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Background: We performed a network meta-analysis to compare the diagnostic accuracy of contrast-enhanced ultrasound (CEUS) and shear wave elastography (SWE) in differentiating benign and malignant lesions in different body sites.

Methods: A computerized literature search of Medline, Embase, SCOPUS, and Web of Science was performed using relevant keywords. Following data extraction, we calculated sensitivity, specificity, positive likelihood ratio (LR), negative LR, and diagnostic odds ratio (DOR) for CEUS, and SWE compared to histopathology as a reference standard. Statistical analyses were conducted by MetaDiSc (version 1.4) and R software (version 3.4.3).

Results: One hundred and fourteen studies (15,926 patients) were pooled in the final analyses. Network meta-analysis showed that CEUS had significantly higher DOR than SWE (DOR = 27.14, 95%CI [2.30, 51.97]) in breast cancer detection. However, there were no significant differences between CEUS and SWE in hepatic (DOR = −6.67, 95%CI [−15.08, 1.74]) and thyroid cancer detection (DOR = 3.79, 95%CI [−3.10, 10.68]). Interestingly, ranking analysis showed that CEUS achieved higher DOR in detecting breast and thyroid cancer, while SWE achieved higher DOR in detecting hepatic cancer. The overall DOR for CEUS in detecting renal cancer was 53.44, 95%CI [29.89, 95.56] with an AUROC of 0.95, while the overall DOR for SWE in detecting prostate cancer was 25.35, 95%CI [7.15, 89.89] with an AUROC of 0.89.

Conclusion: Both diagnostic tests showed relatively high sensitivity and specificity in detecting malignant tumors in different organs. Network meta-analysis showed that CEUS had higher diagnostic accuracy than SWE in detecting breast and thyroid cancer, while SWE had higher accuracy in detecting hepatic cancer. However, the results were not statistically significant in hepatic and thyroid malignancies. Further head-to-head comparisons are needed to confirm the optimal imaging technique to differentiate each cancer type.
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INTRODUCTION

Ultrasound (US) has been used for decades in differentiating benign and malignant lesions because of its low cost, ease of access, and non-invasiveness. For example, it belongs to the triad (physical examination, mammography and US), commonly used to assess the risk of breast cancer (1). Moreover, it can detect thyroid nodules as small as 2 mm in size and predicts malignancy based on features like irregular border, hypo-echogenicity, and calcification (2, 3). However, none of these features can individually predict malignancy and conventional US alone has shown moderate accuracy in detecting malignant lesions (4). Therefore, improvements to US technique have been sought.

The introduction of contrast agents (contrast-enhanced US/CEUS) allows for visibility of blood flow within the lesion, which improves its characterization (5). The current in-use contrast media are second-generation agents as SonoVue. These agents remain within the intravascular space, which increases their safety and allows for continuous imaging over the enhancement period (6). Several studies have reported high sensitivity and specificity for CEUS in differentiating malignant lesions with the breast, thyroid, liver and kidneys (5, 7–9). A recent meta-analysis showed no significant difference between CEUS and contrast-enhanced computed tomography (CECT) and magnetic resonance imaging (CEMRI) in terms of the diagnostic accuracy in characterizing focal liver lesions (FLLs) (8).

Shear wave elastography (SWE) relies on the degree of lesion stiffness when subjected to external pressure. Malignant nodules have harder consistency (less elasticity) than benign ones due to the uncontrolled proliferation of cancer cells (10). Therefore, SWE has been investigated for differentiating benign and malignant nodules. Compared to conventional US, SWE is more quantitative and is less operator-dependent, allowing more effective detection of malignant tumors (11). Recent diagnostic test accuracy (DTA) studies and meta-analyses showed high sensitivity and specificity for SWE in detecting malignant lesions within the breast and hepatic tissues (11–13).

According to our knowledge, data are lacking on the direct comparison between CEUS and SWE; therefore, we performed a meta-analysis to evaluate the diagnostic accuracy of CEUS and SWE in differentiating malignant tumors in the breast, liver, thyroid, kidneys, and prostate tissues in comparison to histopathology as a reference test. Moreover, we used network meta-analysis (NMA) to compare the diagnostic accuracy of both tests in malignant tumor differentiation.

MATERIALS AND METHODS

This meta-analysis has been conducted and reported in accordance with the Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies (The PRISMA-DTA Statement) (14); Supplementary File I.

Literature Search

We searched Medline (via PubMed), Embase, SCOPUS and Web of Science for diagnostic accuracy studies that evaluated the use of CEUS and SWE in the differentiation of malignant tumors in different body organs. The following search terms were used with different combinations in different databases: Contrast-enhanced Ultrasound OR CEUS OR Ultrasound OR SonoVue OR Shear Wave Elastography OR SWE OR Sonoelastography OR Elastosonography AND Malignant OR Cancer OR Tumor OR Benign OR Adenoma OR Adenocarcinoma OR Carcinoma OR Nodule. No search filters of any sort were used during the search. All retrieved search results from database search (including bibliographic data and abstracts) were imported into EndNote (X7) for duplicate removal and then were transferred to a Microsoft Excel Sheet for screening.

Study Screening

For a study to be eligible for inclusion, it must have matched all the following criteria: (1) Population: Patients, suspected or diagnosed with malignancy in any body organ, (2) Intervention: CEUS or SWE [no specifications by US system or probe type], (3) Comparator: Histopathology, (4) Outcomes: Sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV], and (5) Study type: Diagnostic accuracy study. Two independent authors reviewed the title and abstract of retrieved records against our eligibility criteria and classified them into: eligible, non-eligible, or requires further screening (seems to fit the inclusion criteria, but further confirmation is required). The full-text articles of the latter type were retrieved and underwent a second wave of screening. Any discrepancy between the two reviewers' decisions was solved by a senior reviewer (with a 15-year experience in secondary analysis and evidence synthesis methods) after reviewing the debated studies in reference to the pre-specified PICO criteria.

Data Extraction and Quality Assessment

An extraction sheet (in Microsoft Excel) was formatted and pilot-tested before final extraction. The sheet was customized to extract the baseline data of the imaging device, enrolled patients, as well as the raw diagnostic data of each included study. For pilot testing, two reviewers extracted these data from 5 included studies and the datasets were matched and compared with the original studies by a third reviewer. Each set of data was extracted by two reviewers and discordant decisions were resolved by discussion. These discussions included re-examining the studies, inspecting their available additional data sources and re-evaluating the former decisions. When the discrepancies remained, a senior reviewer examined the studies and settled the differences. The extracted data included (I) baseline characteristics of enrolled participants, (II) study design, (III) diagnostic test parameters: Parameters, cutoff value and US system for SWE and contrast agent, US technique, probe and mechanical index for CEUS, and (IV) Outcome data: true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values. When these values were not directly given, they were calculated from the processed data as sensitivity, specificity, PPV, and NPV, using the statistical calculator on RevMan software (Version 5.3 for Windows). We used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) score to assess the quality of included studies. It consists of 14 (yes/no/unclear) questions to assess different forms of bias within DTA studies (15).

Data Analysis

Pairwise meta-analyses were done under the random-effects model when two or more studies investigated the same predefined research question with the same laboratory test. We extracted the sensitivity, specificity, positive likelihood ratio (LR), negative LR, and diagnostic odds ratio (DOR) values for CEUS and SWE compared to histopathology as a reference standard. The DOR is calculated as (TP X TN)/ (FP X FN) and defined as the odds of having a positive test result in a patient with disease compared with the odds of a positive test result in a patient without disease. Moreover, summary receiver operating characteristic (SROC) curves were constructed to examine diagnostic accuracy. All statistics were reported as absolute values with their 95% confidence interval (95% CI). A p-value < 0.05 was considered statistically significant. The Chi-square and I-square statistics were calculated in order to assess heterogeneity. Significant heterogeneity was considered to be present if the chi-square p-value was < 0.1 (as per the Cochrane Handbook for Systematic Reviews of Intervention). Data were presented into five subgroups according to cancer site: breast, liver, thyroid, kidneys, and prostate. Network meta-analyses were conducted to compare the diagnostic accuracy of CEUS vs. SWE in malignancy detection. Heterogeneity and inconsistency were checked by the I2 and the corresponding p-value. All statistical analyses were conducted on MetaDiSc (version 1.4) and R software (version 3.4.3).

RESULTS

Literature Search and Study Characteristics

Database search retrieved 5896 unique citations. Following title and abstract screening, 422 full-text articles were retrieved for further scrutiny. Finally, 114 diagnostic accuracy studies (65 on SWE and 50 on CEUS; one study by 4 assessed both modalities), reporting data from 15926 patients (5680 for CEUS and 10392 for SWE) were included in our network meta-analysis (Figure 1, Bibliographic details in Supplementary File II). According to the QUADAS score, 25 (21.5%), 30 (25.8%), 22 (18.9%), 23 (19.8%), and 16 (13.8%) studies scored 10, 11, 12, 13, and 14, respectively. The baseline data of enrolled participants, as well as the characteristics of the used US systems for SWE and CEUS tests are illustrated in Tables 1, 2, respectively.
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FIGURE 1. PRISMA flow diagram of literature search and study selection.




Table 1. Baseline characteristics of enrolled patients and criteria of the used SWE system.
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Table 2. Baseline characteristics of enrolled patients and criteria of the used CEUS system.
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Outcomes of Pair-Wise Meta-Analysis

Breast Cancer

Detailed figures for pairwise meta-analysis in all five organs are illustrated in Supplementary File III. The pooled sensitivity, specificity, positive LR, and negative LR for CEUS in detection of breast malignant lesions were 0.89 (95% CI, 0.85, 0.92), 0.85 (95% CI, 0.81, 0.89), 6.13 (95% CI, 4.70, 8.01), and 0.12 (95% CI, 0.07, 0.21), respectively. The pooled DOR was 49.66 (95% CI, 29.42, 83.82) and the area under the receiving-operating characteristic (AUROC) curve was 0.92, Figure 2A. No heterogeneity was observed for sensitivity (p = 0.15) or specificity (p = 0.95).
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FIGURE 2. Summary receiver operating characteristic curve of (A) Contrast Enhanced Ultrasound, and (B) Shear Weight Elastography in breast cancer diagnosis.



For SWE, the pooled sensitivity, specificity, positive LR, and negative LR were 0.84 (95% CI, 0.83, 0.86), 0.86 (95% CI, 0.85, 0.87), 7.12 (95% CI, 5.54, 9.15), and 0.18 (95% CI, 0.15, 0.22), respectively. The pooled DOR was 46.22 (95% CI, 31.33, 68.18) with an AUROC of 0.93, Figure 2B. Significant heterogeneity was observed for sensitivity (p < 0.0001) and specificity (p < 0.0001).

Hepatic Cancer

The pooled sensitivity, specificity, positive LR, and negative LR for CEUS in differentiating malignant hepatic lesions were 0.78 (95% CI, 0.76, 0.81), 0.89 (95% CI, 0.87, 0.91), 6.51 (95% CI, 3.90, 10.85), and 0.13 (95% CI, 0.06, 0.25), respectively. The overall DOR was 57.94 (95% CI, 24.78, 135.45) with an AUROC of 0.95, Figure 3A. The included studies were heterogeneous in the estimates of sensitivity (p < 0.0001) and specificity (p < 0.0001).


[image: image]

FIGURE 3. receiver operating characteristic curve of (A) Contrast Enhanced Ultrasound, and (B) Shear Weight Elastography in hepatic cancer diagnosis.



For SWE, the pooled sensitivity, specificity, positive LR, and negative LR were 0.82 (95% CI, 0.77, 0.87), 0.83 (95% CI, 0.76, 0.89), 4.30 (95% CI, 2.85, 6.48), and 0.29 (95% CI, 0.12, 0.71), respectively. The overall DOR was 14.46 (95% CI, 4.09, 51.04) with an AUROC of 0.90, Figure 3B. The included studies were heterogeneous in the estimates of sensitivity (p < 0.0009) and specificity (p < 0.0001).

Thyroid Cancer

The pooled sensitivity, specificity, positive LR, and negative LR for CEUS in detecting malignant thyroid nodules were 0.81 (95% CI, 0.78, 0.84), 0.88 (95% CI, 0.86, 0.90), 6.01 (95% CI, 3.88, 9.31), and 0.23 (95% CI, 0.17, 0.31), respectively. The overall DOR was 28.54 (95% CI, 16.79, 48.51) with an AUROC of 0.91, Figure 4A. Significant heterogeneity was observed for sensitivity (p = 0.001) and for specificity (p < 0.0001).
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FIGURE 4. Summary receiver operating characteristic curve of (A) Contrast Enhanced Ultrasound, and (B) Shear Weight Elastography in thyroid cancer diagnosis.



For SWE, the pooled sensitivity, specificity, positive LR, and negative LR were 0.67 (95% CI, 0.64, 0.69), 0.77 (95% CI, 0.76, 0.79), 3.50 (95% CI, 2.93, 4.18), and 0.33 (95% CI, 0.25, 0.45), respectively. The overall DOR was 11.17 (95% CI, 8.04, 15.51) with an AUROC of 0.84, Figure 4B. Significant heterogeneity was observed for sensitivity (p < 0.0001) and specificity (p < 0.0001).

Renal Cancer

The sensitivity of CEUS ranged from 0.71 to 0.98 with a pooled sensitivity of 0.87 (95% CI, 0.85, 0.88). Specificity ranged from 0.50 to 0.97 with a pooled specificity of 0.84 (95% CI, 0.82, 0.87). The pooled positive and negative LRs were 5.55 (95% CI, 3.74, 8.22) and 0.12 (95% CI, 0.07, 0.19), respectively. The overall DOR was 53.44 (95% CI, 29.89, 95.56) with an AUROC of 0.95, Figure 5A. Significant heterogeneity was observed for sensitivity (p < 0.0001) and specificity (p < 0.0001).
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FIGURE 5. Summary receiver operating characteristic curve of (A) Contrast Enhanced Ultrasound in renal cancer diagnosis, and (B) Shear Weight Elastography in prostate cancer diagnosis.



Prostate Cancer

The sensitivity of SWE ranged from 0.42 to 0.96 with a pooled sensitivity of 84% (95% CI, 0.80, 0.87). Specificity ranged from 0.70 to 0.95 with a pooled specificity of 0.84 (95% CI, 0.82, 0.86). The pooled positive and negative LRs were 4.59 (95% CI, 2.68, 7.87) and 0.18 (95% CI, 0.07, 0.44), respectively. The overall DOR was 25.35 (95% CI, 7.15, 89.89) with an AUROC of 0.89 (Figure 5A). Significant heterogeneity was observed for sensitivity (p < 0.0001) and specificity (p < 0.0001) (Figure 5B). Table 3 summarizes the diagnostic results for both tests in different cancer sites.


Table 3. Summary of the results of pooled sensitivity, specificity, positive, and negative likelihood ratios for SWE and CEUS in different cancers.
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Outcomes of Network Meta-Analysis

Corresponding network plots and forest plots of network meta-analysis between CEUS and SWE are shown in Figure 6. In breast cancer, NMA showed that CEUS was associated with significantly higher DOR than SWE (DOR = 27.14, 95% CI [2.30, 51.97], p = 0.011). While NMA showed no significant difference between CEUS and SWE in detecting hepatic (DOR = −6.67, 95% CI [-15.08, 1.74, p = 0.61]) and thyroid malignant lesions (DOR = 3.79, 95% CI [−3.10, 10.68], p = 0.58). No significant heterogeneity or inconsistency were observed between the pooled studies for breast (I2 = 10%, p = 0.30) and hepatic cancer (I2 = 20%, p = 0.21). While a p-value of 0.05 indicated significant heterogeneity among the studies of thyroid cancer; therefore, the random-effects model was employed.
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FIGURE 6. Network plots showing direct evidence between Contrast Enhanced Ultrasound and Shear Weight Elastography in (A) breast cancer, (B) hepatic caner, and (C) thyroid cancer. Also, forest plots of network meta-analysis between Contrast Enhanced Ultrasound and Shear Weight Elastography vs. histopathology in (A) breast cancer, (B) hepatic caner, and (C) thyroid cancer. (D) Forest plot CEUS vs. SWE of breast cancer. (E) Forest plot CEUS vs. SWE of hepatic cancer. (F) Forest plot CEUS vs. SWE of thyroid cancer.



Ranking Diagnostic Tests

According to Glas et al. (116), the DOR is considered as an indicator of ranking of competing diagnostic tests. According to our results, CEUS achieved the highest DOR in detecting breast and thyroid malignant lesions, while SWE achieved the highest DOR in detecting hepatic malignant lesions.

DISCUSSION

This meta-analysis of DTA studies provides a comprehensive assessment and comparison of the diagnostic accuracy of two US modalities in differentiating malignant tumors in different body organs. It showed relatively high sensitivity (between 78 and 89%) and specificity (between 84 and 89%) for CEUS in identifying malignant lesions in the breast, liver, thyroid and kidneys. Moreover, it demonstrated relatively high sensitivity (between 82 and 84%) and specificity (between 83 and 86%) for SWE in differentiating malignant tumors within the breast, liver and prostate. However, it had relatively lower sensitivity (67%) and specificity (77%) in identifying malignant nodules within the thyroid gland.

Our results support some recent practice guidelines that endorse the use of CEUS and SWE in differentiating malignant lesions within the liver and the breast (117, 118). Moreover, it provides new data on a comparison that can impact the clinical practice. Through NMA, we compared the diagnostic accuracy of CEUS and SWE in three organs (where data on both tests were available in the literature). Our network and ranking analysis showed that CEUS was more accurate than SWE in differentiating breast and thyroid lesions (although the difference was not significant in thyroid malignancy according to NMA). On the other hand, SWE ranked higher in terms of diagnostic accuracy in differentiating hepatic malignant lesions (although the difference was not significant according to NMA).

Our results are in agreement with a former meta-analysis by Sadigh et al. that showed high sensitivity and specificity for SWE in differentiating breast malignant lesions [88 and 83% in comparison to 84 and 86% in our analysis; (11)]. However, our sensitivity and specificity results are quite lower than those obtained by Liu et al. in a meta-analysis on SWE accuracy in differentiating thyroid malignancy [sensitivity 81% and specificity 84%; (12)]. Likewise, another meta-analysis reported high sensitivity and specificity (93 and 90%, respectively) for CEUS in identifying hepatic malignant lesions (119). The observed discrepancy between our findings and those of the aforementioned meta-analyses may be attributed to the different sample size (being larger in our analysis) or the lesional characteristics of enrolled patients (being easier to identify in the studies included in the other meta-analysis i.e., less depth and clear contrast from the surrounding tissue).

Interestingly, a meta-analysis by Guang et al. showed comparable diagnostic accuracy for SonoVue-enhanced US with contrast-enhanced computed tomography and magnetic resonance imaging (8). Moreover, CEUS has other advantages over these modalities as ease of access, lack of radiation exposure or nephrotoxic materials; limitations that affect the use of CT and MRI in several diagnostic applications (120, 121). It is also fair to recognize that both tests have limitations as well. For example, SWE suffers from operator-dependency and manual compression, while the adverse effects of the contrast agent is a concern with CEUS use. Further technical improvements with both modalities would further enhance their clinical potential.

Strength Points

This NMA directly compares the diagnostic accuracies of CEUS and SWE in different cancer sites and using different analytic approaches as pairwise, network and ranking pooled analyses. Therefore, it provides a holistic evaluation of the comparison of both techniques in different body organs. We performed a thorough literature search and retrieved a large number of studies (relatively large sample size), which adds to the validity and generalizability of our findings. Unlike former reviews that retrieved a small number of studies and focused on one test in one organ, we aimed to provide a comprehensive assessment of both tests in different organs and a high quality comparison whenever suitable data were provided.

Limitations and Future Research Implications

Our meta-analysis has some limitations. First, the observed heterogeneity in the majority of our outcomes may be due to differences in study design and patient characteristics. Second, we could not examine the effects of lesion characteristics, such as size and depth on the diagnostic accuracy of both tests due to lack of data. Third, many of the included studies did not mention whether the results of CEUS or SWE were interpreted with blinding to the findings of histopathology or not. Future studies should report diagnostic accuracy data based on the size and depth of the lesions to allow more detailed analysis. Moreover, they should adhere to the Standards for Reporting of Diagnostic Accuracy “STRAD” checklist in reporting their methods and findings to allow a more thorough critical appraisal.

CONCLUSION

Both diagnostic tests (CEUS and SWE) showed relatively high sensitivity and specificity in detecting malignant tumors in different organs; CEUS had higher diagnostic accuracy than SWE in detecting breast and thyroid cancer, while SWE had higher accuracy in detecting hepatic cancer (the differences in the latter two cancer types were not statistically significant). These results endorse the use of both tests for malignancy detection and rank their accuracy in different organs. Future studies should provide more data to allow characterization of both tests in lesions of different size or depth.
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Specificity

0.86 (95% Cl, 0.85, 0.87)
0.85 (95% CI, 0.81, 0.89)
0.83 (95% Cl, 0.76, 0.89)
0.89 (95% Cl, 0.87, 0.91)
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0.88 (95% Cl, 0.86, 0.90)
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+velR

7.12 (95% Cl, 554, 9.15)
6.13 (5% Cl, 4.70, 8.01)
4.30 (95% Cl, 2.85, 6.48)
6.51 (95% Cl, 3.90, 10.85)
3.50(95% Cl, 2.93, 4.18)
6.01 (95% Cl, 3.88, 9.31)
555 (95% Cl, 3.74, 8.22)
459 (95% Cl, 2.68, 7.87)

-velR DOR

0.18 (95% CI, 0.15,0.22) 46.22 (95% Cl, 31.33, 68.18)
0.12 (95% CI, 0.07, 0.21)  49.66 (95% Cl, 29.42, 83.82)
0.29(95% C1, 0.12,0.71)  14.46 (95% Cl, 4.09, 51.04)
0.13 (95% Cl, 0.06, 0.25) 57.94 (95% Cl, 24.78, 135.45)
0.33 (95% Cl, 0.26, 0.46)  11.17 (96% Cl, 8.04, 15.51)
0.23(95% C1,0.17,0.31) 28,54 (95% Cl, 16.79, 48.51)
0.12 (95% Cl, 0.07, 0.19)  53.44 (95% Cl, 29.89, 95.56)
0.18(95% C1,0.07, 0.44)  25.35 (95% Cl, 7.15, 89.89)

AUROC

0.93
0.92
0.90
0.95
084
091
0.95
0.89
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Patients/Lesions
N

276 (296 lesions)

218 (225 lesions)

63 (63 lesions)

171 (177 lesions)
123 (130 lesions)

98 (133 lesion)

54 (56 lesions)

130 (139 lesions)

103 (104 lesions)

324 (389 lesions)

33 (34 lesions)

134 (144 lesions)

152 (159 lesions)

210 (210 lesions)

109 (115 lesions)

115 (133 lesions)

206 (206 lesions)

139 (156 lesions)

37 (45 lesions)

112 (123 lesions)

129 (150 lesions)

113 (116 lesions)
71 (79 lesions)

199 (205 lesions)

76 (84 lesions)
379 (404 lesions)
218 (264 lesions)
67 (67 lesions)

142 (167 lesions)

139 (140 lesions)

116 (116 lesions)

251 (279 lesions)

52 (52 lesions)
52 (52 lesions)

192 (209 lesions)

78 (79 lesions)

97 (98 lesions)
315 (326 lesions)

133 (156 lesions)

63 (67 lesions)

273 patients with
chronic liver
disease

106 (108 lesions)

20 (20 lesions)

221 (229 lesions)

50 (11 with PSA>
20)

60 patients with
suspected
prostate cancer

69 (794 samples)
87 (87 lesions)
184 (1040

samples)

302 (134 with
suspected PC,
120 with
confirmed PC and
48 healthy mer)

59 (71 lesions)

676 (707 lesions)

271 (331 lesions)

322 (322 nodules)

118 (137 lesions)
238 (254 lesions)
227 (313 lesions)
99 (99 lesions)
148 (175 nodules)
122 (163 nodules)
119 (169 lesions)

49 (64 lesions)

453 (476 nodules)

35 (35 lesions)

107 (107 lesions)

290 (302 lesions)

Age (Years)

454 + 14.7

453+ 146

347 £59

4517 £9.37

467112

N/A

40.76 + 68.07

4474 £14.77

51+ 18.56

460+ 114

46475

49.1 +12.8

52 +205

4312+ 13.34

51+17.5

514 +11.75

446+ 133

43.64 +9.94

47.4 +14.75

49.2+10.7

47.8+8.83

48.4+10

48+10.67

51.7£133

59.9+13

NA

46.4+105

4154229

57.7 +11

45.5 +10.33

48.56+ 14.4

4536118

67

67

N/A

455 +11.6

4474 £14.77

4451 +11.81

47.8 +12.7

401 +21.2

59.64 % 14.40
70.98 £9.33

55.5+16.74

4.74+4

48.9 + 132

69

N/A

65+8

66+9.0

65.167.6

NA

506 +9.1

51.2415

459+ 134

505 +12.6

45.9 +13.4

509+ 11.9

46.14 £9.70

45.7+13

48.36 £ 12.5

53+ 137

49.2+14

453+ 131

45.7+10.33

55+ 16.1

54.0+94

49.80+12.34
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100% F
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1:01
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2.4:1
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100% M
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0.2:1

0.3:2

03:1

031

0.2:1

N/A

0.4:1

0.2:1

0.3:1

0.4:1

0.2:1

05:1

0.26:1

0.4:1
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Condition

Benign vs.
malignant breast
masses
Benignvs.
malignant breast
masses

Benign vs.
malignant breast
masses

‘Small breast
lesions <2 cm
Breast cancer

Benign vs.
malignant breast
lesion

Benignvs.
malignant breast
lesion

Benign vs.
malignant breast
lesion

Benign vs.
malignant breast
lesion

Benign vs.
malignant breast
lesion

Breast Non-mass
lesions
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malignant breast
lesion

Benignvs.
malignant breast
lesion

Benignvs.
malignant breast
lesion

Benign vs.
malignant breast
lesion

Benign vs.
malignant breast
lesion

Benign vs.
malignant breast
lesion

Solid breast
masses

Benign vs.
malignant breast
lesion

Solid breast
masses

Benign vs.
malignant solid
breast lesions
Breast non-mass
lesions.

Breast papilary
lesions
Benignvs.
malignant solid
breast lesions
Focal breast
lesions

Focal breast
lesions

Solid breast
masses
Fibroadenoma vs.
phylloids tumor
Benign vs.
malignant solid
breast lesions
Complex cystic
and solid breast
lesions

Breast lesions
BIRADS V
Benign vs.
malignant solid
breast lesions
IDC

c

Benign vs.
malignant solid
breast lesions
Benign vs.
malignant solid
breast lesions
Small breast
lesions<10cm

Breast masses

Palpable breast
masses

Non-mass breast
lesions

Hee

Characterization of
solid HFLs

Heamangioma vs.
malignant liver
lesions
Benignvs.
malignant HFLs
Prostate cancer

Prostate cancer

Prostate cancer

Prostate cancer
Prostate cancer

Prostate cancer

Benign vs.
malignant thyroid
nodules <10mm

Thyroid cancer

Malignant thyroid
nodule
Malignant thyroid
nodule

Malignant thyroid
nodule

Malignant thyroid
nodule

Malignant thyroid
nodule

Malignant thyroid
nodule

Malignant thyroid
nodule

Malignant thyroid
nodule
Characterization of
thyroid nodules
benign vs.
malignant solid
Thyroid lesions
Benignvs.
malignant solid
Thyroid lesions.
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malignant solid
Thyroid lesions
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and CE imaging
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parameters

sws

Emean

Emax

Emax
Emean

Mean SWV

Emean

Max SWV

Mean SWV

Eratio

Emean

Emax

Emax

Emax

Eratio

Emean

Mean SWV

Emax

Emean

Eratio

Emean

Emean
Emax

Emean

Eavad)
sws
Emax
Emean

Emax

Emax

sws

sD

Emean
Emean

N/A

Eratio

swv
sD

Emax

Emax

Young's
Modulus

Emedian

Emean

Emax
Shear wave
veloity and

Young's
modulus

Young's
Modulus

Young's
Modulus

Young's

Modulus

Young's
Modulus
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Modulus

Shear wave
velocity

Shear wave
velocity

SWE mean
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modulous
and SWS
SWE mean
sws
Emax
Emean
sws
Emax

Emean

Emean

Emean

Young's

Modulus

Mean SWS

Mean SWS

Cutoff value  US system

(Kpa)

4.39 m/sec

36.1 Kpa

106.55 Kpa

87.5Kpa
82.2Kpa

3.68m/s

44.3Kpa

537 m/s

5.18m/s

514

41.6Kpa

147.2 Kpa

56.0 Kpa

808 Kpa

47

60.7 Kpa

422 m/s

82.3Kpa

67.8Kpa

3.56

80Kpa

85.1 Kpa
62.1Kpa

85.8Kpa

685 Kpa
3015 m/s
44.1 Kpa
439 Kpa

106 Kpa

108.5 Kpa

3.49m/s

8.05Kpa

50 Kpa
50 Kpa

NA

3.7

327 mfs
13.75

45.1 Kpa

81.07 Kpa

N/A

37.6 Kpa

23,62 Kpa

39.6Kpa

N/A

50 Kpa

48Kpa

43.9 Kpa
35Kpa

50 Kpa

2910 m/s

3.64m/s

39.3Kpa

3.52m/s
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51.95 Kpa
62Kpa
259 mss.
67.3Kpa
305 Kpa

383 Kpa

85.2 Kpa

223 Kpa

3.01 m/s

26m/s
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(Siemens)
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(Toshiba)
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Aixplorer ultrasound system
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Acuson $2000 ultrasound
system (Siemens
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Aixplorer, SuperSonic
Imagine

Siemens S3000 US
machine

Aixplorer, SuperSonic
Imagine
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SuperSonic Imagine
Uttrasound System
AIXPLORER
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Virtual Touch IQ Software on
the Siemens ACU-SON
$3000 US

SuperSonic Imagine

Aplio500, Toshiba Medical
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Siemens Acuson 2000 US
machine
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Imagine
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Imagine
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Condition Patients/
Lesions (N)

Indeterminate 47 (30 HP)

renal masses with

equivocal

enhancement on

cr

Benign vs. 73 (73 lesions)

malignant renal

masses

Renal solidand 44 (23 HP lesions)

cystic lesions

RCCvs.AML 99 (102 lesions)

Complex oystic 59 (71 lesions)

renal masses

Complexrenal 47 (47 lesions)

oysts

RCCvs. AML 411 (429 lesions)

Solid Renal 91 (100 lesions)

Masses

RCCvs. AML 189 (189 lesions)

Indeterminate 72 (83 nodules)

renal masses by

cr

RCCvs. AML 49 lesions

(small masses)

Complex oystic 66 (67 lesions)

renal masses

RCC 32 (33 lesions)

Renal SOL 367 (378 lesions)

Benign vs. 118 (118 lesions)

malignant solic

renal masses

Undetermined 63 (74 nodules)

renal masses

Benign vs. 148 (157 lesions)

malignant thyroid

nodules

Focal breast 127 (127 lesions)

lesions.

Papillary breast 50 (52 lesions)

lesions

Subcentimetric 203 (209 lesions)

breast lesions.

Breast tumors 216 (216 lesions)
Diagnosis of HCC 381 (544 lesions)
(<8em)

Benign vs. 83 (83 lesions)
malignant liver

nodules

Cysticand cyst 48 (50 lesions)

like liver lesions.

HCC differentiation 271 (374 lesions)

Macroscopic HCC 77 (79 lesions)

NS-HCC 85 (85 lesions)

Liver metastasis 98 (148 lesions)

Hyperechoic HFL 102 (135 lesions)

Benignvs. 46 (55 lesions)
malignant iver
lesions in cirrhotic

patients

GT undetermined 78 (163 lesions)
HFL

HCC by CEUS
and ESCULAP

100 (100 lesions)

Macroscopic HOC 99 (99 lesions)

Heo 50 (50 lesions)
Superficial HFL 27 (27 lesions)
Focal hepatic 46 (55 lesions)
lesions

Cholangiocarcinomd (40 lesions)
vs. inflammatory

lesions
Benign vs. 156 (176 lesions)
malignant liver

lesions

HFL <30mm 56 (67 lesions)
Liver metastasis 89 (89 lesions)

Thyroid nodules 48 (53 lesions)

Malignant thyroid 146 (175 nodules)
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Benign vs. 77 (87 lesions)
malignant thyroid

nodules

Benign vs. 63 (HPin38
malignant thyroid  lesions)

nodules

Benign vs. 122 (122 nodules)

malignant calcified
thyroid nodules
Benign vs. 133 lesions
malignant thyroid
nodules

Benign vs.
malignant thyroid
nodules

70 (200 lesions)

Benign vs.
malignant thyroid
nodules

246 (319 patients)

Benign vs.
malignant thyroid
nodules

Benign vs.

malignant thyroid
nodules

111 (145 nodules)

161 (167 lesions)

Age (Years)

65+ 13

56.36 £ 12.2

56+ 14

566+ 16.5

49.6 +14.25

46 +9.75

54.12 +12.57

620+ 15.6

473+£20.7
649+ 145

614115

67.8+1.83

60.9 +10.43

NA

535+ 12.6

624+ 145

454+ 105

485+ 123

5141357

47415.25

46 + 12

62 +9.69

59.8 +10

685+15

49.25 +17

70+9

66+ 13.75

66,46+ 11.2

5144125

56+ 10

61.8 +15.25

66.1+7.17

67.8+10.4

52 +14.25

N/A

46.5 +15.2

58.7 +9.701

50.7 + 16.25

66.8 +£10.1

31-87

49.4 +8.75

46.36 £125

524 +£17.2

559+ 14.7

46+ 12

463+ 10

496+ 12.8

46.1+152

48+ 13.45

44.14 +12.01

Male:
Female

4.75:1

0.7:1

2:01

2.9:1

1.6:1
1.9:1

251

1:01

N/A

1.6:1

1.6:1

N/A

2.6:1

0.9:1

3.9:1.0

2.7

2.9:1

1.7:1

2.8:1

0.8:1

1

5.7:1

1.4:1

2.4:1

1.4:1

1.9:1

1.61

201

0.4:1

N/A

0.4:1

0.5:1

0.3:1

0.5:1

0.2:1

0.4:1

Contrast agent  Reference test

2.4mL SonoVue  Histopathology

1.0-1.8mL Histopathology

SonoVue and follow up
data

Sonazoid Histopathology
and follow up data

1.2ml of SonoVue Histopathology

2.4mL of SonoVue Histopathology
and follow up
data

1.2mL SonoVue  Histopathology
and follow up
data

1.2mL SonoVue  Histopathology

1.0-1.2ml Histopathology

SonoVue

1.2miSonoVue  Histopathology

2.4mL of SonoVue Histopathology
and follow up
data

SonoVue Histopathology

2.4mL SonoVue  Histopathology

1.6mL of SonoVue Histopathology

1.2mL SonoVue  Histopathology
1.6-2.4mL Histopathology
SonoVue

1.5ml of SonoVue Histopathology

US technique Mechanical
index

Pulse inversion 0.05-0.21

harmonic imaging

Cadence contrast

pulse sequencing

Acuson Sequoia 512, 0.21-0.23

Siemens,

Siemens Acuson 0.19

Sequoia 512

Acuson $2000 NA

(contrast puise

sequencing)

Coded phase inversion 0.07-0.10

harmonic imaging

(Logiq 9 scanner GE

Healthcare)

ACUSON 0.06-0.1

52000-Siemens—10

£9 system (GE o.11

Healthcare

Acuson Sequoia 512 <0.2

scanner

LOGIC E9 <01

Cadence contrast ~ <0.2at

pulse sequencing  Sequoia 512,

technology (CPS) ~ <0.009 at
$2000)

NA NA

Hitachi Preirus NA

General Electric Logiq  0.09-0.11

7 system

ACUSON §2000

Ultrasound System

Contrast pulse 0.18-020

sequence, Sequoia

512 utrasound system

(Siemens

Aplio 500, Toshiba  N/A

Medical Systems AND
1U22, Philips Healthcare

2.4mlSonoVue  Histopathology ~ Contrast pulse 0.20-0.23
sequence (CPS)
imaging. Acuson,
Sequoia 512
Encompass
0015mlkg  Histopathology  AplioXG, Toshiba AND, 0.1-0.4
Sonazoid Hitachi-Aloka AND
Logiq E9, GE
2.4mL SonoVue  Histopathology  Pulse-inverse harmonic 0.05-0.08
imaging technique
[Philps iU22)
4.8mLof SonoVue Histopathology  Pulse inversion 006
harmonic technique w
iU22 (Philips)
25mLSonoVue  Histopathology ~ Sequoia; Siemens /A
Medical Solutions
SonoVue Histopathology,  N/A NA
CTand MRI
according to
EASL-AASLD
1-2.4ml SonoVue Histopathology  LOGIQ E9, GE NA
240r48mL  Histopathology  MyLab 70 Twice NA
SonoVue scanner (Esaote)
2.4mL SonoVue  Histopathology  1U22 system (Philips)  <0.1
0.015mlkg Histopathology  (tissue harmonic 02-0.3
Sonazoid grayscale imaging)
LOGIQ 7 or E9 US
0015 mikg Histopathology ~ Wide-band 0.16-02
Sonazoid pulse-inversion
harmonic imaging (HI
VISION Ascendus
(Hitach)
0.0076 mlukg Histopathology SSA 770A or 790A US 0.17-0.27
Sonazoid system (Toshiba)
1.5mL of SonoVue Histopathology GE Logiq9 color 0.1
Doppler
ultrasonography
2.4mL SonoVue  Histopathology  Sequoa, 0.09-0.14
Acuson-Siemens AND
iU22 (U22; Phili)
12mibolusof  Histopathology  Puise inversion NA
SonoVue and PET/CT follow harmonic imaging (GE
up LoGIQ 96)
15miSonoVue  Histologyand  GELogig ESAND  N/A
imaging Siemens Acuson
52000 AND Toshiba
Apiio 500
0015 mlkgof  Histopathology ~ Wideband harmonic ~ (0.18-0.28)
Sonazoid imaging (Aplio XG
system, Toshiba)
2.4mlSonoVue  Histopathology,  Xario XG (Toshiba) <0.2
CTand MRI
24miSonoVue  Histopathology,  Phiips iU22, LOGIQ  N/A

one patient by MRI E9, Aplio 500

2.4-mLdoseof Histopathology,
SonoVue CECT and MRI
1.5 mL of SonoVue Histopathology
2.4 mL of SonoVue Histopathology
00075 mikg  Histopathology
Sonazoid

1.5-2.4mL Histopathology
SonoVue

4.8mL SonoVue  Histopathology
2.4mL of the Histopathology
SonoVue

1.5mLSonoVue  Histopathology

4.8mlof SonoVue Histopathology

24mLofthe  Histopathology
SonoVue

1.2mL SonoVue  Histopathology
2.0mL SonoVue  Histopathology
2.4mlSonoVue  Histopathology
1.6mL SonoVue  Histopathology
2.4miSonoVue  Histopathology

Phiips iU22 US system 0.06
LOGIQ E9 (GE <01
Healthcare)

Acuson 2000 NA
ultrasound system

Seimens

SSA-790A ultrasound ~ (0.20-0.25)
system (Aplio
Contrast-tuned
imaging Hitachi 900
and Hitachi Preirus

MyLab 70XvG, Esaote N/A

NA

Siemens Acuson 01
$2000 US machine

Siemens Acuson 0.06-0.1
52000 US

MyLab 70 US scanner N/A
Contrast pulse 032
sequencing (CPS)

(ACUSON Sequoia 512
(Siemens Healthcare)

ESAOTE Mylab90  0.05-0.07)
X-vision

Acuson 52000 <0.10
Contrast pulsed NA
sequencing (CPS)

Siemens Acuson

$2000

Contrast tuned imaging N/A
Mylab Twice Esaote

DC-8EXP; Mindray ~ 0.15

Probe

Convex array
(C5-1) & (4C1)
&(C5-2 HD)) &
(CA430E)

4C1-S convex
probe 1-4 MHz

4C1 abdominal
transducer

NA

35C (25-50
MHz) and 4C
(1.0-4.0 MHz)
convex
transducers
Convex probe
3-4.5mHz

C1-5, 1-5 MHz

4V1 vector
transducer, 1-4
MHz

C1-5, 1.5 MHz
4C1 convex array
probe

NA

EUP-C715 probe
(5-1 MHz

Convex wide-band
transducer (2-6.5
MHz)

Probe 4C1, 2.5-5
MHz

4C1, 3-4 MHz

NA

15L8w probe
(8-14 MHz)

Broadband linear
phased-array
transducer
3-0-MHz inear
transducer

9-3-MHz linear
transducer

10 MHz
transducer

NA

1-6 MHz curved
probe

D multifrequency
(2.5-5 MHz)
convex probes
(652 MHz) convex
transducer (C5-2).
Convex or linear
probes with a
frequency of 2-5
or 4-9 MHz
Microconvex
probe (EUP-
C715, 35 MHz

8.76-MHz convex
probe

convex array
probe (frequency:
35-5MHz)
Convex array 24
MHz 4C1
transducer AND
2-5-MHz
broadband
curvilinear probe
A

NA

5-MHz convex
transducer 1.4
and 5.3 MHz

High frequency
transducer (7.5-12
MHz)

502 muti-
frequency convex
probe
C5-1,20-4.0
MHz

4C1 convex array
probe; frequency
2.0-4.0 MHz
3.75 MHz convex
probe
25-50MHz
probe

Linear probe (7-12
MHz) (N:36)

9L4, 5.0 MHz to
14.0 MHz

5-to 14-MHz
linear array
transducer (9L4)
7.5-MHz linear
probe

15L8w high-
frequency linear
transducer

1522 (3-9 MHz)
linear-array probe

9-MHztransducer

9 L4 transducer

LA522 transducer
(3-9 MHz)

L12-3E transducer
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