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Chronic lymphocytic leukemia (CLL) is the most frequent lymphoproliferative syndrome in

western countries. CLL evolution is frequently indolent, and treatment is mostly reserved

for those patients with signs or symptoms of disease progression. In this work, we used

RNA sequencing data from the International Cancer Genome Consortium CLL cohort

to determine new gene expression patterns that correlate with clinical evolution.We

determined that a 290-gene expression signature, in addition to immunoglobulin heavy

chain variable region (IGHV ) mutation status, stratifies patients into four groups with

notably different time to first treatment. This finding was confirmed in an independent

cohort. Similarly, we present a machine learning algorithm that predicts the need for

treatment within the first 5 years following diagnosis using expression data from 2,198

genes. This predictor achieved 90% precision and 89% accuracy when classifying

independent CLL cases. Our findings indicate that CLL progression risk largely correlates

with particular transcriptomic patterns and paves the way for the identification of high-risk

patients who might benefit from prompt therapy following diagnosis.

Keywords: chronic lymphocytic leukemia, time to treatment prediction, gene expression, RNAseq, machine

learning, prognostic factors, IGHV

INTRODUCTION

Chronic lymphocytic leukemia (CLL) is a low-grade B-cell lymphoproliferative disease with an
estimated yearly incidence in western countries of about 6.9 cases per 100,000 people (1) and
remarkable variation between races. The incidence of CLL is higher in men than in women and it
increases progressively from the age of 35 until the last decades of life (2). Currently, CLL treatment
is delayed until disease progression (bone marrow failure, organomegaly, general symptoms, or
high-grade lymphoma transformation) and in the case of refractory autoimmune phenomena
(3, 4). Nevertheless, with the advent of new targeted treatments such as ibrutinib (5), idelalisib
(6), and venetoclax (7), it is tempting to speculate that some individuals could benefit from early
intervention immediately following diagnosis, when the tumoral mass is smaller and patients have
a better physical condition. Thus, improved risk stratification for patients with CLL is needed.
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Recent advances in CLL genomics have discovered new
drivers of disease, many of which are associated with a different
clinical evolution. Deletions (6p21, 6q15, 11q, 14q24, 15q15,
17p, 18p, and 20p; gains in 2p16, 5q24, and 8q24), trisomy
12, and gene mutations (TP53, ATM, NOTCH1, SF3B1, BIRC3,
BRAF, POT1, ZNF292, NFKB2, MGA, IRF4, DDX3X, ZMYM3,
and FUBP1)have been repeatedly observed in the CLL genome
and are linked to rapid disease progression (8) Nevertheless,
immunoglobulin heavy chain variable region (IGHV) mutation
status, which is an indirect measure of the tumor lymphocytes’
maturation stage (9), is among the most important single
predictive factor known to date (10). IGHV unmutated patients
show remarkably worse prognosis than IGHV mutated patients
(10, 11) and only a few other genomic factors have proven to
be associated with clinical evolution independent of this variable.
Lymphocytematuration is such an important indicator that DNA
methylation status has been used to classify CLL into three
different groups that resemble different B cell maturation stages
(naive B cell, intermediate, andmemory B cell). This classification
was shown to outperform IGHV status at predicting time to first
treatment (TTT) (12).

Mutations, genomic aberrations, and DNA methylation
patterns induce transcriptomic changes that can be measured
using RNA sequencing (RNAseq), a technique that offers an
opportunity to identify new biomarkers for disease progression
and drug response prediction (13–15). In fact, previous efforts
to improve CLL risk stratification based on RNAseq data have
demonstrated impressive results (16), but the clinical application
is difficult due to the expense of extensive technical and
bioinformatics efforts. Therefore, there is a need for smaller
transcriptomics patterns correlated with disease evolution for
medical use.

In this study, we performed machine-learning based Gaussian
mixture model clustering on a subgroup of genes significantly
associated with TTT in order to identify transcriptional clusters
with clinical implications. We studied TTT due to the lack
of treatment uniformity in the International Cancer Genome
Consortium (ICGC) CLL cohort and because it is a variable
associated with overall survival (17). We tested our results on
a 196 patient cohort and validated its clinical significance in an
independent 79 patient cohort. The overall results delineated two
IGHV-independent transcriptional clusters that stratify patients
according to their risk of treatment initiation. Furthermore,
we demonstrated that machine learning algorithms using gene
expression data can predict patient need for treatment in
the first 5 years following diagnosis. We anticipate that our
findings will improve the identification of high-risk CLL patients
following diagnosis.

MATERIALS AND METHODS

Data Sources and Patient Characteristics
We applied for access to the ICGC’s CLL sequencing data
(18) deposited in the European Genome-Phenome Database
(EGA) (19). The Data Access Committee approved access to
this data under DACO-1040945. Two CLL RNA-seq cohorts

TABLE 1 | Patient characteristics for the test and validation cohorts.

Category Test cohort Validation cohort

Cases 196 79

Age at diagnosis (median) 63 62

Sex (% males) 60.70% 69.62

MBL 11.20% 3.79%

Binet A 77.44% 91.13%

Binet B 7.18% 3.79%

Binet C 4.10% 1.26%

IGHV unmutated 32.65% 43%

SLL 2.55% 2.04%

Proportion of progressions in the first

5 years since diagnosis

31.12% 31.64%

were uploaded in two stages with the following accession codes:
EGAD00001001443 and EGAD00001000258.

The first cohort (EGAD00001001443, hereafter study cohort)
contains RNAseq data and from CLL-purified cells of 196
individuals along with clinical data. The cohort was composed
of 169 CLL, 22 monoclonal B cell lymphocytosis (MBL), and
five small lymphocytic lymphoma (SLL) samples. There were 132
IGHV mutated cases and 64 IGHV unmutated cases in 119 males
and 77 females. By staging at diagnosis, there were 22 MBL cases,
151 Binet Stage A cases, 14 Binet Stage B cases, and 8 Binet C
stage cases.

The second cohort (EGAD00001000258, hereafter validation
cohort) is composed of RNAseq data of CLL-purified cells from
98 individuals, of which 79 (55 males and 24 females) have
publicly available phenotypic information. In this cohort there
were 72 CLL, 4 SLL, and 3 MBL samples. 45 of the patients
had mutated IGHV and 34 had unmutated IGHV. By staging at
diagnosis, there were 3 MBL, 72 Binet Stage A, 3 Binet Stage B,
and 1 Binet Stage C cases.

A summary of the patient characteristics of both cohorts can
be consulted in Table 1.

Data Preprocessing and Alignment
RNAseq paired-end data were obtained from Illumina paired-
end sequencing performed by the ICGC CLL consortium
as described by Ferreira et al. (16) Illumina adapters were
removed using cutadapt (20) and alignment to the human
reference genome (GRCh37) was performed using Hisat2
(21) with default specifications. We used the Hisat2-provided
Hierarchical Graph FM index for GRCh37 with SNP and
Ensembl transcript information. Bam files were sorted and
indexed using samtools (22).

Gene Expression Estimation
RNAseq bam files were processed in R (23) according to the
RNAseq gene expression protocol developed by Love et al. (24)
Briefly, bam files were read using Rsamtools, (25) followed by
gene-level expression estimation using the SummarizeOverlaps
function from the GenomicAlignments package. (26) Gene
models in GTF format were downloaded from Ensembl
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FIGURE 1 | Heatmap showing the rank-transformed distribution of expression values for the 290 genes in the study cohort. Red-labeled samples on the left bar

petain to C1 and blue-labeled samples pertain to C2.

(GRCh37.75 version) (27). Genes with a median read count
below one were discarded.

Statistical Analysis
We analyzed gene expression association with CLL’s TTT using
cox regression implemented in the survival package (28, 29). In
this model we included the covariates donor sex and CLL stage
(MBL, Binet Stage A, Binet Stage B, and Binet Stage C). Time to
Treatment was calculated as the period between CLL diagnosis
and the initiation of the first treatment for CLL. The day of last
follow-up was used for right censoring the data of patients with
incomplete follow-up.

Clustering was performed using theMclust package (30) with
default parameters. Briefly,Mclust infers the likeliest data clusters
based on Gaussian Mixture Modeling fitted by an Expectation-
Maximization (GMM-EM) algorithm.

Those genes with significant association with TTT in the
study cohort (cox regression false discovery rate [FDR] below
5%) were selected as our initial list of genes. Variable selection
was performed by adding one new gene in p-value ascending
order to the model (starting with the first two most significant
genes until reaching the top at 2,198 genes [FDR<5%]) and

computing the most likely clusters. For the sake of simplicity, we

discarded the 25% least variable genes, the 50% least expressed
genes and those with a high (>0.9) Spearman’s rank correlation

with any other gene in the input data. In the case of a highly

correlated pair of genes, the one with the lowest p-value was

discarded. In each iteration we forced Mclust to calculate the two
most likely groups of samples in our data, and to select the best
model according to the maximal Bayesian Information Criterion
(BIC). Association with TTT calculated using cox regression
(survival package), including IGHV mutation status as covariate
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FIGURE 2 | Kaplan-Meier survival plots. The upper plots show the association of C1 (red curve) and C2 (blue curve) with TTT in the study (left) and validation cohorts

(right). Corresponding p-values are 1.7 × 10−6 and 1.3 × 10−4. The lower plots show the association with TTT stratified by IGHV mutation status in the study (left)

and validation cohorts (right). The blue line indicates C2 samples with mutated IGHV, the purple line indicates C2 samples with unmutated IGHV, the red line

indicates C1 samples with mutated IGHV, and the green line refers to C1 samples with unmutated IGHV.

in each iteration. P-value adjustment was performed with the
Bonferroni method.

Machine Learning Ensembl Construction
For IGHV status and need of treatment at 5 years prediction
we ran boosted trees analysis using BigML applications (31)
with a 2,000 tree node threshold. We chose 5 years due to the
following reasons: (1) it is important to differ which patients will
have progression in the first years since diagnosis; and (2) the
number of cases progressing in earlier years was too small in
order to train a good classificator. Varying percentages of learning
rates were tested. The best model was selected based on receiver

operating characteristic (ROC) curves, Precision-Recall curves,
and Kolmogorov-Smirnov statistics.

RESULTS

Genes Associated With Time to Treatment
and Clusterization
A cox regression model was constructed with gene expression,
donor sex and CLL stage at diagnosis as independent variables.
2,198 genes were found to be significantly associated with TTT
(FDR < 5%) in the study cohort.

Patient clusterization based on gene expression data
using a GMM-EM algorithm retrieved 19 sets of genes
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FIGURE 3 | Heatmap showing the rank-transformed distribution of expression values for the 290 genes in the validation cohort. Red-labeled samples on the left bar

petain to C1 and blue-labeled samples pertain to C2.

that clustered samples into two groups with significant
associations with TTT when adjusted for IGHV status
(Bonferroni-adjusted p-value < 0.01) (Supplemental Table 1).
The most significant cluster (cluster 2) contained 290
transcripts (Figure 1, Supplemental Table 2) and achieved
an association p-value of 6.4 × 10−7 (Bonferroni p-value
1.4 × 10−3) with the TTT variable adjusted for IGHV
mutation status (Figure 2). A significant association was
confirmed in the validation cohort (IGHV adjusted p-value 3.05
× 10−3) (Figures 2, 3).

According to the selected classificator, patients in cluster
two (C2) had a more favorable prognosis than patients in
cluster one (C1) (Hazard Ratios (HR) of−1.70 and−1.41 in
the test and validation cohorts, respectively), independently
of IGHV mutation status. Among the study cohort, roughly
36.7% of patients belonged to C2, while 34.1% of patients

in the validation cohort clustered within C2. C2 involved
51.5% of IGHV-mutated patients and 6.4% of IGHV-unmutated
patients in the study cohort, as well as 55.5% of IGHV-
mutated patients and 5.8% of IGHV-unmutated patients in the
validation cohort.

Machine Learning for Treatment Free
Survival Prediction
We were interested in a machine learning (ML) classifier that
could predict which patients would require CLL therapy in the
first years following diagnosis. We constructed model ensembles
with all genes associated with TTT in Cox regression at a
FDR of 5%. We also tested different learning rates (0.5, 1,
2.5, 5, and 10%). 222 patients had a follow-up period >5years
or had been treated in the first 5 years following diagnosis,
and we divided them into a training set (80% of patients,
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FIGURE 4 | ROC curve of the boosted-tree Ensembl model for 5 year treatment need prediction (upper left). Kolmogorov-Smirnov plot for the same model (upper

right). Precision-Recall plot for the 5 year not-treated (lower left) and treated (lower right) patients according to the same model. White dots in each graph indicate

the probability threshold (in this case 50%), which is the point reflecting the best classification accuracy of the patients.

composed of 146 patients from the study cohort and 31 patients
from the validation cohort) and a test set (20% of patients,
composed of 45 patients from the validation cohort). ROC AUC
and Precision-Recall AUC plots were evaluated to select the
best results.

The best model used a 2.5% learning rate and 2,000 tree
nodes. It achieved 90% precision at identifying patients that
needed treatment in 5 years with 69.23% recall, and 88.57%
precision at identifying those patients that did not require
treatment in 5 years with 96.88% recall. We only detected
1 false positive case (3.1% False Positive Rate) and 4 false
negatives (30% False Negative Rate). Average precision was
89.29%, accuracy was 88.89% and ROC area under the curve
(AUC) was 0.911 (Figure 4 and Table 2). Precision-Recall AUC

was 0.860 and 0.959 for predicting which patients would or would
not need treatment within this period, respectively. In each case,
the results mostly overlapped with the area under the convex
hull (AUCH).

DISCUSSION

The main aim of this study was to identify new transcriptomic
patterns in order to improve CLL patient risk stratification.
We used the GMM-EM algorithm to stratify patients in two
clusters with remarkably different clinical behavior based on
the expression of 290 genes, and we observed that this pattern
was independent of IGHV mutation status. Interestingly, we
identified a group of CLL patients with mutated IGHV and
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TABLE 2 | Confusion Matrix for the boosted-tree Ensembl model predicting the

5 year need of treatment.

5 year treat.

need

Not needs

treat.

Needs

treat.

Actual Recall(%)

Not needs treat. 31 1 32 96.88

needs treat. 4 9 13 69.23

predicted 35 10 45 83.05**

precision 88.57% 90.00% 89.29%* 88.89***

*Average precision.
**Average recall.
***Accuracy probability threshold = 50%.

a low-risk transcriptomic profile that only need treatment in
approximately 25% of the cases during disease evolution. Two
additional groups (one composed of patients with mutated IGHV
and a high-risk transcriptomic profile and the second composed
of unmutated IGHV patients with a low-risk transcriptomic
profile) have similar intermediate evolution, while a final group
(composed of patients with unmutated IGHV and an adverse
transcriptomic profile) has the highest probability of treatment
need in the first years following diagnosis. These results are
concordant with previous reports in the field. For example,
Yepes et al. (32) reported a division of CLL cases in two
groups based on microarray transcriptome characterization
through unsupervised clustering analysis, which was validated
in 4 independent cohorts. Similarly, Friedman et al. (33)
described a 180 probe classifier based on microarray data
that also divided two clusters of CLL patients independently
of IGHV mutation status. Our findings are also similar to
those published by Ferreira et al. (16), who described two
gene expression clusters that show IGHV mutation-independent
association with TTT using an early release of the ICGC
CLL cohort. Nevertheless, there are remarkable differences
between our analysis and that of Ferreira et al, Yepes et al.
and Friedman et al. Firstly, our clusterization is based on
a transcriptional pattern of a small subgroup of genes that
facilitates its future applicability, whilst those of Ferreira
et al. and Yepes et al. are based on whole transcriptome
analysis. Secondly, our classifier is based on RNAseq data,
a technology that has outperformed microarray analysis in
most fields. With the use RNAseq it will be possible to
couple transcriptome clusterization with targeted gene mutation
detection, stereotyped B cell receptor expression or IGHV
hypermutation status analysis.

We also describe a novel artificial intelligence algorithm
that can predict a CLL patient’s need for therapy during
the first 5 years following diagnosis with high precision and
accuracy. This is in line with other ML applications to oncologic
malignancies that are starting to change paradigms in patient risk
stratification and drug response prediction. For example, Aziz
et al. (34) recently reported the identification of a ML model
that integrates clinical and genomic data from patients with
myelodysplastic syndrome (MDS). This model outperformed
all commonly used prediction models in the field of MDS.

Similarly, Yousefi et al. (35) used bayesian-optimized deep
learning for survival prediction in pan-cancer analysis, showing
not only better performance than other state-of-the-art methods,
but also improved predictability of cancer survival through
transfer learning in different types of cancer genomic data.
Thus, it is likely that ML-driven algorithms applied to genomic
and transcriptomic data will be used in the near future for
the identification of “smoldering” CLLs that may benefit from
early intervention.

RNAseq is a powerful technique that can sequence the
whole transcriptome at an increasingly lower cost. Targeted
RNAseq is being developed for clinical application, with
the additional possibility of testing for gene mutations and
fusion genes in the same technique. Therefore, defining
reproducible gene expression patterns with clinical implications
is a strategy that can close the gap between research and the
clinical practice. Here we present patterns of gene expression
that can improve CLL patient risk stratification with a
relatively small set of the transcriptome. These results may
pave the way for the design of new treatment strategies
involving early CLL treatment in high-risk patients before
disease progression.
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