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Epstein-Barr virus (EBV) is strongly associated with a spectrum of EBV-associated

lymphoproliferative diseases (EBV-LPDs) ranging from post-transplant

lymphoproliferative disorder, B cell lymphomas (e.g., endemic Burkitt lymphoma,

Hodgkin lymphoma, and diffuse large B cell lymphoma) to NK or T cell lymphoma (e.g.,

nasal NK/T-cell lymphoma). The virus expresses a number of latent viral proteins which

are able to manipulate cell cycle and cell death processes to promote survival of the

tumor cells. Several FDA-approved drugs or novel compounds have been shown to

induce killing of some of the EBV-LPDs by inhibiting the function of latent viral proteins

or activating the viral lytic cycle from latency. Here, we aim to provide an overview on the

mechanisms by which EBV employs to drive the pathogenesis of various EBV-LPDs and

to maintain the survival of the tumor cells followed by a discussion on the development

of viral-targeted strategies based on the understanding of the patho-mechanisms.

Keywords: Epstein-Barr virus, lymphoproliferative diseases, viral-targeted strategies, EBV latency, lytic cycle

reactivation, histone deacetylase inhibitors, proteasome inhibitors

INTRODUCTION

Epstein-Barr virus (EBV) is a ubiquitous gamma herpesvirus which establishes life-long persistence
in 90% of the human populations (1). This virus is closely associated with nasopharyngeal
carcinoma (NPC), a subset of gastric carcinoma and several types of lymphoproliferative diseases
(LPDs), such as endemic Burkitt lymphoma (BL), Hodgkin lymphoma (HL), nasal NK/T-cell
lymphoma, diffuse large B cell lymphoma (DLBCL), AIDS-associated B-cell lymphoma and
post-transplant lymphoproliferative disorder (PTLD) (2, 3). EBV is shown to transform primary
B cells and could contribute to the pathogenesis of EBV-LPDs in vitro. In these cancer cells,
EBV usually persists in a tightly latent state to escape from the human immune surveillance.
Occasionally, the virus can switch from the latent cycle to the lytic cycle in response to various
physiologic stimuli. At various pathogenic stages of EBV-LPDs, the virus expresses a number of
viral latent or lytic proteins to manipulate cell cycle and cell death processes and promote the
survival of the tumor cells. This review will summarize the pathogenic mechanisms which are
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affected by the EBV latent and lytic proteins for the
survival of-EBV-LPDs and discuss on the development of
therapeutic strategies targeting the patho-mechanisms associated
with EBV-LPDs.

EBV LATENCY IN EBV-LPDs

Following EBV infection, the virus is able to establish life-long
infection in memory B cells where no EBV protein is expressed
(latency 0). In EBV-LPDs, the virus can express four different
latency patterns, namely, type I, type II, type III and Wp-
restricted latency as characterized by the expression patterns
of EBV latent proteins. In type I latency, which is observed
in the majority of endemic BL, the expression of viral genes
is greatly restricted with only EBV nuclear antigen (EBNA)-
1, EBV-encoded small RNAs (EBERs) and BamHI-A rightward
transcripts (BARTs) are expressed. The transcription of EBNA-1
is initiated at the BamHIQ promoter (Qp) (4). In addition to type
I latency, Wp-restricted latency could also be detected in ∼15%
of the endemic BL (5). In this latency, EBNA-LP, EBNA-1, EBNA-
3A, -3B, and -3C are transcribed from the BamHI W promoter
(Wp) (6). In type II latency, which is observed in HL, nasal
NK/T-cell lymphoma and DLBCL, more latent genes including
EBNA-1, EBNA-LP, latent membrane protein (LMP)-1, -2A, and
-2B, EBERs and BARTs are expressed. Type III latency is detected
in AIDS-associated B-cell lymphoma, PTLD and lymphoblastoid
cell line (LCL), an in vitro model of EBV-LPDs. This is the
most immunogenic form of latency in which a full set of latent
genes including EBNA-1, -2, -LP, -3A, -3B, -3C, LMP-1, -2A, -2B,
EBERs and BARTs are expressed (6, 7). Either BamHI C promoter
(Cp) or Wp is activated to drive the expression of the EBV latent
genes in this latency (Figure 1).

EBV LYTIC REPLICATION

EBV lytic cycle reactivation has been comprehensively studied in
the Akata BL cell line, in which the lytic cycle of EBV can be
efficiently induced by cross-linking the cell surface receptor with
anti-human IgG antibody (8). This model provides an effective
way to study the possible physiological mechanisms of viral lytic
reactivation in EBV-LPDs. EBV lytic cycle is initiated with the
expression of two immediate early proteins, namely Zta and
Rta (9–11). Expression of these two immediate early proteins
activates the expression of one another and subsequently triggers
the expression of a panel of early lytic proteins (e.g., BMRF1,
BALF1, BHRF1, etc.,) (3, 12). EBV immediate early and early lytic
proteins initiate viral DNA replication and later, the expression of
late lytic proteins (e.g., VCA-p18, gp350/220, etc.,) (3). Anti-viral
drugs e.g., phosphonoformic acid, which suppress EBV DNA
replication can also inhibit expression of EBV late lytic proteins,
suggesting that EBV DNA replication is an upstream process that
regulates late lytic protein expression (3, 13–15). In case of a
complete lytic cycle, the viral DNA is replicated as large head-to-
tail molecules which are then cleaved into pieces and packaged
into viral progenies for dissemination to the neighboring cells
(16). More than 70 EBV lytic genes, which are important for viral

replication, dissemination and infection, are expressed during the
EBV lytic cycle (Figure 2).

IMMUNITY AGAINST EBV-LPDs

Both innate and adaptive immunity are responsible for the
control of EBV. The phagocytes and natural killer (NK) cells in
the innate immunity are responsible for the control of immediate
B cell infection and virus replication. The CD4+ and CD8+

T cells in the adaptive immunity are capable of producing
interferon (IFN)-γ and other functional cytokines to control the
proliferation of EBV-infected B cells during long-term infection.
We and others have demonstrated that the presence of EBV-
specific polyfunctional T cells (PFCs), which could produce
multiple cytokines [e.g., IFN-γ, tumor necrosis factor (TNF)-α,
interleukin (IL)-2] simultaneously and readily degranulating, in
long-term EBV carriers (17, 18). A clear increase in CD4+ and
CD8+ PFC responses against EBV antigens is also demonstrated
in infectious mononucleosis (IM) patients, correlating with
increased cytotoxicity of T cells against autologous LCLs (19).
NK cells play a complementary role with T cells in controlling
tumor growths and viral infections. Azzi et al. have demonstrated
that a subset of early-differentiated (CD56dimNKG2A+KIR−)
NK cells play a more important role than the terminally
differentiated (CD56dimNKG2A−KIR+) NK cells in the control
of EBV infection in acute IM patients (20). In addition, Hatton
et al. have also shown that a NKG2A-expressing subset of NK
cells could effectively kill EBV-transformed autologous LCLs
(21). We postulate that impairment of EBV-specific PFCs and
NKG2A+ NK cells may contribute to the development of EBV-
LPDs (Figure 3).

ROLE OF LATENT AND LYTIC VIRAL
PROTEINS IN THE PATHOGENESIS OF
EBV-LPDs

EBV effectively infects normal B cells and transforms them
into proliferating LCLs in vitro. EBV latent proteins are shown
to contribute to the pathogenesis of EBV-LPDs. Besides, there
is increasing evidence that shows that EBV lytic proteins can
also promote the pathogenesis of EBV-associated diseases. The
viral latent and lytic proteins can maintain the proliferation and
survival of EBV-positive cancer cells via deregulating the cellular
mechanisms that regulate cell cycle, apoptosis and immune
recognition of the host cells.

Deregulation of Cell Cycle
EBNA-3A and -3C proteins are shown to manipulate the cell
cycle of the host cells to facilitate successful transformation of
B cells and to maintain the proliferation of the transformed
cells. The first evidence of the cell cycle regulatory property
of EBNA-3 proteins is demonstrated by Allday et al. who
found that mutation of EBNA-3C can lead to G1 cell cycle
arrest in B cells (22). It is further shown that EBNA-3C can
directly interact with cyclin A to stimulate the activity of
cyclin-dependent kinase (CDK)-2 and subsequently facilitates
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FIGURE 1 | EBV latency in EBV-LPDs. No EBV protein is expressed in Latency 0. Only EBNA-1, EBERs, and BARTs are expressed in Latency I which is associated

with endemic BL. The transcription of EBNA-1 is initiated at the BamHI Q promoter. 15% of endemic BL is found to be Wp-restricted latency in which EBNA-LP,

EBNA-1, EBNA-3A, -3B, and -3C are transcribed from the BamHI W promoter. HL, nasal NK/T-cell lymphoma and DLBCL are detected in type II latency that EBNA-1,

EBNA-LP, latent membrane protein (LMP)-1, -2A, and -2B, EBERs and BARTs are expressed. AIDS-associated B-cell lymphoma, PTLD and lymphoblastoid cell line

(LCL), an in vitro model of EBV-LPDs are observed in type III latency. All EBV nuclear antigens (EBNA-1, -2, -LP, -3A, -3B, and -3C), latent membrane proteins (LMP-1,

-2A, and -2B), EBERs and BARTs are expressed.

FIGURE 2 | Schematic diagram representing the sequential events occur during EBV lytic reactivation. EBV Z/R promoters are activated upon diverse stimulants e.g.,

B-cell receptor crosslinking, chemical inductions and cellular stresses, resulting in the expression of immediate early lytic proteins, Zta and Rta. These key drivers of

EBV lytic reactivation subsequently induce EBV viral DNA replication and the expression of an array of viral lytic proteins including early lytic proteins e.g., BALF1 and

BHRF1 and late lytic proteins e.g., gp350 and VCA-p18. Viral DNA is then being packaged with the help from structural proteins and is assembled into mature virion.

Finally, EBV is released via exocytosis.

LCLs to pass through the retinoblastoma protein (pRb) cell
cycle checkpoint (23). EBNA-3C can also stabilize cyclin A
and promote the proteasomal degradation of p27KIP1, hence
assists the EBV-infected cells to progress to M phase (24, 25).
EBNA-3C also mediates the ubiquitin-proteasome degradation
of pRb by recruiting SCFSkp2 E3-ubiquitin ligase (26, 27).

Consequently, fewer pRb can interact with the transcription
factors of E2F family which then suppress the transcription
of E2F-dependent cyclin/CDK complexes. More E2F-dependent
complexes, including the cyclin-D1/CDK-4/-6 and cyclin-A/-
E/CDK-2, will be expressed to allow the cells to enter G1 phase
from G0 phase and enter S phase from G1 phase, respectively
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FIGURE 3 | Immunity against EBV-LPDs. (IFN)-γ and other functional

cytokines [(TNF)-α and IL-2] are produced from EBV-specific polyfunctional T

cells (PFCs) to control the proliferation of EBV-infected B cell during long-term

infection. There are increase responses of CD4+ and CD8+ PFCs in infectious

mononucleosis (IM) patients. (CD56dimNKG2A+KIR−) NK cells also control

EBV infection in acute IM patients and kill LCLs.

(27). Furthermore, EBNA-3C also stabilizes Pim-1 protein
to promote the phosphorylation and subsequent proteasomal
degradation of p21WAF1 for the cells to enter S phase from
G1 phase (28). Additionally, EBNA-3C can modulate Skp2 to
mediate proteasomal degradation of p27KIP1 which subsequently
free the cyclin-A/CDK-2 complex for the cells to enter S phase
(29). EBNA-3C also promotes the proteasomal degradation of
Bcl-6 which subsequently releases cyclin-D1 for the transition
of G1 to S phase (30). Besides, EBNA-3A and -3C are found
to co-operate in epigenetic repression of p14ARF and p16INK4a,
facilitating the transformation and proliferation of EBV-LPDs
(31–33). EBNA-3A and -3C can also facilitate the EBV-LPDs
to bypass the G2/M checkpoint regulation upon stimulation by
various cytotoxic stresses (34–38) (Figure 4).

Reactivation of EBV lytic cycle is also shown to disrupt
various cell cycle checkpoints in EBV-infected cells. Zta and
Rta can promote the transition from G1 to S phase in BL
cells via a mechanism related to the modulation of p53 and
p21WAF1 (39). On the other hand, overexpression of Zta
protein can induce G1 cell cycle arrest in EBV-positive cells
via the interaction with CCAAT/enhancer binding proteins
(C/EBP), which subsequently lead to the activation of p53 andthe
accumulation of p21WAF1 and p27KIP1 (40). EBV lytic proteins
can also activate the cyclin-E/CDK-2 complex for the entry of
S phase in hopeto provide an environment suitable for viral
DNA replication (41) (Figure 4). Interestingly, treatment of CDK
inhibitors, such as purvalanol-A and roscovitine, which inhibit
the transition from G1 to S phase of the cell cycle, can block lytic
replication of EBV (42). Reactivation of EBV lytic cycle can also
lead to G2/M arrest of the host cells. For instance, expression
of Zta is shown to induce both G2/M arrest and mitotic block
in HeLa cells (43); whilst treatment with 5-azacytidine (5-
AZA) can lead to a G2/M phase arrest in Zta-expressing Rael
cells (44). We have also reported that a histone deacetylase

(HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA),
can reactivate EBV lytic cycle and mediates a pronounced
G2/M arrest in EBV-positive epithelial cells (11). We further
showed that the induction of G2/M arrest is possibly due to the
upregulation of p21WAF1 and downregulation of cycli-D1, p-Rb,
cyclin-B1 and p-CDK-1 (45).

Inhibition of Apoptosis
EBNA-1 can interact with the herpesvirus associated ubiquitin-
specific protease to destabilize and degrade p53 to inhibit
apoptosis (46). EBNA-2 antagonizes TGF-β-mediated growth
arrest in LCLs (47). LMP-1 also upregulates Bcl-2 and promotes
the growth of BL through the activation of NF-kB signaling
pathway (48). EBNA-3A upregulates Hsp70 chaperones to
suppress apoptosis in exposure to cytotoxic agents (49). EBNA-
3C can suppress the p53-mediated cell death by inhibiting
the transcription of p53and promoting its degradation (50–52).
EBNA-3C also hinders the E2F1-mediated apoptosis induced
by DNA damage response throughinhibiting the DNA binding
activity of E2F1 and promoting its proteolysis (53). Furthermore,
EBNA-3C prevents the proteosomal degradation of MDM2 and
to recruit it to initiate the degradation of p53 in order to
promote the survival of EBV-LPDs (54–56). EBNA-3C also
interacts with Bcl-6 and releases Bcl-2 to suppress apoptosis for
lymphomagenesis (30). EBNA-3A and -3C can co-operate to
repress the expression of the tumor suppressor gene, p16INK4a,
to promote cell proliferation and prevent cell death (31–33).
Moreover, they also epigenetically repress the Bim promoter
which eventually suppresses the Bim-mediated intrinsic pathway
of apoptosis (57, 58) (Figure 5).

Expression of EBV lytic proteins also plays a role in
pathogenesis of EBV-positive cancers by inhibiting apoptotic cell
death. Zta can induce the expression of vascular endothelial
growth factor (VEGF) to promote the growth of LCL (59).
The early lytic genes, BHRF1 and BALF1, which encode Bcl-
2 homologs, can inhibit apoptosis of EBV-associated lymphoid
cancers and promote the survival of cancer cells during EBV
lytic replication (60, 61). Exogenous expression of BHRF1
protein was shown to protect BJAB cells from apoptotic cell
death (60); whilst expression of BALF1 protein inhibits Fas
ligand-induced apoptosis in HeLa cells (61) (Figure 5). Several
EBV lytic genes including BALF3, BARF1, BGLF4, and BGLF5
which induces DNA damage response and genomic instability
could also contribute to the carcinogenesis of EBV-associated
cancers (62–65).

Immune Evasion
EBV has developed multiple strategies to escape from the human
immune surveillance. In EBV-infected B cells, the presence of
glycine-alanine repeats of EBNA-1 rendered it not being able to
be processed and presented to CD8+ T cells via class I MHC
(66). Zta can induce the secretion of IL-6, -8, -10, and -13
which function to promote the tumorigenesis of different EBV-
associated cancers (67). An early lytic protein, BGLF4 protein
kinase, can suppress the host innate immune responses and
facilitates the production of viral progenies in NPC through
inhibiting the interferon regulatory factor 3 and STAT1 (68).
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FIGURE 4 | Effects of EBV latent and lytic proteins on the regulation of cell cycle. EBNA-3C interacts with cyclin A/CDK2 and promotes the proteasomal degradation

of p27KIP1 to assist the EBV-infected cells to progress to enter S phase and M phase. EBNA-3C mediates the ubiquitin-proteasome degradation of pRb, increasing

the transcription of E2F-dependent cyclin/CDK complexes (cyclin-D1/CDK-4/-6 and cyclin-A/-E/CDK-2), to allow the cells to enter G1 phase from G0 phase and

enter S phase from G1 phase, respectively. EBNA-3C stabilizes Pim-1 protein to promote the phosphorylation and subsequent proteasomal degradation of p21WAF1

for the cells to enter S phase from G1 phase. EBNA-3C also promotes the proteasomal degradation of Bcl-6 which subsequently releases cyclin-D1 for the transition

of G1 to S phase. EBNA-3A and -3C co-operate in epigenetic repression of p14ARF and p16INK4a to facilitate the transformation and proliferation of EBV-LPDs

through bypassing the G2/M checkpoint regulation upon stimulation by various cytotoxic stresses.

FIGURE 5 | Effects of EBV latent and lytic proteins on inhibition of apoptosis. EBNA-1 interacts with the HAUSP to destabilize and degrade p53. EBNA-2 antagonizes

TGF-β-mediated growth arrest in LCLs. LMP-1 upregulates Bcl-2 and promotes the growth of BL through the activation of NF-kB signaling pathway. EBNA-3A

upregulates Hsp70 chaperones to suppress the apoptosis in exposure to cytotoxic agents. EBNA-3C can suppress p53-dependent apoptosis through repressing the

transcription of p53 and promoting its degradation. EBNA-3C also hinders the E2F1-mediated apoptosis induced by DNA damage response through inhibiting the

DNA binding activity of E2F1 and promoting its proteolysis. EBNA-3C also interacts with Bcl-6 and releases the Bcl-2 to suppress apoptosis. EBNA-3A and -3C can

co-operate to repress the expression of p16INK4a and Bim to promote cell proliferation. Zta can induce the expression of vascular endothelial growth factor (VEGF) to

promote the growth of LCL.
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Another EBV lytic gene, BCRF1, which encodes for a homolog
of cellular IL-10, suppresses INF-γ synthesis from human
peripheral blood mononuclear cells, thus allowing the tumor
cells to evade from the host immune surveillance (69). BCRF1
can also function as a paracrine growth factor to enhance the
transformation of B cells and promote the growth of EBV-
LPDs (70). A late EBV lytic gene, BDLF3, can promote the
degradation of MHC class I and II molecules, thereby impairing
the immune recognition by EBV-specific CD4+ and CD8+ T cells
(71) (Figure 6).

VIRAL-TARGETED THERAPIES AGAINST
EBV-LPDs

EBV persists in a tightly latent state in every tumor cell in EBV-
LPDs and therefore, could be served as an excellent target for
therapeutic treatments. Various viral-targeted therapies targeting
the expression of EBV latent and lytic proteins for the treatment
of EBV-LPDs are discussed below.

Gene Therapy
EBV-based gene therapies have been developed to deliver
cytotoxic proteins or chemosensitizers to EBV-infected
malignancies. Franken et al. have shown that a targeted
expression of thymidine kinase in BL using an EBNA2-
responsive Cp could selectively enhance the sensitivity of
EBNA2-expressing cells to an anti-viral drug, ganciclovir, in
vitro, and in vivo (72). An adenovirus vector with the transgene
expression regulated by the origin of replication of EBV can
precisely deliver p53 into EBV-positive cancer cells and induced
apoptosis to the cells (73). The use of such replication-deficient
adenovirus vector for EBV-targeted gene therapy is further
demonstrated to be feasible in vivo (74).

Immunotherapy
Several laboratories have demonstrated that the adoptive
immunotherapy which employs an ex vivo expanded virus-
specific cytotoxic T lymphocytes (CTLs) is a safe and effective
treatment strategy for EBV-associated malignancies including
HL, NK/T-cell lymphoma, PTLD and NPC (75, 76). Briefly,
CTLs which target EBV latent proteins are isolated from patients
followed by activation and expansion in vitro and then infused
back into the patients (75). Recently, one of such autologous T
cell therapies, CMD-003, has been granted fast track designation
by the FDA for treating relapsed/refractory lymphoma and
PTLD. Since the upregulation of PD-L1 is observed in various
EBV-LPDs, another potential immunotherapy for EBV-LPDs
could be by blocking the PD1 and PD-L1 pathways (77–
79). Development of novel therapeutic strategy using the
combination of autologous T cell therapy and PD-L1 inhibitor
might potentially yield synergistic effect on the treatment
of EBV-LPDs. Other immunological approaches, such as the
development of vaccines and specific monoclonal antibodies
against EBV are also under investigations (80). For instance,
immunization with polyvalent EBV virus-like particle (VLP)
vaccines (gH/gL-EBNA-1 and gB-LMP2) without adjuvant is

shown to induce high neutralizing antibody titres against EBV
in vitro and in vivo (81).

Targeting EBV Lytic Cycle
Reactivation of EBV lytic cycle is another potential strategy that
exploits the presence of EBV genome in tumor cells. Several
reports show that reactivation of viral lytic cycle can directly
induce apoptotic cell death in various EBV-infected cell lines (82–
85). Kawanishi et al. have demonstrated that reactivation of EBV
lytic cycle by tetradecanoyl phorbol acetate (TPA) can result in
fragmentation of chromosomal DNA in Raji BL cells (82). Rta
can also induce irreversible G1 arrest, cellular senescence and
apoptosis in different EBV-positive cancer cell lines (86). Some
of the carcinogenic lytic proteins, such as Zta and BGLF5, were
reported to have contradictory roles in mediating cancer cell
death. For instance, expression of Zta can phosphorylate p53 to
mediate a direct killing of EBV-positive cells (43). The EBV early
lytic gene, BGLF5, which encodes for EBV alkaline exonuclease,
possesses a shutoff activity during lytic cycle reactivation could
potentially induce apoptosis (87). We have shown that lytic
cycle reactivation by HDAC inhibitors, including trichostatin A,
sodium butyrate, valproic acid and SAHA, can lead to enhanced
apoptosis in NPC and gastric carcinoma cells (11, 88). The
induction of apoptosis is mediated through the upregulation of
p21WAF1 and cell cycle arrest at G2/M phase (45).

Oncolytic therapy which intentionally reactivates lytic cycle
of EBV to confer susceptibility of EBV-positive cells to the
treatment with antiviral drugs could be a potential therapeutic
strategy against EBV-LPD and other EBV-associated diseases.
Ganciclovir (GCV), which is a nucleoside-type antiviral drug, is
shown to mediate enhanced killing of EBV-positive cancer cells
when co-administrated with lytic inducers. This combinatorial
strategy relies on the expression of BGLF4, a viral protein
kinase expressed during EBV lytic reactivation, to convert
GCV into its cytotoxic form (89). The cytotoxic GCV is then
incorporated into both viral and cellular DNA of the induced
cells and neighboring cells, causing a bystander killing of
various EBV-associated malignancies through the induction of
premature DNA strand termination and apoptosis in the host
cells (83, 90, 91). Alternatively, Fu et al. have demonstrated
the possibility of directing [125I]2′-fluoro-2′-deoxy-beta-D-5-
iodouracilarabinofuranoside ([125I]FIAU) to lytically-induced
EBV-positive BL cells (92). The lytic induction therapy which
employs valporic acid and gemcitabine as lytic inducers has
been recently shown to achieve clinical responses in some NPC
patients (93, 94). However, some cell populations were refractory
to lytic cycle reactivation upon treatment with any of the
available lytic inducers (45). Investigating on the lytic reactivation
mechanisms by these lytic inducers is essential for developing an
effective oncolytic therapy (Figure 7).

Targeting Survival Pathways in EBV
Latency
EBV latent proteins, particularly EBNA-1, -3A, -3C, LMP-1,
and -2A are shown to be important for the pathogenesis of
lymphomas. EBNA-1, which is expressed in all types of EBV-
positive cancer cells, represents a specific target for the treatment
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FIGURE 6 | Effects of EBV latent and lytic proteins on immune evasion. Glycine-alanine repeats (GAr) of EBNA-1 render it not be processed and presented to CD8+ T

cells via the class I MHC. BDLF3, can promote the degradation of MHC class I and II molecules, impairing the immune recognition by EBV-specific CD4+ and CD8+

T cells. BGLF4 can suppress the host innate immune through the inhibition of interferon regulatory factor 3 (IRF3) and STAT1. BCRF1 suppresses INF-γ synthesis from

human peripheral blood mononuclear cells, thus allowing the tumor cells to evade from the host immune surveillance.

FIGURE 7 | Cellular events associated with EBV lytic reactivation and the rationale of lytic induction therapy. A diverse array of EBV lytic proteins is being expressed

during lytic cycle reactivation. Subsequent occurrence of various cellular events include cell cycle arrest, inhibition of apoptosis, tumorigenesis and immune evasion.

Expression of viral protein kinase BGLF4 converts antiviral drug e.g., ganciclovir (GCV) from a prodrug to its cytotoxic form, shaping the basis of lytic induction therapy.

of EBV-LPDs. A number of inhibitors and vaccines have been
developed to target EBNA-1 directly in EBV-positive cancer cells
(95–97). MDM2 inhibitors e.g., Nutlin-3a, SAR405838, and JNJ-
26854165, or c-Abl kinase inhibitor e.g., Nilotinib, can suppress

the growth of lymphomas in EµEBNA-1 transgenic mice via
the EBNA-1/MDM2/E2F1 pathway (98). LMP-1 is a CD40
homolog that can activate the NF-κB signaling pathway and exert
strong oncogenicity in EBV-LPDs and other EBV-associated

Frontiers in Oncology | www.frontiersin.org 7 February 2019 | Volume 9 | Article 81

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hui et al. Targeting EBV in LPD

malignancies (99, 100). It has been reported that bortezomib,
which inhibits the NK-κB signaling, can induce apoptosis in
EBV-LPDs and EBV-associated epithelial cancer cells (101, 102).
LMP-2A is an EBV-encoded membrane protein which acts as
a constitutively active B cell receptor through interacting with
Lyn kinase to facilitate B cell transformation and proliferation.
Dasatinib is found to inhibit splenomegaly and lymphomagenesis
in LMP-2A/MYC double transgenic mice via theinhibition of
Lyn (103). Moreover, rapamycin significantly reduces tumor
growth, splenomegaly and metastasis of B cell lymphoma
through theinhibition of the Lyn-activatedmTOR pathway (104).
LMP-2A also drives lymphomagenesis through enhancing c-
Myc expression which subsequently increases the expression of
CDK regulatory subunit 1 (Cks1), a cofactor of the SCFSkp2

ubiquitin-ligase complex, leading to the ubiquitination and
proteasomal degradation of p27KIP1. Proteasome inhibitors, such
as MG-132 can reduce lymphomagenesis by increasing the
level of p27KIP1 (105). EBNA-3 proteins, particularly EBNA-3A
and -3C, provide important survival advantages to the EBV-
infected cells. For instance, BL cells with type III latency are
more resistant to the killing by cytotoxic agents, such as taxol
and nocodazole when compare to BL cells with type I latency
(106). BL cells with Wp-restricted latency which also express
EBNA-3 proteins are more resistant to the killing by anti-
IgM or ionomycin when compared to BL cells with type I
latency (107). Interestingly, we found that HDAC inhibitors
and proteasome inhibitors can act synergistically to induce
the up-regulation of p21WAF1 and mediate enhanced killing
to the BL cells with Wp-restricted or type III latency but not
to those with type I latency, suggesting the involvement of

EBNA-3 proteins in the cell death mechanism (101). We further
tested the mechanism of killing of BL cell lines infected with
EBNA3A, -3B, or -3C knockout EBV or with their revertant
EBV and found that EBNA3C-expressing cells can bypass
the G2/M checkpoint arrest induced by the combination of
HDAC and proteasome inhibitors and subsequently become
more susceptible to the induction of apoptosis (108). Such
enhanced killing is due to the up-regulation of p21WAF1

and down-regulation of p-cdc25c in EBNA3C-expressing cells
(108) (Figure 8).

NOVEL DRUGS OR DRUG COMBINATIONS
TARGETING EBV LATENT AND LYTIC
CYCLES

Several FDA-approved drugs and novel compounds are shown
to have effects on either inducing EBV lytic cycle or targeting
the survival mechanisms delivered by the EBV latent proteins
in EBV-positive cancer cells. These compounds work in diverse
mechanisms including inhibition of HDAC and proteasome,
activation of MAPK pathways, induction of various cellular
stress responses (e.g., ER stress, DNA damage response, hypoxia
and oxidative stress), autophagy, cell cycle arrest and apoptosis
(Table 1, Figures 9, 10).

Histone Deacetylase (HDAC) Inhibitors
HDAC inhibitors of different selectivity are developed to inhibit
the actions of various HDAC isoforms in the human cells. Pan-
HDAC inhibitors inhibit class I (i.e., HDAC-1/-2/-3/-8), class II

FIGURE 8 | Targeted survival pathways in EBV latency. Several EBV protein-induced survival pathways, such as inhibition of apoptosis and cell cycle arrest through

epigenetic repression and/or proteasomal degradation of tumor suppressors for lymphomagenesis can be targeted by novel drugs or drug combinations.
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TABLE 1 | Summary on the therapeutic strategies and their corresponding molecular mechanisms against EBV-associated LPDs.

Therapeutic

strategy

Method Molecular mechanism

Gene Therapy Thymidine kinase (70)

p53 delivery (71)

To deliver cytotoxic proteins or chemosensitizers to EBV-infected

malignancies that induce apoptosis or enhance sensitivity to GCV

Immunotherapy Virus-specific cytotoxic T lymphocytes (CTLs) CTLs that target EBV latent proteins are isolated from patients are infused

back to patients after activation and expansion of T lymphocytes

in vitro (73, 74)

Virus-like particles (VLPs) vaccines Induction of neutralizing antibody titres against EBV via immunization with

VLP vaccines e.g., gH/gL-EBNA-1 and bG-LMP2 without adjuvant (79)

Lytic induction

therapy

Histone deacetylase (HDAC) inhibitors (e.g., VPA, SAHA,

romidepsin)

Reactivation of EBV lytic cycle through the activation of PKC-δ and ATM

signaling pathway (8, 43, 89, 109)

Proteasome inhibitors (e.g., bortezomib) EBV lytic reactivation via the activation of ER stress,

CCAAT/enhancer-binding protein β (C/EBPβ), JNK and

autophagy (110–112)

ER stress inducers (e.g., thapsigargin (TG), tunicamycin,

Bortezomib, nelfinavir)

EBV lytic reactivation via the induction of ER stress and UPR (111, 113)

Psychological stress inducers (e.g., hydrocortisone,

dexamethasone)

EBV lytic reactivation via the activation of Z promoter specifically (114)

DNA damage inducers (e.g., chloroquine) EBV lytic reactivation via the activation of ATM and phosphorylation of

KAP1/TRIM28 (115)

Microtubule depolymerisation (e.g., colchicine, vinblastine,

nocodazole)

EBV lytic reactivation via the activation of PKC and the downstream p38

MAPK and JNK signaling pathways (116)

Hypoxia induction (e.g., iron chelators, C7) EBV lytic reactivation via the stabilization of HIF-1α which directly binds to

the Z promoter; and the induction of ERK-autophagy axis (117)

ROS activation (e.g., MNNG) EBV lytic reactivation via the activation of ATM, p38 MAPK and JNK

signaling pathways (118)

Genotoxic stress (e.g., gemcitabine) EBV lytic reactivation via the activation of ATM and p53 signaling

pathways (90, 93, 119)

Chemotherapeutic agents (e.g., gemcitabine, doxorubicin) EBV lytic reactivation via the activation of PI3K, p38 MAPK and MEK

signaling pathways (93)

Immunosuppressive drugs (e.g., methotrexate) EBV lytic reactivation via the activation of p38 MAPK, PI3K and ERK

signaling pathways (120)

Immunomodulatory agents (e.g., lenalidomide,

thalidomide, pomalidomide)

EBV lytic reactivation via the activation of PI3K and suppression of Ikaros

(121)

Targeting survival

pathways in EBV

latency

MDM2 inhibitors (e.g., nutlin-3a, SAR405838,

JNJ-26854165)

Suppress the growth of lymphoma via the EBNA-1-MDM2-E2F1

pathway (99)

c-Abl kinase inhibitors (e.g., nilotimib) Suppress the growth of lymphoma via the EBNA-1-MDM2-E2F1

pathway (99)

Lyn inhibitors (e.g., dasatinib) Inhibit splenomegaly and lymphomagenesis via Lyn inhibition (104)

mTOR inhibitors (e.g., rapamycin) Reduce tumor growth, splenomegaly and metastasis via mTOR

inhibition (105)

EZH2 inhibitors, DNA methyltransferase inhibitors Induction of cell cycle arrest via the inhibition of the catalytic subunit of

PRC2 as well as histone methylation (16, 30, 36)

Proteasome inhibitors (e.g., bortezomib, MG-132) Induction of cell cycle arrest via upregulation of p21WAF1 and

p27KIP1 (122–124)

Combination of proteasome inhibitors and HDAC inhibitors

(e.g., bortezomib and SAHA)

Induction of G2/M arrest and apoptosis via the generation of ROS,

upregulation of p21WAF1 and p27KIP1 (102)

(i.e., HDAC-4/-5/-6/-7/-9/-10), and class IV (i.e., HDAC-11) but
not class III HDAC isoforms (125). We have shown that several
pan-HDAC inhibitors, such as sodium butyrate, valproic acid
and SAHA can induce EBV lytic reactivation in EBV-associated
epithelial cells (11, 88). We have further demonstrated that
selective inhibition of HDAC-1, -2, and -3 by siRNA or specific
HDAC inhibitors (e.g., romidepsin, MS-275 and apicidin) is

sufficient to reactivate EBV lytic cycle and mediate enhanced
killing with ganciclovir in vitro and in vivo (45) (Figure 9).
Inhibition of HDAC-2 and -3 can also reactivate the lytic
cycle of human immunodeficiency virus (HIV) and Kaposi’s
sarcoma-associated herpesvirus (KSHV) (126–128). SAHA and
romidepsin are FDA-approved drugs for treating several types of
malignancies, such as peripheral T-cell lymphoma and cutaneous
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FIGURE 9 | Signaling pathways activated by different chemical lytic inducers for EBV lytic reactivation. EBV lytic reactivation can be achieved through the activation of

different cellular signaling pathways e.g., PKC, p38/MAPK, ERK1/2, JNK, PI3K/AKT, DDR, ROS, hypoxia, ATM signaling pathways as well as inhibition of Ikaros and

chromatin remodeling. 5-FU, fluorouracil; MTX, methotrexate; 5-AZA, 5-azacytidine; SAHA, suberoylanilide hydroxamic acid; TPA,

12-O-tetradecanoylphorbol-13-acetate; CQ, chloroquine; PKC, protein kinase C; p38/MAPK, P38 mitogen-activated protein kinases; ERK1/2, extracellular

signal-regulated protein kinases 1 and 2; JNK, c-Jun N-terminal kinase; C/EBP, CCAAT/enhancer binding proteins; PI3K/AKT, phosphatidylinositol 3-kinase/AKT; TG,

thapsigargin; MNNG, methylnitronitrosoguanidine; DDR, DNA damage response; ROS, reactive oxygen species; ER stress, endoplasmic reticulum stress; UPR,

unfolded protein response.

T-cell lymphoma (129). Both drugs are able to induce EBV lytic
cycle in concentrations that are acceptable in the plasma of
patients (45, 88). As mentioned in the previous section, the lytic
induction therapy that employs valproic acid and gemcitabine as
lytic inducers is found to be safe and feasible for the treatment
of NPC patients in clinical trials (93, 94). We postulate that
substitution of valproic acid with either romidepsin or SAHA
would probably lead to a better treatment effect because SAHA
or romidepsin has a higher potency in reactivating the EBV lytic
cycle in vitro (11, 45).

It was believed that acetylation of histones on Z and R
promoters is responsible for the effect of HDAC inhibitors on
the reactivation of EBV lytic cycle (130). However, several reports
have shown that acetylation of histones alone is not sufficient
for EBV lytic cycle reactivation (131–134). Our laboratory
has also shown that proteasome inhibitors work synergistically

with HDAC inhibitors to induce histone acetylation, but
simultaneously suppress the reactivation of EBV lytic cycle in
epithelial cells mediated by HDAC inhibitors (102, 135). We
postulate that acetylation of non-histone proteins, rather than
histone proteins, could directly regulate the reactivation of
EBV lytic cycle upon treatment with HDAC inhibitors. The
transcription factors which bind to Z promoter, including CREB,
C/EBP, Sp1, Sp3, MEF2D, YY1, ZEB1/2, can be modified by
lysine acetylation (136–142). It is possible that acetylation of these
transcription factors would directly affect their activities on the
Z promoter (Figure 9).

Proteasome Inhibitors
Proteasome inhibitors can either covalently or non-covalently
bind to 20S proteasome which catalyzes the degradation of
ubiquitinated proteins (143). They can induce unfolded protein
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FIGURE 10 | Novel drugs or drug combination targeting EBV latency. EZH2 inhibitior (GSK126), DNA methyltransferase inhibitor (5-AZA) or HDAC inhibitor (SAHA) is

used to inhibit the epigenetic repression of Bim, STK39, p14ARF, p15INK4b, and p16INK4a triggered by EBNA-3A and/or EBNA-3C. Proteasome inhibitor (bortezomib)

can inhibit proteasomal degradation of tumor suppressors induced by EBNA-1, EBNA-3A, EBNA-3C, LMP-1, or LMP-2A. There are some EBNA-1 inhibitors,

including gH/gL-EBNA1 vaccine, L2P4, LB7, SC11 and SC19, while gB-LMP2 vaccine is found to inhibit LMP-2A. Several downstream molecules, such as Lyn,

mTOR, and MDM2 can be targeted by tyrosine kinase inhibitor (Dasatinib), mTOR inhibitor (rapamycin), and MDM2 inhibitor (Nutlin-3a), respectively.

response (UPR), endoplasmic reticulum (ER) stress, reactive
oxygen species (ROS) generation, upregulation of p21WAF1 and
p27KIP1, which subsequently lead to cell death in a variety of
cancer types (144–146).

Whilst EBNA-1, LMP-2A and LMP-1 inhibit the proteasomal
degradation pathway for maintaining viral latency; EBNA-
3C utilizes the proteasome system to promote proteasomal
degradation of tumor suppressors (e.g., pRb, p21WAF1, p27KIP1,
p53 and Bcl-6) which regulate the cell cycle and apoptosis
in the host cells (26, 28–30, 54, 122–124, 143, 147, 148).
In our previous study, we have found that bortezomib
can induce cell cycle arrest at G2/M phase with a higher
percentage of BL cells when compared with LCLs which
express a higher level of EBNA-3C protein (101). We have
further demonstrated that when EBNA-3C knockout or EBNA-
3C revertant BL cells are treated with bortezomib, there is
a G2/M arrest in the EBNA-3C knockout cell lines whilst
the G2/M arrest is bypassed in the EBNA-3C revertant cell
lines (108). In these studies, bortezomib in combination with
SAHA can induce a stronger apoptotic effect in the EBNA-
3C revertant than EBNA-3C knockout BL cells (101). We
postulate that disruption of survival signaling conferred by
EBNA-3C, such as the suppression of p53, p21WAF1 and
Bcl-6 might be responsible for the induction of apoptosis

(54–56). In addition, bortezomib can also induce EBV lytic
cycle in BL cells (149, 150). The mechanism of lytic induction
by bortezomib is mediated via the activation of ER stress,
C/EBP-β, JNK and autophagy (150, 151). However, the effect
of bortezomib on EBV lytic cycle reactivation is limited
to BL cells but not EBV-positive epithelial cancer cells
(102, 152) (Figure 10).

Stress Inducers
Endoplasmic reticulum (ER) stress inducers, including
hapsigargin (TG), tunicamycin, bortezomib and nelfinavir,
are shown to induce EBV lytic cycle via the induction of
ER-stress or UPR (110, 150). Induction of psychological stress
by hydrocortisone and dexamethasone can also activate the Z
promoter in BL cells (111). Induction of DNA damage response
by chloroquine can reactivate EBV lytic cycle via the activation
of ATM and phosphorylation of KAP1/TRIM28 in BL cells
(112). Activation of ATM is further shown to be essential for
the lytic cycle reactivation by conventional lytic inducers, such
as HDAC inhibitors, transforming growth factor β (TGF-β)
and anti-IgG in several EBV-positive cell lines (153). Induction
of microtubule depolymerization by colchicine, vinblastine
and nocodazole can reactivate EBV lytic cycle through the
activation of PKC and the downstream p38 MAPK and JNK

Frontiers in Oncology | www.frontiersin.org 11 February 2019 | Volume 9 | Article 81

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hui et al. Targeting EBV in LPD

signaling pathways in NPC cells (113). Induction of hypoxia by
iron chelators is reported to reactivate EBV lytic cycle through
the direct binding of HIF-1α to the HRE elements within
Z promoter (114). Generation of ROS upon treatment with
methylnitronitrosoguanidine (MNNG) can induce EBV lytic
cycle through the activation of ATM, p38 MAPK and JNK
signaling pathways (115). Activation of the ATM/p53 genotoxic
stress pathway by gemcitabine is found to induce the lytic cycle
of EBV in BL, gastric carcinoma and NPC cells (90, 93, 109).
TPA in combination with sodium butyrate activates PCK-θ and
the subsequent p38 MAPK pathway to reactivate the EBV lytic
cycle (116). Chemotherapeutic agents including gemcitabine
and doxorubicin can reactivate the lytic cycle of EBV in BL
cells and LCLs via the activation of PI3K, p38 MAPK, and
MEK (90). An immunosuppressive drug, methotrexate (MTZ),
is also shown to induce EBV lytic cycle via the activation of
PI3K, p38 MAPK, and ERK signaling pathways in EBV-positive
lymphoma cells (117). Immunomodulatory agents, including
lenalidomide, thalidomide and pomalidomide reactivate the
lytic cycle of EBV in EBV-positive BL cells via PI3K stimulation
and ikaros suppression (118) (Figure 9). Upon induction of
these stress signaling pathways and the subsequent reactivation
of EBV lytic cycle, increased cell death is concomitantly
observed (11, 90, 93, 109, 117, 118).

Induction of Autophagy
Activation of ERK and autophagy by Rta is shown to be essential
for the EBV lytic progression in BL cells (119). Induction
of autophagy via the activation of PKC-θ and p38 MAPK is
also demonstrated to be essential for the reactivation of EBV
lytic cycle in B cells upon treatment with the combination
of TPA and sodium butyrate (116). Granato et al. have
shown that reactivation of EBV lytic cycle by bortezomib
also requires autophagy initiation (151). Recently, chloroquine
is shown to activate ATM to phosphorylate KAP1/TRIM28,
which is normally involved in repairing double-strand breaks in
heterochromatin, to reactivate EBV lytic cycle in BL cells (112).
However, the lytic proteins expressed in early phase of EBV
lytic cycle will block autolysosome formation to prevent viral
degradation and enhance the viral replication in B cells (120,
121). We have recently demonstrated that a novel compound
C7 can reactivate EBV lytic cycle via an autophagy-dependent
mechanism in EBV-associated epithelial cells (154) (Figure 9).
On the other hand, constitutive activation of autophagy is found
to confer resistance to nutlin-3 induced apoptosis in the BL cells
with type III latency but not in the BL cells with type I latency,
suggesting a possible role of EBV latent proteins in the regulation
of autophagy (155).

Induction of Cell Cycle Arrest
EBNA-3A, together with EBNA-3C, can recruit polycomb
repressor complex 2 (PRC2) or interact with C-terminal Binding
Protein (CtBP) to epigenetically down-regulate tumor suppressor
genes. Transcription of cell cycle regulatory factors, such as
p14ARF, p16INK4a, and p15 INK4b, are repressed by methylation
and deacetylation of histones mediated by EBNA-3A and EBNA-
3C (32, 156). Treatment with enhancer of zeste homolog 2

(EZH2) inhibitors and DNA methyltransferase inhibitors, which
inhibit the catalytic subunit of PRC2 and histone methylation,
might probably induce cell cycle arrest in EBV-LPDs. EBNA-
3A and -3C are known to directly interact with HDAC-1 and
-2 to repress the expression of p14ARF and p16INK4a (32, 38,
157). EBNA-3C is also shown to recruit Pim-1 to phosphorylate
and suppress pRb, p21WAF1 and p27KIP1 via the proteasomal
degradation system in B cells (26, 28, 29). Interestingly, we
have shown that combination of proteasome and HDAC
inhibitors can upregulate p16INK4a and p21WAF1, and mediate
G2/M arrest in EBV-LPDs (101). The G2/M arrest is further
demonstrated to be related to the downregulation of p-cdc25c
(108) (Figure 10).

Induction of Apoptosis
LMP-1 can activate both canonical (acts through the p50/RelA
dimer) and non-canonical (acts through the p52/RelB dimer)
NF-κB pathways to promote the pathogenesis of EBV-positive
cancer cells (158, 159). Bortezomib can inhibit the proteasomal
degradation of IκBα, thus, inhibit the activation of NF-
κB pathways. Consequently, the expression of anti-apoptotic
proteins including X-chromosome-linked inhibitor-of-apoptosis
protein (XIAP), cellular inhibitor-of-apoptosis protein 1 (cIAP-
1) and c-IAP-2, are suppressed (149). EBNA-3A and -3C can
work together to epigenetically down-regulate tumor suppressor
genes including STK39 and Bim to inhibit apoptosis (58, 160–
162). It has been demonstrated that the EZH2 inhibitor GSK126
can inhibit the PRC2 complex and increase the expression of
STK39 whereas the DNA methyltransferase inhibitor 5-AZA
can significantly increase the mRNA level of STK39 in LCLs
(160). The EZH2 inhibitor can also significantly induce the
expression of Bim and apoptosis in BL cells (162). EBNA-3C
promotes proteasomal degradation of certain tumor suppressors,
such as p21WAF1, p53, and Bcl-6 (28, 30, 54). We have
reported that combining HDAC and proteasome inhibitors
can upregulate p21WAF1 and mediate synergistic killing of BL
cells and LCLs via an EBNA-3C-dependent mechanism (101,
108). As inhibition of Bcl-6 by EBNA-3C releases Bcl-2 to
suppress apoptosis, it is possible that combination of Bcl-
2 inhibitors, such as venetoclax and proteasome inhibitors,
such as bortezomib could synergistically induce apoptosis in
EBV-LPDs (Figure 10).

Novel Compounds Specifically Target EBV
The abovementioned treatment strategies, such as HDAC
inhibitors, proteasome inhibitors and other stress inducers could
all affect multiple signaling pathways and thus, resulting in
non-specific effects to the host cells. Identification of novel
compounds which can specifically target EBV latent and lytic
cycles is critical for further development of viral-targeted therapy
against EBV-LPDs. Using computational docking programs, Li
et al. have identified 4 structurally related compounds (coded
SC7, SC11, SC19 and SC27) which can inhibit the DNA binding
of EBNA-1 and reduce the viral genome copy in BL cells (96). In a
separate study, the same research team has identified 4 additional
EBNA-1 specific inhibitors (coded LB2, LB3, LB7 and LC7) via a
cell-based screening of 14,000 small molecule compounds (97).
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Recently, a peptide-based inhibitor, L2P4, which can bind to
EBNA-1 and inhibit EBNA-1 homodimer formation is found to
selectively inhibit the proliferation of EBV-positive BL and NPC
cells in vitro and in vivo (95) (Figure 10). Tikhmyanova et al. have
identified 5 structurally related tetrahydrocarboline derivatives
coded C09, C50, C53, C60, and C67, which can significantly
reactivate the lytic cycle of EBV and mediate enhanced killing
with GCV in both lymphoma and epithelial cancer cells from a
high-throughput screening of 66,840 small molecule compounds
(163). These compounds do not induce acetylation of histone and
phosphorylation of p38 MAPK, S6, p53, and p90RSK, suggesting
a distinct lytic reactivation mechanism from those induced by
HDAC inhibitors or TPA (163). Our laboratory has also identified
5 hit compounds (coded C7, E11, E7, C8, and A10) through a
high-throughput screening of 50,240 small organic compounds
(164). These compounds also do not phosphorylate the PKCδ

which is utilized by many conventional lytic inducers and do not
cause acetylation of histone, suggesting a mechanism of action
distinct from HDAC inhibitors or TPA (164). E11 and C7 are
further investigated for their mechanisms of EBV lytic cycle
reactivation. We have found that the lytic cycle reactivation by
E11 requires the JNK signaling pathway whilst the lytic cycle
reactivation by C7 requires the activation of both ERK and
JNK pathways (164). We have further demonstrated that C7
can reactivate EBV lytic cycle in epithelial cells via chelation of
iron and induction of autophagy (154). Recently, another new
class of lytic inducer, curcuminoids, which might reactivate EBV
lytic cycle through modulation of NK-κB signaling, is identified
(165). Since most of these novel compounds can reactivate EBV
lytic cycle via mechanisms distinct from conventional inducers,
such as HDAC inhibitors and TPA, it would be interesting to
test whether combination of conventional inducers with novel
inducers canmediate synergistic reactivation of EBV lytic cycle in
EBV-LPDs (Figure 9).

CONCLUSIONS

In this review, we have summarized the mechanisms by which
EBV-LPDs employ to drive the pathogenesis and maintain the
survival of the tumor cells. We have shown that the viral latent
and lytic proteins can maintain the proliferation and survival
of EBV-positive tumor cells via deregulating the mechanisms
which control the cell cycle, apoptosis and immune recognition
in the host cells. Potential viral-targeted strategies based on
the understanding of the patho-mechanisms of EBV-LPDs are
also discussed. A number of clinical relevant drugs and novel
compounds which can either target the EBV latent proteins or
reactivate EBV lytic cycle are reviewed. These compounds work
through diverse mechanisms including inhibition of HDAC and
proteasome, activation of MAPK pathways, induction of various
cellular stress responses (e.g., ER stress, DNA damage response,
hypoxia and oxidative stress), autophagy, cell cycle arrest and
apoptosis. The effect of combining pharmaceutic compounds
which act on multiple signaling pathways in EBV-LPDs should
be explored.
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