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Pancreatic cancer is the fourth most common cause of cancer-related deaths in both

men and women. The 5-year survival rate for metastatic pancreatic cancer is only

8%. There remains a need for improved early diagnosis and therapy for pancreatic

cancer. Murine models are the current standard for preclinical study of pancreatic

cancer. However, mice may not accurately reflect human biology because of a variety

of differences between the two species. Remarkably, only 5–8% of anti-cancer drugs

that have emerged from preclinical studies and entered clinical studies have ultimately

been approved for clinical use. The cause of this poor approval rate is multi-factorial, but

may in part be due to use of murine models that have limited accuracy with respect to

human disease. Murine models also have limited utility in the development of diagnostic

or interventional technology that require a human-sized model. So, at present, there

remains a need for improved animal models of pancreatic cancer. The rationale for a

porcine model of pancreatic cancer is (i) to enable development of diagnostic/therapeutic

devices for which murine models have limited utility; and (ii) to have a highly predictive

preclinical model in which anti-cancer therapies can be tested and optimized prior to

a clinical trial. Recently, pancreatic tumors were induced in transgenic Oncopigs and

porcine pancreatic ductal cells were transformed that contain oncogenic KRAS and

p53-null mutations. Both techniques to induce pancreatic tumors in pigs are undergoing

further refinement and expansion. The Oncopig currently is commercially available, and

it is conceivable that other porcine models of pancreatic cancer may be available for

general use in the near future.
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BACKGROUND: PANCREATIC CANCER

Pancreatic cancer (PC) is the twelfth most common cancer worldwide, with 460,000 new cases
reported in 2018 (1). In the United States alone, it is estimated there will be 55,000 new cases of PC
diagnosed in 2018, and 44,000 people with succumb to the disease (1). Over the last 40 years the
demographic most affected by PC has been white men over the age of 60 (2). One of the main risk
factors associated with development of PC is smoking, which is associated with a two-fold increase
in incidence (2). Even with advances in our understanding of PC, the incidence has been rising
∼0.5% each year over the last 10 years (2), and the 5-year survival rates in localized, regional (nodal
spread), ormetastatic disease have been 29, 11, and 2.6%, respectively (1–3). By 2030, PC is expected
to be the second-leading cause of cancer mortality, which primarily is due to late presentation of
symptoms and typically advanced disease stage at the time of diagnosis (2). Therefore, we need to
improve our methods for diagnosing, detecting, and treating pancreatic cancer.
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CURRENT AND EMERGING TREATMENT
TRENDS FOR PC

The current treatment paradigm for PC involves surgery,
radiotherapy, and chemotherapy (2, 4). Operative resection is
still the preferred treatment for resectable tumors. Advancement
in surgical and imaging technology likely contributed to a
slight decrease in PC mortality in the early 2010’s (2). In
1996, the first line treatment for patients with metastatic
PC included gemcitabine (5). Combinational studies using
gemcitabine with other agents failed to improve survival further
until nab-paclitaxel was added (6, 7), which increased the
median overall survival by 1.7 months compared to gemcitabine
alone. However, this combination regimen has toxicity which
excludes PC patients that have a poor performance status
(6, 7). Another treatment option for PC is FOLFIRINOX (5-
fluorouracil, irinotecan, and oxaliplatin), which resulted in a
4.3-month survival benefit compared to gemcitabine alone (8).
These two treatment options, FOLFIRNOX and gem/nab-p, are
the current best therapies until disease progression. Second-line
treatment options include nanoliposomal irinotecan and 5-FU
(approved in 2015), which improved median overall survival by
1.9 months compared to 5-FU alone (9).

Emerging treatment options for PC patients includes tumor
microenvironment targeting (including immunotherapies), gene
therapy, and PARP inhibitors. All immunotherapies are still in
the clinical trial phase, with the most advanced trial involving
CXCessoR4, a combination study with anti-CXCR4 (chemokine
receptor) and anti-PD-1 (programmed cell death protein, an
immune checkpoint inhibitor) (6, 10). In an open-label phase
1b study in patients that had disease progression while under
treatment, combinatory therapy with a CC-chemokine receptor 2
(CCR2) kinase antagonist and FOLFIRINOX produced a tumor
response in 49% of patients (6). A gene delivery system to
deliver wild type p53 (SGT-53) into tumor cells is currently being
tested in combination with gem/nab-p (6, 11). PARP inhibitors
inactivate the repair mechanism for single-stranded DNA breaks
(12, 13). These inhibitors induce cell death in tumors, and are
given in combination with DNA-damaging agents. Clinical trials
are currently underway for all of these emerging treatments for
PC. For many of these novel therapeutic regimens, a highly-
predictive preclinical model of PC might be helpful to assess
and/or optimize the regimen prior to a clinical trial, which
theoretically could reduce the risk of a failed clinical trial, thus
decreasing (i) cost of drug development and (ii) strain on clinical
resources. That is, a highly-predictive preclinical model of PC
could streamline the drug development pipeline.

CURRENT ANIMAL MODELING OF PC

Similar to many human diseases, the study of PC has been
aided by the use of genetically-edited murine models. Hallmark
genetic mutations that drive the progression of PC have been
well characterized (14–19). Oncogenic KRAS activation has been
observed in 95% of PC patients, with 99% of point mutations
occurring at the G12 position (20). Murine models have been

utilized to study KRAS and other genes involved with PC
progression, including TP53, SMAD4, and CDKN2A (14, 18,
19, 21). Expression of the mutant KRASG12D in mice produced
metastatic pancreatic tumors; duration of survival in these
subjects decreased further with TP53 antagonism (22). TP53
is a well-known tumor suppressor that promotes apoptosis in
response to cellular stress and DNA damage, and is mutated
in 70% of PC patients (20). Furthermore, deletion of tumor
suppressor genes (SMAD4 or CDKN2A) enhanced tumor growth
in a KRASG12D murine pancreatic cancer model (23, 24).

Despite the progress in genetically-edited murine PC models,
a basic issue persists in regard to the mouse’s relative ability
to recapitulate human disease, including progression of PC and
response to therapy. The magnitude of this issue is difficult to
quantity using the current biomedical literature, in which many
laboratories are heavily invested in the utilization of murine
models. To be clear, it is not the intent of this article to criticize
or discourage the use of mice in biomedical research, but rather
to echo other voices which have questioned the predictive ability
of murine models (25–27), and to propose alternative solutions.
There has been some indirect evidence of murine fallibility in
modeling human disease in the low regulatory approval rate
for therapeutics that actually have reached the clinical trial
stage, which has been in the range of 5–8% (28, 29). There
are many factors that contribute to this low drug approval
rate, but one likely reason is the less-than-optimal predictive
ability of some murine models (e.g., tumor xenografting into
immunosuppressed mice) to determine the efficacy of various
therapeutics in humans (30–37).

Rodents may not accurately reflect human biology due to
differences in physiology, anatomy, immune response, and
genetic sequence (26, 30, 31, 36). For example, there are a
number of genes for which the genotype-phenotype correlation is
different betweenmice and humans (Table 1). One of these genes
is APC+/−, in which the human phenotype includes colorectal
polyposis (leading to colorectal cancer); the murine APC+/−

mutant, however, develops small intestinal polyps. In addition,
current genetically-edited murine models of cancer have limited
tumor heterogeneity and low intratumor mutation rates (43–
45), which could limit the clinical relevance of these models
and their ability to study tumor immunity and immunotherapy
(45, 46). And finally, there is a practical limitation to using
murine models in preclinical research: size. Specifically, the
development of clinically-relevant diagnostic or interventional
technology often is not feasible with murine models due to their
small size.

In fairness, murine models are being continually refined for
cancer research, including genetically-engineered mouse models
(GEMMs) as described above, mice with humanized immune
systems (i.e., immunodeficient mice engrafted with human
hematopoietic stem cells), and in vivo site-directed CRISPR/Cas9
gene-edited mice (25, 31, 47–49). Bacterial microbiota models
also have been utilized to demonstrate the effects of bacteria
on cancer development and progression in murine models;
however the role of the microbiome has not yet been studied
in large animal models of cancer (50). Though promising,
these more sophisticated murine models come with increased
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TABLE 1 | Comparison of phenotypes from the same genetic mutations between mice, pigs, and humans.

Mutated

gene

Murine phenotype Porcine phenotype Human phenotype

APC (38) Small intestine polyps Colorectal polyps Colorectal polyps

CFTR (39, 40) Intestinal disease Cystic fibrosis Cystic fibrosis

TP53 (41) Axial skeleton tumors Long bone tumors Long bone tumors

DMD (42) No phenotype Progressive muscular dystrophy Progressive muscular dystrophy

cost and complexity, and experience with them is still early.
There remains a need for improved animal models of PC,
including potential alternatives to mice, to better predict the
human response to anti-cancer therapy. In addition, possession
of an animal model of PC with human-sized organs would
be helpful in regards to developing specific diagnostic and/or
interventional technologies.

RATIONALE FOR A LARGE ANIMAL
MODEL OF PC

As implied above, the rationale for utilizing a large animal model
to study PC is to (i) have a platform for research and development
of diagnostic/ therapeutic technologies that would not be feasible
in murine models, and (ii) to have a highly-predictive preclinical
model in which emerging anti-cancer therapies could be vetted
and optimized prior to clinical trial. Some current large animal
models that are used for biomedical research include non-
human primates, dogs, and pigs. Non-human primates are the
most “human-like,” but there are societal and ethical concerns
involved with the use of these animals for research (51, 52).
Similarly, utilization of dogs in biomedical research also can
bring up social concerns due to their role as companion animals
(53). However, secondary to their relatively long life expectancy
as companions, dogs have had some utility in the study of
treatments for natural/inherent (i.e., age associated) tumors,
including mammary carcinoma, prostate carcinoma, lymphoma,
and various sarcomas (54).

Due to their size similarity with humans, various strains
of pig have been used for years in biomedical research to
develop and refine surgical equipment, instrumentation, and
techniques (55). In addition, swine have greater similarity to
humans with respect to genomic, epigenetic, physiological,
metabolic, and immunological characteristics when compared to
the mouse-human similarities (56–60). Generally speaking, the
homology between the human and porcine genome is greater
than the homology between the human and murine genome. A
quantitative indicator of this genomic homology is difficult to
generate and depends on the chosen endpoints, a discussion of
which is beyond the scope of this review (55). However, these
homologies have been estimated at 80–90% (human-porcine)
and 60–70% (human-murine) (56, 61–63). Porcine models have
been utilized to study a wide range of fields, including physiology,
trauma, wound healing, and atherosclerosis (55, 59, 64). Along
with primates, swine have been a favored model to study

transplantation (65). Human-pig concordance with regard to
genotype-phenotype correlation is generally better than human-
mouse concordance (Table 1). For example, the CFTR−/− and
APC+/− mutants have the same basic phenotype in swine as in
humans (38–40). Of note, a porcine genome map was generated
in 2012, and further coverage, annotation, and confirmation is
ongoing (60, 63, 66). Genetic manipulation of pigs (including
knockouts, tissue-specific transgenics, inducible expression, and
CRISPR editing), formerly done mostly in mice, has become
more routine, with new gene-edited porcine models emerging
for diseases such as atherosclerosis, cystic fibrosis, Duchenne
muscular dystrophy, and ataxia telangiectasia (67–70).

Use of porcine models would offer other specific advantages.
An animal research as large and robust as a pig would
permit the testing of multiple, concurrent, clinically-relevant
interventions, such as surgery, catheter-directed therapy,
systemic chemotherapy, and/or radiotherapy; such combinatory
interventions would have questionable feasibility in mice.
Regarding the potential to study tumor biomarkers, the relatively
large blood volume of a porcine PC model would allow for
multiple blood samples to be drawn from the same pig during
tumor development (a luxury not possible with the mouse),
so precise timing and quantification of biomarker appearance
could be correlated with tumor stage. This capability is not
possible with a rodent model. On a similar note, immunotherapy
study in a porcine PC model would be facilitated by the ability
to obtain sufficient quantities of tumor-exposed immune cells
that could be conditioned for re-infusion, e.g., as an autologous
tumor-specific immunotherapy (71, 72). Furthermore, a porcine
PC model could provide clinically-relevant tumor size/burden
that would enable development and refinement of technologies
to image and localize tumor for diagnosis, treatment, and
surveillance (73). The relative size of the porcine subjects also
would facilitate the sharing of tissue and blood sample with other
investigators to a greater degree that could be accomplished
with rodents. This effect would increase the potential number
of investigators that could participate, the number of research
protocols that could benefit, and the total amount of data that
could be produced per research subject.

Of course, there are some caveats in using pigs to study PC.
Specifically, the disadvantages of using a porcine model of PC
with respect to a murine model include: (i) Husbandry and Cost.
Depending on the swine strain utilized, the research subject could
become quite large (>100 kg) if a prolonged (>1 year) latency
is required for tumor development. Specialized equipment
and experience would be necessary to handle such subjects.
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Husbandry is generally more cumbersome and expensive with
swine as compared to mice. (ii) Biosafety. Biosafety issues,
particularly when working with recombinant DNA technology,
become more complex when the subject is a pig that is house
in a pen, as opposed to a mouse inside a microisolator. (iii)
Aged Subject Availability. While it is possible to work with aged
murine subjects, and even elderly canine companion subjects,
this is not really practical with swine, which potentially have a 20–
30 year lifespan. Housing pigs for decades would be impractical,
costly, and difficult, primarily due to the relatively large size of
the mature subject (>150 kg for many strains). (iv) Reagents and
Tools. Although use of swine in biomedical research has been
growing, the availability of reagents and molecular tools specific
for swine is not at the same level of availability that exists for
mice. For example, the general availability of antibodies specific
for porcine antigens is less than that for murine and human
antigens. While difficult to quantify, in general this deficiency in
porcine research is slowly improving. Of note, some anti-human
antibodies will cross-react with porcine antibodies, but this has to
be determined on a case-by-case basis. Secondary to these and/or
other issues, it may not be practical or desirable for some research
laboratories to utilize porcine models.

A TRANSGENIC APPROACH TO PORCINE
PC MODELING: THE ONCOPIG
CANCER MODEL

In 2012, the University of Illinois and the NSRRC (National
Swine Resource and Research Center, nsrrc.missouri.edu)
engineered a Cre-inducible swine model (the “Oncopig;” mini-
pig background) (74) which carries an LSL-cassette containing
dominant negative TP53 (R167H mutation) and activated
KRAS (G12D mutation); i.e., the porcine analog of the
KRAS/p53 mouse (22). This Cre-inducible system allows for the
expression of both mutations in any cell within the pig. Upon
addition of adenovirus expressing Cre recombinase (AdCre)
to cultured Oncopig fibroblasts, expression of both mutant
KRAS and TP53 was noted (74). The transformed fibroblasts
had a shorter cell cycle length and demonstrated in vitro
“tumorigenic” properties (increased cell migration, soft agar
colony formation) and formation of tumors when injected into
immunocompromised mice (74). Injection of AdCre into the
subcutaneous/intramuscular regions of the Oncopig resulted in
tumor formation with pleomorphic features (74). This transgenic
pig hence became known as the Oncopig Cancer Model (OCM).

Primary pancreatic ductal cells were cultured from the OCM
and then infected with AdCre; these epithelial cells also displayed
a transformed phenotype in vitro, and expressed mutant KRAS
and TP53 (75). These transformed epithelial cells were injected
into SCID mice and formed subcutaneous tumors that were
histologically and phenotypically similar to human pancreatic
ductal adenocarcinoma (PDAC) (75). In vivo injection of AdCre
directly into the main pancreatic duct of an Oncopig resulted in
several nodular tumors after 12 months. Comparison of tumor
induced in the OCM pancreas with human PDAC revealed
similar morphological features, including a dense desmoplastic

stromal reaction that is one key hallmark features of human
PDAC (75). In addition, increased expression of proliferative
markers (ERK and PCNA) was present in the OCM pancreatic
tumor (75).

Key features of modeling PC with the OCM include: (1) the
initial tumor induction is genetically defined; (2) the induced
tumor is autochthonous; (3) the host has an intact immune
system, which is capable of producing an anti-tumor immune
response similar to humans, for studying immunotherapies (76);
and (4) the tumor induction procedure (AdCre injection) is
relatively simple and safe. However, there are some potential
issues, such as specificity. Injection of AdCre theoretically could
result in non-specific infection of multiple cell types, producing
a pleomorphic tumor which could detract from the clinical
relevance of the model. There also may an issue of tumor
latency with pancreatic tumor in the OCM; in the initial report
(75), pancreatic tumor formation required 12 months, and this
was not visible on computed tomography nor was it clinically
apparent. So, further refinement of the OCM for PC studies
might be beneficial.

ORTHOTOPIC APPROACH:
TRANSFORMED PORCINE PDECs

In contrast to the autochthonous mechanism of tumor
induction that the OCM provides, an orthotopic method of
tumor induction involves seeding of tumorigenic cells into
the pancreas, preferably into an immunocompetent host.
In pursuit of this model type, primary cultures of porcine
pancreatic ductal epithelial cells (PDECs) were established from
explants of normal pancreatic tissue; IHC for cytokeratin-19
in early-passage strains were consistent with epithelial origin
of the cultured cells (77). Strains of PDECs subsequently were
infected with a lentiviral vector containing GFP, TP53R167H,
and KRASG12D (LV-GKP; generated using porcine sequences),
producing clones with demonstrable expression of mutant p53
and KRAS; refer to Table 2 (77). Initial in vitro tumorigenic
assays of these clones (denoted as PGKP, for PDECs transformed
with LV-GKP) demonstrated increases in migration and soft agar
colony formation relative to primary PDECs (77). To further
increase the transformed phenotype of the PGKP cells, RNAi of
SMAD4 and CDKN2A were added using additional LV vectors,
with ∼70–90% knockdown (77). Relative to primary cells,
these secondary clones (PKGPS and PGKPSC) also displayed
increased proliferation, soft agar colony formation, invasion,
and migration, i.e., evidence of in vitro “tumorigenicity” (77),
with perhaps enhanced capabilities compared to the primary
clone (PGKP cells). The three types of transformed PDECs
(summarized in Table 2) were then implanted subcutaneously in
nude mice; all three cell lines formed tumors and demonstrated
equivalent in vivo tumorigenicity (77). In summary, PDEC-
derived tumorigenic cell lines were established, which currently
are undergoing orthotopic implantation into syngeneic,
immunocompetent domestic swine.

In terms of generating pancreatic tumor, the theoretical
advantages of transformed PDEC implantation over AdCre
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TABLE 2 | Characteristics of transformed porcine ductal epithelial cells [data published as preprint (77)].

KRASG12D p53R167H SMAD4 shRNA p16Ink4A shRNA Colony formation Proliferation Migration Invasion Xenografts

PGKP + + +++ +

PGKPS + + + ++ +++ + ++ +

PGKPSC + + + + +++ +++ + ++ +

P, porcine epithelial cells; G, GFP; K, KRASG12D; P, p53R167H; S, SMAD4; C, CDKN2A/p16. Transformed phenotypes of porcine pancreatic ductal epithelial cells in vitro and in vivo.

Scale of transformation +++ > ++ > +.

injection in the OCM include: (i) Specificity. the former technique
only involves transformed pancreatic ductal cells, meaning that
tumor induced with transformed PDEC implantation would be
more likely to originate from a specific cell type than tumor
induced with AdCre injection in the OCM. (ii) Target Flexibility.
Cell implantation permits the investigator to choose the targets
by which transformation will be accomplished, instead of being
restricted to mutant KRAS and TP53, as in the OCM. (iii) Host
Flexibility. The investigator can choose the background strain of
pig (or another species altogether) with cell implantation, while
the OCM by definition involves one transgenic genotype. (iv)
Cost. The purchase price of OCM subjects likely will be greater
compared to most strains of research-quality pigs (though this
cost differential becomes less of an issue in the face of multiple
months of housing that these experiments would require).

On the other hand, the potential disadvantages of transformed
PDEC implantation with respect to AdCre injection in the
OCM include: (i) Immune Rejection. If allogeneic transformed
PDECs are implanted, then there is the possibility that the
host would reject the transplanted material (this issue might
be minimized by utilizing syngeneic or autologous PDECs). (ii)
Simplicity. AdCre injection into the OCM is straightforward
and has potentially fewer Biosafety issues, as compared to
pancreatic harvest, primary cell culture, and numerous viral
transformations required for the PDEC implantation technique.
(iii) Local Environment. As discussed above, tumor induction in
the OCM is autochthonous, and likely does not involve local
traumatic disruption of tissue architecture which presumably
ensues when a cellular suspension is injected. However, the
amount and biological relevance of local architecture disruption
in these models is not known at this time.

APPLICATIONS AND IMPACT

The availability of a validated, genetically-defined porcine model
of PC would have multiple potential applications, including (in
no particular order):

1. Development and refinement of catheter-based technologies
for diagnosis and/or intervention.

2. Discovery and study of serum tumor biomarkers (“liquid
biopsy” technology).

3. A preclinical trial tool: a penultimate platform to test
novel chemotherapeutic agents that were screened in murine
models, prior to pushing a nascent therapy into an expensive
clinical trial.

4. A platform for the testing of multiple, concurrent, clinically-
relevant interventions, such as surgery, catheter-directed
therapy, systemic chemotherapy, and/or radiotherapy (as
described under the Rationale section).

5. Study of early events in tumor initiation and progression in
an animal subject with a relatively high degree of genetic,
physiological, metabolic, immune, and anatomic similarity
with humans.

6. Detailed study of tumor heterogeneity (facilitated by a
relatively large tumor specimen).

7. Study of the interactions and effects of the microbiome on
tumor biology.

8. Development and refinement of tumor-visualization aids
(such as fluorescent tumor agents) to assist with R0 resection
in surgery.

9. Development and refinement of tools for open and minimally
invasive surgery.

10. Refinement of existing imaging tools (such as MRI-based
technologies) to diagnosis early stage tumors.

11. Development of novel tumor imaging tools.
12. An educational tool to instruct trainees in surgical

resection techniques.

The primary impact of such a porcine PC model would
be to increase the efficiency and safety at which impactful
technologies and therapies could be brought into the clinical
realm. For example, the anti-tumor effect and toxicity of a new
chemotherapeutic regimen could be vetted in the porcine model,
which could promote (or eliminate) the regimen’s introduction
into a clinical trial; this screening step likely would increase
the probability of success for the human study. As another
example, the feasibility, safety, and utility of a catheter-directed
energy source in the treatment of PC could be accomplished
in a porcine model without ever having to place a patient at
risk. Another impact of a porcine model of PC would be an
increased understanding of the molecular and cellular biology of
the disease in an animal model that would have more relevance
than the mouse.

CONCLUSION AND FUTURE DIRECTIONS

Current murine models of PC have been tremendously helpful
in the progression of understanding and treatment for this
disease, but there is an ongoing issue of the relative predictive
ability of these murine models. The issue of modeling
accuracy likely has contributed in part to an unacceptably
high failure rate of experimental therapeutics in clinical trials.
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Utilizing pigs to model PC has potential benefits, including
relevant subject size, increased genetic homology, and better
immunological/metabolic mimicry with respect to humans.
Specifically, the size of pigs allows for improvement upon
imaging and surgical techniques which is not possible with
rodents. The OCM has already demonstrated that pancreatic
tumor can be induced in the pig with histopathological features
similar to human PC. This PDAC model will provide ways
for improving early detection, imaging, and surgical techniques
of PDAC by following the disease after a defined induction
point. Even though the current OCM does have some limitations
due to the amount of time it takes to develop tumors,
this model potentially could be refined to accelerate tumor
growth; for example, by introducing additional edits within
the Cre-recombinated cells that would inhibit DNA repair
and promote genomic instability, or by generating a tissue-
specific inducible promoter for targeted initiation of cellular
transformation upon AdCre administration. Another approach
to generate a porcine PCmodel has been orthotopic implantation
of transformed PDECs into the pancreas of the syngeneic,
immunocompetent pigs. Additional approaches to pancreatic
tumor induction in the pig might include direct pancreatic
infection with viral vectors containing key tumor-associated

gene sequences, in vivo CRISPR editing, or combinations of
two or more of the technologies described herein. To address

the issue of tumor induction in relatively young subjects, diet-
induced metabolic syndrome could be used as an adjunctive
measure, which likely would increase the physiological age
of the subject (and mimic a common clinical co-morbidity).
Work remains to be done in the development and validation
of a tractable porcine model of PC. Once established, however,
a porcine PC model should be a useful addition to the
armamentarium of the PC researcher, and should be able
to augment and/or complement work done with established
murine models.
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