind to pathogen associated molecular patterns (PAMPs),
conserved structures expressed by pathogens, and danger-
associated molecular patterns (DAMPs), such as high mobility
group box 1 (HMGB1) and fatty acids. TLR 2, 3, 4, and 9 are
expressed on human microglia and TAMs (116). DCs also play a
prominent role in the development of anti-glioma immunity and
anti-tumor response (117). Dead glioma cells release HMGB1
which can activate TLR 2 on DCs, promoting expansion of
T cells (118). Preclinical studies with intra-cranial tumors
have shown that administration of TLR 3 agonist poly(I:C)
attenuated tumor growth in mice (119). Additionally, CpG, in
combination with tumor lysate, effectively induced maturation
of DCs to control tumor growth (120). Recent work from the
Lim laboratory found that that mice treated with poly(I:C)
and anti-PD-1 in combination demonstrated increased DC
activation, T cell proliferation, and improved tumor control (76).
In a phase I clinical study, concomitant administration of DC
vaccine, together with adjuvants comprising the TLR7 agonist
imiquimod or poly(I:C), appeared safe and increased serum
levels of TNF alpha and IL-6 (26). Clinical trials evaluating the
safety and efficacy of TLR9 agonist CpG oligodeoxynucleotides
demonstrated safety, but no improvement in survival when
combined with standard care radiotherapy and TMZ (121–123).

CD47-SIRP1α Axis
CD47 is a transmembrane immunoglobulin that binds to
integrins and serves as a receptor to signal regulatory
protein alpha (SIRP1α) and Thrombosponin-1 (TP-1). Expressed
on most tumor cells, including GBM (124), CD47 signals
“don’t eat me” to macrophages. CD47 binding by SIRP1a
initiates a signaling cascade that promotes phosphorylation
of intracellular ITIMs and activates inhibitory phosphatases
SHP-1 and SHP2 (125). These phosphatases dephosphorylate
immunoreceptor tyrosine-based activation motifs inhibit pro-
phagocytic signals and disrupt cytoskeleton rearrangements
necessary for macrophage phagocytosis (125, 126). Antibodies
blocking CD47 have been investigated in multiple tumor types
to help promote macrophage tumor phagocytosis with efficacy
observed in numerous preclinical models, including GBM
(124, 127). Clinical trials are underway for both hematologic
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and solid malignancies (128, 129). Used in combination with
radiation, CD47 inhibition has been shown to improve tumor
radiosensitivity (130). Anti-CD47 therapy has also been shown
to boost antigen presentation (131, 132) and augment cytotoxic
CD8+ T cell activity (133). As an adjuvant to radiation therapy,
CD47 blockade has the unique advantage of mitigating radiation-
induced TSP-1 signaling, which promotes resistance to radiation
injury due to decreased inhibition of nitric oxide signaling
in normal tissues. As such, whereas most radiation sensitizers
increase damage to both tumor and normal tissues alike, the
unique biology of CD47 blockade may concurrently enable
improved tumor radiosensitivity (via improved phagocytosis)
(134), whilst enhancing radioresistance of healthy tissues via
increased nitric oxide signaling (130).

Repolarizing Macrophages
Chemokines, such as colony stimulating factor 1 (CSF-1)
and its receptor CSF1R, regulate macrophage homeostasis by
regulating proliferation, differentiation, migration, and survival.
The intra-tumoral presence of CSF1R-expressing macrophages
correlates with poor survival of patients with solid tumors (135).
Secretion of CSF-1 by GBM impacts tumor progression through
CSF1R signaling. Treatment of GBM with the CSF-1R inhibitor,
BLZ945, in transgenic mouse and human xenograft models
suppressed tumor growth and improved survival. Although
the number of TAMs was not affected, the expression of
M2 markers was decreased, consistent with a reduced tumor-
supportive phenotype (136). TAMs support tumor progression
by blocking anti-tumor immunity and secreting factors to
promote angiogenesis (137). TAMs secrete cytokines, such as
TGF-β and IL-10, which augment Treg populations while
inhibiting effector T cell activity (138). TAMs have been shown
to reversibly change their functional phenotype upon exposure
to the tumor microenvironment (139). Therefore, strategies that
alter the microenvironment to facilitate the repolarization of M2-
like TAMs to a M1-tumor-suppressive phenotype are a potential
clinical strategy (140).

RADIATION AND GBM

Impact of Radiation on Tumor Immunity
Radiotherapy is a cornerstone of management for GBM with
radiation typically delivered to the enhancing tumor and
infiltrative margin via 30 fractions of 2.0Gy, using IMRT or
3D-conformal therapy. Shorter courses have been considered
in elderly patients or as a salvage therapy in recurrent disease.
Fractionated radiosurgery has been explored on a trial basis
without obviously worse outcomes than standard therapies (141),
but has not been adopted in standard management protocols.
Radiation acts to ablate dividing cells, induce senescence within
non-ablated cells (142). Radiation also stimulates local tumor
immunity, promoting anti-tumor immune responses via a host
of molecular mechanisms (Figure 1).

MHC class I molecules present intracellular peptide fragments
to T cells and are expressed on the surface of all nucleated
cells, albeit with reduced expression in tumor and stem cells.
MHC class 1 molecules are highly expressed on APCs where

they may present phagocytosed peptides from tumors. After
activation of APCs, such as DCs, antigens are cross-presented
to CD8+ T cells. In the healthy brain parenchyma, microglial
cells are the main resident antigen-presenting innate immune
cell (143). DCs are also present in the choroid plexus (144).
After radiation, the extracellular presence of danger-associated
molecular patterns (DAMPs) and cytokines, such as MCP1,
contribute to rapid microglial activation (145, 146). We have
previously shown that radiation induces a unique polarization
state in microglia, which is more closely related to M1 than M2,
but distinct from both (147). How the transcriptional responses
of human microglia and mouse microglia compare following
radiation remains to be determined, though persistent microglial
activation has been reported in humans even decades following
brain radiation (148). Few lymphocytes are typically found in the
healthy brain, despite the role of memory CD4+memory cells in
CNS immunosurveillance (21). Murine brain radiation induces
a delayed CNS recruitment of T cells, even in the absence of
tumor (149).

NK cells are present in relatively low numbers within the
GBM microenvironment, when compared to other tumor types
(150). Moreover, these NK cells express relatively low levels of the
activating receptor natural killer group 2D (NKG2D) (151). Even
within the periphery, patients with GBM demonstrate relatively
low numbers of circulating NK cells (152), a number that, like T
cells (153), falls further after standard radiation and TMZ (152).
NKG2D ligands are potent mediators of both the innate and
adaptive immune system (154). Radiation upregulates NKG2D
ligands in multiple tumor cell lines, which sensitizes them to
NK cell mediated cytotoxicity (110). At present, the impact of
radiation on NK cell infiltration into GBM is unclear, though
may vary as a function of concomitant TMZ and radiation
fractionation schemes.

Although GBM display relatively low levels of surface MHC
class I (155), radiation increases MHC class I levels, enhancing
cross-presentation of tumor associated antigens in the draining
lymph nodes and facilitating recognition of antigenic peptides
by CD8+ T cells (156–158). Thus, radiation-induced changes
can facilitate activation and proliferation of T cell populations to
augment anti-tumor immune response.

Interferon (IFN) levels are robustly elevated following
radiation and augment systemic anti-tumor immune response.
Of the three distinct types of IFN, types I and II play an important
role in sculpting anti-viral and anti-microbial defenses. DNA
released from irradiated tumor cells is sensed by stimulator of
interferon genes (STING) molecules present on DCs to produce
type I IFN. Activation of STING pathway and IFN signaling
is required for efficient radiation-induced adaptive immune
response (116). IFN-γ, a type II interferon, can upregulate MHC
class I and NKG2D expression to increase tumor recognition,
inhibit development of Tregs, and increase the induction of
cytotoxic T cells (159). Radiation-induced production of IFN-γ
by CD8+ T cells augments the immunostimulatory anti-tumor
effects of radiation (160).

Interestingly, not all of the pro-inflammatory impacts
of radiotherapy necessarily serve to enhance anti-tumoral
immunity, illustrating the complexity of regulating immune
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FIGURE 1 | Anti-tumor immune response augmented by the abscopal effect of radiation in combination with immunotherapies. Radiation induces DNA damage and

cell death. The dying cells release ATP and DAMPs such as HMGB1 and calreticulin. Although HMGB1 binds TLR4, ATP and calreticulin modulate TLR4 signaling

without directly binding to TLR4. Radiation also induces release of tumor antigens to antigen presenting cells (APCs), such as macrophages and dendritic cells (DCs).

Antigens are then processed and presented on major histocompatibility complex (MHC) Class I molecules to activate and induce proliferation of CD8+ T cells. The

activated cytotoxic CD8+ T cells migrate to tumor sites to induce cell death. Radiation can also induce release of cytokines IL-6 and interferon-gamma (IFN-γ).

Radiation also increases tumor cell expression of programmed cell death-1 ligand (PD-L1) and MHC class I molecules. Radiation upregulates immunomodulatory

surface proteins, such as Fas and NKG2D ligands on tumor cells. The NKG2D upregulation facilitates NK-mediated tumor cell death. Antibodies, such as α-CTLA-4,

α-PD-L1, and α-PD-1 have been used as cancer immunotherapies. When combined with radiation, these antibodies can augment anti-tumor responses in GBM.

Anti-CTLA-4 can bind CTLA-4 on Tregs and downregulate suppressive activity. Anti-PDL1 can interact with PD-L1 on tumor cells and on myeloid derived suppressor

cells (MDSCs) to curtail suppressive activity induced by MDSCs. Anti-PD-1 antibody can bind to programmed cell death-1 (PD-1) expressed on exhausted T cells.

responses. For example, INF-γ and hypoxia—both of which are
induced by radiation—upregulate PD-L1 expression on tumor
and tumor-associated immune cells (161, 162). Consistent with
this finding, anti-PD-L1 therapy has demonstrated synergistic
impacts with radiation to promote anti-tumor immunity (161,
163); results that have been found in metastatic melanoma to
be further enhanced by deploying radiation in combination
with dual checkpoint blockade (164). Recent data in preclinical
models indicate the same may likely hold true in GBM (76).

Abscopal Effect—Proof of Principle for
Radiation-Induced Immunity
Single tumor radiation has occasionally been clinically reported
to decrease growth of tumors at distant sites—a previously
poorly-understood phenomenon termed the abscopal (ab: “away
from;” scopos: “target”) effect (165). In 2004, Demaria et al.
used the growth factor Flt3-Ligand to experimentally enhance
numbers of antigen presenting cells providing direct evidence
that the abscopal effect is immune mediated and tumor-
type specific (166). Numerous studies of metastatic cancers
have since demonstrated that radiation in combination with

checkpoint inhibitors augment the abscopal effect (167–169).
Unlike metastatic cancers for which the abscopal effects
may be harnessed to attenuate growth of metastatic lesions
elsewhere in the body, GBM is typically restricted to a single
(occasionally multifocal) lesion within the CNS. Theoretical
limitations of a modest neoantigen repertoire, as well as
historically regarded modest CNS immune surveillance, could
further confound efforts to elicit an abscopal effect for GBM.
Nevertheless, the infiltrative nature of GBM, making it refractory
to resection, together with known dose-limiting toxicity of
brain radiation, increase motivation to harness abscopal biology
against infiltrative tumor cells. Multiple studies have reported
that systemic immune status may dictate therapeutic efficacy
of radiation (170, 171), providing further impetus to optimize
radiation by augmenting immune responsiveness.

Radiation-Induced Cell Death and Immune
Activation
Although radiation alone has proven unable to cure glioma,
radiation does kill a subset of tumor cells—particularly those
that are rapidly dividing. Such cell death facilitates antigen
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release, as required for adaptive immunity, and stimulates
innate immune responses (Figure 1). Radiation induces several
types of DNA damage, including simple and complex double
stranded breaks (172) with cytotoxic effects (173). Mechanisms
of radiation-induced cell death can include necroptosis (174)
and p53-dependent apoptosis (175). Radiation-induced mitotic
catastrophe may result from radiation, as characterized by
aberrant nuclear morphology, multiple nuclei or micronuclei,
typically leading to cell death when cells subsequently attempt
to divide. However, a small subset of cells may survive with
aneuploid or poplyloid karyotypes (176).

Immune activation, as augmented by radiation-induced cell

death, facilitates subsequent activation of both the innate and
adaptive immune systems against the tumor (177). Immunogenic

cell death is mediated by the release of DAMPs directly by tumors

or by inflammatory cells present in the microenvironment.
Radiation may promote immune activation and immunogenic

cell death via at least three mechanisms.

(1) Translocation of Calreticulin (CRT): CRT is a DAMP
that is typically restricted to the endoplasmic reticulum.
Translocation of CRT to the cell surface of dying cells

stimulates DCs to cross-present antigens to cytotoxic
T cells (178).

(2) Extracellular release of HMGB1 and ATP: Extracellular
HMGB1 induces DC activation through TLR-4. TLRs
play an essential role in activation of APCs (179) and

microglia (180), as well as release of pro-inflammatory
signals, including IFN-γ (156, 160). The physical interaction

between HMGB1 and TLR4 further prompts optimal cross-
presentation of antigens derived from tumor cells by DCs

to T cells (181). ATP release from dying cells can also

trigger IL-1- β production and priming of CD8+ T cells
by activating P2RX7 and PR2Y2 receptors on DCs and
macrophages, respectively (182).

(3) Translocation of heat shock proteins: Cell surface
expression of heat shock proteins HSP70 and HSP90 on
dying cells induces NK cell activation and promotes cross-
presentation of tumor antigens to facilitate DC maturation.
Given tumor cell death releases tumor-specific antigens to

APCs, including DCs, such cross-presentation of antigens
to cytotoxic CD8+ T cells facilitates an anti-tumor T cell
response (177, 183).

(4) Upregulated Fas expression: Garnett et al. have
demonstrated radiation increases surface expression of
Fas on tumor cells, which augments their destruction by
antigen-specific immune effector cells via Fas-dependent
mechanisms (184). Binding of Fas, a plasma membrane
death receptor protein, to its extracellular ligand, Fas-L,
activates caspase 3 and triggers apoptosis. The Fas-FasL
axis is integral to maintenance of regulation of immune
homeostasis (185, 186) and CD8+ T cell-mediated
cytotoxicity (187). CD8+ T cell cytotoxicity is a multi-step
process in which the effector cells act to induce cell death
by forming cell–cell contacts with potential target cells
expressing cell death triggering ligands. Following MHC-
antigen recognition, CD8+ T cells lyse target cells via

secretion of granzyme and perforin and by the engagement
of FasL on T cells with Fas expressed on target cells. Both
pathways lead to apoptotic cell death (188).

Preclinical Data Supporting Combined
Radiation and Immunotherapy for GBM
Multiple preclinical studies provide robust proof of principle
supporting the combined role of radiation and immunotherapy
for GBM (64, 76, 189). In an orthotopic (intracranial) GL261
mouse model, median survival doubled from 27 days with anti-
PD1 antibody alone and 28 days in radiation alone, to 53 days
when the twomodalities were combined. Immunohistochemistry
confirmed increased tumor infiltration of cytotoxic CD8+ T
cells and decreased regulatory CD4+ T cells in the combination
group (64). Similarly, combined radiation and use of an agonist
antibody for the co-stimulatory molecule glucocorticoid-induced
TNF receptor (GITR) expressed on both regulatory and cytotoxic
T cells yielded a cure rate of 24%, compared to 0% for radiation
or anti-GITR therapy alone (190).

GL261 is a widely employed mouse GBM line that permits
studies in immunocompetent animals (191, 192). As such, many
of the seminal studies of immunotherapy with or without
radiation have utilized this model. Nevertheless, some have
criticized the GL261 model as more highly immunogenic
than the immunologically “cold” GBM, thereby potentially
over-estimating the clinical potential of immunotherapies for
GBM. Numerous genetically engineered models of GBM have
been developed, several of which have been well described
as “transplantable GEM models” and provide important
immunocompetent alternatives to GL261.

As noted in earlier sections, multiple immune checkpoints and
other immmunosuppressive strategies are harnessed by GBM to
avert immune detection (193). Accordingly, as with preclinical
models of metastatic disease, preclinical GBM models have
similarly demonstrated improved outcomes with multimodal
immune therapy in combinationwith radiation. Combined use of
CTLA-4 blocking antibodies and pro-cytotoxic function CD137
(4-1BB) agonist antibodies with RT yielded 50% survival at 100
days in a GL261 orthotopic model, compared to 20% without RT,
and 0% with radiotherapy alone (189). Radiotherapy plus dual
checkpoint antibodies against PD-1 and TIM-3 yielded 100%
survival of GL261-bearing mice at 100 days, compared to 60%
with the best combination of only two of the three treatment
modalities (76). Both of these radiation plus dual immunotherapy
studies documented elevated CD8+ and CD4+ T cells within the
tumor of combined therapy-treated animals (76, 189). Belcaid
et al. further performed depletion studies to find that CD4+
but not CD8+ T cells were required for the survival benefit of
combined therapy (189).

Optimizing Radiotherapy for Immune
Stimulation
Most clinical trials of immunotherapy, to date, have enrolled
patients with recurrent disease following prior standard therapy.
As such, patients would have previously undergone radiation
and chemotherapy, though would not typically receive further
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radiation as part of the trial protocol. As such, it is important to
note that Belcaid et al. found a trend toward improved outcomes
with concurrent, rather than sequential, administration of
radiation and immunotherapy (189). Additionally, prior
exposure to TMZ attenuates the immune response to checkpoint
inhibitors (194).

Current standard therapy for GBM includes chemotherapy
and fractionated radiation, frequently also with administration
of corticosteroids, which collectively induce lymphopenia and
immune suppression (195–198). Importantly, mathematical
modeling indicates that even the fractionated radiation to
the tumor itself accounts for lymphotoxic doses of radiation
to the entire circulating blood pool, even independent of
immunosuppressive chemotherapy and steroids (199). As
such, stereotactic radiosurgery has been evaluated as an
alternative to standard fractionated radiation with a goal of
decreasing immunosuppression and increasing tumor ablation
and immune activation. Also of note, traumatic brain injury
leads to immune suppression via ill-defined mechanisms (200).
Whether additional such mechanisms may further impede
immune function following brain radiation, independent of
lymphodepletion, remains similarly ill-defined. Most GBMs in
humans exceed the size limit (∼3 cm) considered acceptable for
single fraction radiosurgery, though fractionated radiosurgery
has been explored with demonstration of feasibility in a
preliminary dose-escalation study (141).

With the increasing clinical prevalence and importance of
immune-based strategies, attention has focused on how best
to harness immune-activating impacts of radiation. The linear
quadratic equation is used to determine which fractionated
radiation regimens yield equivalent biologically effective doses
(201). Importantly, recent data have revealed that too much
radiation in a single fraction may inhibit the very immune
mechanism one is attempting to activate through radiation-
induced immune activation. In an OVA murine melanoma
model, 7.5 Gy/fraction yielded best tumor immunity while
minimizing numbers of Tregs (202). Radiation doses above
12Gy were recently found to activate DNA exonuclease Trex1,
which decreases DNA from the cytosol and thereby reduces
immunogenicity (203). Current efforts to optimize fractionation
schemes to optimize RT-mediated immune activation were
recently reviewed elsewhere (204). Importantly, optimal
parameters appear tumor-dependent. Few studies to date have
addressed this question for GBM, though dedicated clinical
trials may be needed to elucidate optimal parameters for human
patients. A dose escalation study (25–40Gy) using 5 Gy/fraction
with 5mm margins revealed a maximum tolerated dose of 40Gy
in 8 fractions and an overall survival of 15 months–similar
to standard therapy. Further work would be needed to assess
relative efficacy of immunotherapies in such novel paradigms
compared to that seen with conventional therapy.

IMMUNOTHERAPY FOR LOW-GRADE
GLIOMAS

The role of immunotherapy for low grade infiltrative gliomas
remains poorly characterized. Preclinical efforts in this domain

are hampered by the paucity of available animal models. Low-
grade gliomas are ultimately fatal due to transformation into
high-grade gliomas. Clinical application of immunotherapies
for low-grade gliomas are hampered by the lack of biomarkers
for efficacy and prolonged periods of relative clinical stability
with existing therapies. Low-grade gliomas demonstrate
less immunosuppressive phenotypes compared to high-grade
gliomas (196, 205–208). This could portend an improved capacity
for inducing an immune response, particularly in the context
of a more indolent lesion that affords more time to achieve a
therapeutic response before the patient would otherwise succumb
to disease (209, 210). Conversely, most low-grade gliomas are
IDH-mutant and overproduce 2-hydroxyglutarate, which has
been found to be immunosuppressive (211). Nevertheless, the
specific IDH1 (R132H) mutation itself could serve as a potential
vaccine target (212). Preliminary safety trials of vaccines have
been performed in pediatric patients with low-grade glioma.
A Poly-IC-containing synthetic peptide-based vaccine against
the glioma-associated antigens EphA2, IL-13Rα2, and survivin
yielded notable immunologic and radiologic responses in a
subset of patients (209, 210, 213). Further work is needed to
elucidate prospectively which patients and tumor subtypes could
benefit from immunotherapy and how favorable responses can
be made more consistent.

IS RADIATION AND IMMUNOTHERAPY
RELEVANT TO TARGETING GLIOMA STEM
CELLS?

Cancer stem cells (CSC) have been identified in numerous
tumors and play a role in development, invasion, and metastasis.
Glioma stem cells (GSC) (82, 214), represent tumor-initiating
cells notable for markers of neural stem cell markers, such
as CD133 (214) and Nestin (215). Upregulated markers of
pluripotent stem cells, including nanog and Oct4, have also
been reported (216). GCS demonstrate therapeutic resistance in
part through upregulation of DNA damage checkpoint responses
and enhanced DNA repair (217). Radiation can induce de-
differentiation of GBM cells into a stem cell-like phenotype with
increased self-renewal and tumorigenesis capacity in a survivin-
dependent manner (218).

GSCs are primarily enriched in the perivascular niche (219).
Both microglia and TAMs are found in the perivascular niche
and GSC play a prominent role in immunomodulation by
recruiting microglia and TAMs. For example, GSCs secrete
periostin to recruit TAMs that largely exhibit an M2 phenotype
(220). GSCs have also been shown to activate TLR4 on
microglia to induce IL-6 secretion (221). Immune therapies
against GSCs have included peptide and DC vaccines. Cantini
et al. reported in a GL261that vaccination with GLAST, a
CNS protein enriched on radial glial cells, promoted tumor
immunity without evidence of autoimmunity (222). DC-based
vaccines have been explored using tumor lysate or GSC-
associated peptides to stimulate ex vivo DCs. Administration of
loaded DCs in human patients induces prolonged anti-tumor
immunity against a potentially broad range of antigens (223).
In a GL261-murine model, Pellegatta et al. demonstrated that

Frontiers in Oncology | www.frontiersin.org 9 February 2019 | Volume 8 | Article 656

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Rajani et al. Radiation and Immunotherapies

vaccination using CSC antigens yielded improved anti-tumor
effects of DC vaccination when compared with vaccination using
regular tumor antigens (224). Similarly, in a rat model, Xu et al.
showed that rats vaccinated with GSC-enriched lysates from
neurospheres survived longer than rats vaccinated with non-
GSC-enriched lysates (225). In recent years, such strategies to
target GSCs have been extended to clinical trials.

A Word of Caution
Immune targeting of GSCs ideally seeks to promote immune
responses against antigens uniquely expressed on GSCs, but
not healthy tissues. However, care may be needed to ensure
that rare endogenous tissue stem cells (neural stem cells
or oligodendrocyte progenitor cells) are not inadvertently
targeted. Currently, this question is complicated in part by
controversy surrounding the presence and identity of adult
human endogenous neural stem cells (226). Since GSCs likely
reactivate more primitive developmental programs than adult
CNS or other tissue progenitor populations, targeting these
most primitive markers may help minimize depletion of
adult progenitor populations. Since the phenotypes of certain
human endogenous progenitor populations remains ill-defined,
vigilance for cognitive or other toxicities should be maintained in
any therapies potentially inducing auto-immunity against non-
mutant endogenous peptides.

ADJUNCTIVE TOOLS TO PROMOTE
TUMOR IMMUNITY

DC Vaccines
DCs are one of the most important APCs and have prompted
several groups to develop DC-based vaccines for GBM (27, 227–
230). DCs have a high capacity to detect maturation signals
and process antigens as peptides to generate an efficient and
sustained T cell response (231, 232). In an early clinical study
of standard chemoradiotherapy followed by GSC-pulsed DC
vaccine, 7/11 enrolled patients completed treatment with a
median survival of 694 days (233). Currently, it is unclear
which factors impact the efficacy of DC vaccination. However,
a pre-clinical study by Mitchell et al. showed that DC
migration to tumor draining lymphnodes could be enhanced
by exogenous administration of the chemokine CCL3 (234). In
addition, the authors demonstrated that modulation of CMV-
specific DCs with a potent tetanus/diphtheria antigen increased
the migratory capacity of DCs and improved the clinical
outcomes in patients with GBM (234). A DC vaccine (ICT-
107) loaded with six synthetically processed GBM associated
peptides (tumor stem cell antigen MAGE-1, her-2, AIM-2,
Trp-2, gp100, and IL-13 Rα2) yielded improved progression-
free survival and a trend toward improved survival in a
randomized, double-blind, placebo-controlled phase II clinical
trial for newly diagnosed GBM; however, the study did
not meet the primary endpoint of improved overall survival
(235). A phase III study was begun, but suspended due
to insufficient funding. An initial report demonstrated a
median overall survival of 23.1 months in the intention-to-
treat population (236). To date, clinical trials have deployed

DC therapies following completion of standard chemoradiation
therapy. Whether or not modifications to standard therapy
could further augment DC-mediated responses remains to
be investigated.

Targeted Immunotherapy
Epidermal Growth Factor Receptor Variant III

Vaccines
Epidermal growth factor receptor (EGFR) variant III (vIII) is
expressed in 20–30% of GBM (237). EGFRvIII is absent in
normal tissues and selective activation of PI3K/Akt pathway
contributes to GBM resistance to radiotherapy (238). Work
by Heimberger et al. demonstrated that immunization of
DCs mixed with a tumor-specific peptide of EGFRvIII, PEP-3
conjugated to the immune adjuvant keyhole limpet hemocyanin
(KLH), resulted in long-term survival of mice with intracranial
melanomas (239). The vaccine Rindopepimut, which targets
EGFRvIII, has shown efficacy in phase I/II clinical trials,
but demonstrated no survival benefit in a phase III trial
(see Supplementary Table 1) (240, 241).

Survivin
Survivin, a regulator of both mitosis and programmed cell death
(242), is a tumor associated antigen, making it an attractive
candidate for targeted cancer therapy and immunotherapy (242–
244). Normal glial cells do not express survivin, whereas survivin
is highly expressed in GBM and is associated with poorer
prognosis (245). Epitopes of survivin are immunogenic and are
presented by MHC Class I complexes. Anti-survivin antibodies
have been identified in patients with GBM (246). In an effort
to identify a survivin peptide mimic that could elicit a potent
T cell response, Ciesielski et al. created SVN53-67/M57, a
peptide vaccine derived from survivin. SVN53-67/M57 produced
cytotoxic T cell-mediated killing of human glioma cells in vitro
and, in combination with GM-CSF, was able to control tumor
burden in mice bearing GL-261 glioma tumors (247). A phase II
trial of SVN53-67/M57-KLH (SurVaxM) and TMZ is currently
recruiting patients with malignant glioma and the therapy has
shown to be well tolerated and generates anti-survivin antibody
and survivin specific CD8+ T cells (248).

Oncolytic Viruses
While this review focuses particularly on the facilitating role of
radiation in checkpoint blockade, oncolytic viruses may serve
a similar role by means of immune activation in GBM (249).
Although oncolytic viruses are selected or engineered for their
propensity to replicate or selectively kill tumors cells, complete
viral-induced lysis of all tumor cells is not observed with the
relatively attenuated viral constructs clinically deployed, to date.
Instead, the lysis of a subset of tumor cells may serve to
promote both anti-viral and anti-tumor immune responses (250).
The combination of measles virus-expressing carcinoembryonic
antigen with radiation has been shown to improve tumor control
(251). Similarly, the combination of radiation with oncolytic
DNA viruses, such as herpes-simplex virus-1 and conditionally
replicating adenovirus, has demonstrated longer survival and
improved outcomes in pre-clinical GBM models (252–254).
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Despite some case reports of remarkable responses, clinical trials
of oncolytic therapies for GBM have proven disappointing, to
date, with only marginal therapeutic efficacy reported (249)
(ClinicalTrials.gov, Unique Identifier: NCT01280552)1. These
findings have prompted ongoing efforts to both better predict
which patient populations may respond favorably and how
responses may be further augmented.

CLINICAL TRANSLATION: CHALLENGES
AND PRACTICAL CONSIDERATIONS

Translating immunotherapy for GBM has proven challenging.
Optimally harnessing radiation to augment the efficacy of
immunotherapy is a promising avenue, but is not without
its own unique challenges (Figure 2). While many patients
seeking clinical trials have recurrent disease, prior radiation
may preclude further radiation due to risk of toxicity and may
impact immune responses in ways that are difficult to predict.
While TMZ may attenuate bone marrow immune responses,
TMZ-induced mutations may provide important neoantigens to
catalyze immune recognition of the tumor.

Tumor heterogeneity remains a challenge, both within and
between patients. Furthermore, human immune responses are
complex and will likely require molecular and genetic subtyping
to identify potential subclasses and individual “responders”
or “partial responders.” For example, the phase II ICT-107
autologous DC vaccine trial suggested clinical responses only
in subjects who were HLA-A2 positive (a phase III trial
was suspended for financial reasons). Several immunotherapy
clinical trials are ongoing for GBM, which is routinely treated
with radiation, including DC vaccines, EGFRvIII vaccines, and
checkpoint inhibitors, among others. However, few studies, to

1Pembrolizumab and Standard Therapy in Treating Patients With Glioblastoma.

Available online at: https://clinicaltrials.gov/ct2/show/NCT03197506.

date, have specifically focused on optimizing synergy between
radiation and immunotherapy.

GBM is transcriptionally subclassified into proneural,
neural, classical, and mesenchymal based on genomic profiling
(255). However, single cell transcriptome data suggest variable
representations of each transcriptional cell type within each
tumor, challenging selective targeting of the tumor phenotype.
Moreover, radiation has been shown to induce a mesenchymal
phenotype, notable for its poorest prognosis; likely due in part to
radiation-induced upregulation of treatment-resistant stem-like
properties (256). Data from other tumor types suggest that
cytokines from local tissue in response to immunotherapies may
offer an important source of more reliable biomarkers, including
biomarkers of therapeutic responsiveness (257). If also true in
glioma, this may create impetus to identify technologies for in
vivo evaluation of such biomarkers locally within the tumor
microenvironment in response to therapy—an avenue our group
is currently exploring.

The paucity of prompt biological feedback regarding
efficacy remains a challenge. While systemic immune cell
populations can be serially accessed to monitor leukocyte
numbers and phenotypes, these data are at best an indirect and
imperfect indicator of therapeutic efficacy within the tumor.
Imaging criteria to interpret immunotherapy responses, despite
interpretations challenges of radiation- and immunotherapy-
induced pseudoprogression, have been drafted (iRANO). The
lack of definitive imaging biomarkers of responsiveness is
underscored by the need to follow the trajectory of imaging
changes over months to interpret findings (258).

Finally, it is increasingly appreciated that standard
management strategies aside from radiation likely inhibit
the efficacy of immunotherapy, including immuosuppressive
corticosteroids and systemic chemotherapy. Corticosteroids,
such as dexamethasone, are used to control vasogenic edema due
to infiltrative tumor, surgery, and radiotherapy (259). Pre-clinical
models and retrospective data from clinical studies indicate that

FIGURE 2 | Comparison of the advantages and potential challenges of combining immunotherapy and radiation for glioblastoma treatment. MHCI, Major

histocompatibility complex class I molecule; mTOR, mechanistic target of rapamycin; SRS, stereotactic radiosurgery.
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dexamethasone treatment attenuates the efficacy of radiotherapy,
presumably by impeding normal radiation-induced immune
responses (260). While TMZ is the cornerstone of the standard
STUPP regimen for GBM, experimental data demonstrate
that systemic chemotherapy impedes the anti-tumor effects
of anti-PD-1, despite the potential for local chemotherapy to
augment immunotherapeutic responses (194). These studies
highlight practical challenges of optimizing the therapeutic
impacts of immunotherapy. Until methods can better predict
responses or evaluate therapeutic impact in real time, forgoing
the established standard of care (TMZ) to theoretically augment
an unproven experimental therapy may prove challenging. Our
group recently initiated a clinical trial providing anti-PD-1 in
biopsy-proven GBM prior to definitive surgical resection and
subsequent chemo/radiation. Insights from early histological
analysis of tissue from patients treated with anti-PD-1 may
help identify biomarkers and selection criteria for future single
and combination immunotherapy trials (ClinicalTrials.gov,
Unique Identifier: NCT03197506). As increasing evidence
emerges about untoward chronic impacts of radiation on
the CNS microenvironment for tumor aggressiveness, could
future paradigms replace standard fractionated radiation with
combination immunotherapy and hypofractionated SRS applied
to just a portion of the tumor? Alternatively, perhaps residual
tumor cells after chemo/radiation may be best eliminated with
combined immunotherapy and senolytic therapy? Finally,
strategies are needed to optimally titrate the immune response
to avert potentially severe or fatal toxicities. These may vary
in a tumor- and patient-specific manner based on biomarkers
of susceptibility and responses that have yet to be identified.
We posit that dedicated efforts to understand the human
biology of CNS radiation and therapeutic responses may reveal
opportunities to optimize safety and efficacy of combined
radiation and immunotherapy for glioma.

CONCLUSIONS

The dramatic anti-tumor clinical responses observed in
certain tumors treated with anti-CTLA-4 and anti-PD-1
antibodies have ushered in a new era for effective cancer

therapies. Radiation modulates the tumor microenvironment
and offers a potential immune adjuvant to enhance the
anti-tumor response in combination with immunotherapies.
Preclinical models of GBM illustrate potent opportunities to
harness combination immunotherapy with brain radiation.
However, several questions remain unanswered regarding the
optimal paradigms of combination immunotherapy, timing
in relation to radiation, and the potential to mitigate adverse
impacts of currently standard treatments, such as fractionated
radiotherapy-induced lymphopenia and chemotherapy-
and corticosteroid-induced immunosuppression. Preclinical
evidence suggests robust opportunities to add optimized
strategies of immunotherapy into standard-of-care for GBM.
Much work lies ahead to improve translational paradigms that
could increase mechanistic insights gleaned from each treated
patient and enable iterative improvements in protocols within
the life-times of individual patients.
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