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Gastric cancer stem cells (GCSCs), a small population among tumor cells, are

responsible for tumor initiation, development, metastasis, and recurrence. They play a

crucial role in immune evasion, immunomodulation, and impairment of effector immunity

and believed to be emerged to change the balance of the immune system, importantly

CD4+ T cells in the chronic inflamed tumor site. However, different subtypes of innate

and adaptive immune cells are involved in the formation of the immune system in the

tumor microenvironment, we would look at T cells in this study. Tumor microenvironment

induces differentiation of CD4+ T cells into different subsets of T cells, mainly suppressive

regulatory T cells (Treg), and T helper 17 (Th17) cells, although their exact role in tumor

immunity is still under debate depending on tumor types and stages. Counterbalance

between Th17 and Treg cells in the gastrointestinal system result in the homeostasis

and normal function of the immune system, particularly mucosal immunity. Recent data

demonstrated a high infiltration of Th17 and Treg cells into the gastric tumor site and

proved that tumor microenvironment might disturb the balance between Th17 and Treg.

It is possible to assume an association between activation of CSCs which contribute

to metastasis in late stages, and the imbalanced Th17/Treg cells observed in advanced

gastric cancer patients. This review intends to clarify the importance of gastric tumor

microenvironment specifically CSCs in relation to Th17/Tregs balance firstly and to

highlight the relevance of imbalanced Th17/Treg subsets in determining the stages and

behavior of the tumor secondly. Finally, the present study suggests a clinical approach

looking at the plasticity of T cells with a focus on Th17 as a promising dedicated arm in

cancer immunotherapy.
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INTRODUCTION

Gastric cancer with a high prevalence is the fourth common cancer and second death leading
cancer worldwide. About 90% of stomach tumors are adenocarcinomas, which are subdivided into
two main histological types: undifferentiated or diffuse type, and well-differentiated or intestinal
type, that respectively accounts for 28 and 23% of following lung and liver cancers. In addition to

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.00226
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.00226&domain=pdf&date_stamp=2019-04-05
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gh.solgi@umsha.ac.ir
mailto:mebrahimi@royaninstitute.org
https://doi.org/10.3389/fonc.2019.00226
https://www.frontiersin.org/articles/10.3389/fonc.2019.00226/full
http://loop.frontiersin.org/people/708068/overview
http://loop.frontiersin.org/people/707746/overview
http://loop.frontiersin.org/people/618696/overview
http://loop.frontiersin.org/people/656558/overview
http://loop.frontiersin.org/people/611154/overview


Rezalotfi et al. Gastric CSc Regulate the Th17/Treg

hereditary cases which account for 1–3% of all gastric cancers,
environmental factors consist of low consumption of fruits and
vegetables and high intake of salts, nitrates, and pickled foods,
as well as smoking, gastro-esophageal reflux disease, and obesity
have been clearly related to increased risk of gastric cancer.

Epstein-Barr virus and Helicobacter pylori (H. pylori)
infection cause to 80% of gastric stromal carcinoma and
70% of all gastric cancer cases worldwide (1), respectively.
These indicated the important role of the immune system in
gastric cancer initiation and development. Indeed, oxidative and
nitrosative stress and consequent cellular and DNA damage
followed by cycles of repair have been considered as important
chain events in H. pylori-induced gastric carcinogenesis. Many
of these events occur in chronically inflamed gastric mucosa.
It is reported that the number of macrophages and dendritic
cells (DCs) are increased in the infected gastric mucosa and
caused to produce IL-6, IL-1β, IL-12, tumor necrosis factor-α
(TNF-α), and stromal cell-derived factor (SDF1α) that induce
inflammation and initiation of Th1 responses. Th1 secrets IFN-
γ and promotes chronic gastric inflammation. These consecutive
events result in an epithelial to mesenchymal transition (EMT)
and neoplastic transformation (1). Despite induction of immune
response in infected individuals, H. pylori evades from adaptive
immune response using virulent factors and subverts gastric
epithelial cells which in turn mediates inhibition of T cell
proliferation and induces Treg cells from naïve T cells. To this
gastric epithelial cells express a high level of B7.H1 (PD-L1)
(a T cell co-inhibitory molecule) that its interaction with PD-
1 leads to a reduction of T cells activity simultaneously with
induction of Treg cells. In addition to Treg cells, other CD4+

T cells including Th17 cells contribute to T cell responses in
infection induced-immunity. It has been reported that IL-17
secreted by Th17, stimulates gastric epithelial cells to release IL-
8, which leads to neutrophils recruitment and enhanced chronic
inflammation (2). Chronic inflammation can provide a gradual
progression from chronic gastritis to gastric atrophy, intestinal
metaplasia, dysplasia that is in favor of gastric cancer promotion
(3).In fact, H. pylori infection induces Th1 and Th17 responses
to support chronic inflammation and the unsuccessful clearing
of the infection. Moreover, resistance infection stimulates Treg
cells to reduce immune response against H. pylori. All of these

Abbreviations: Th, T helper; Treg, Regulatory T cell; MHC, Major

histocompatibility complex; TGF-β, Transforming growth factor beta; IL,

Interleukin; IFN-γ, Interferon gamma; CD, Cluster of differentiation; H.

pylori, Helicobacter pylori; EMT, Epithelial to mesenchymal transition; CCL,

Motif chemokine; CXCL, Chemokine (C-X-C motif) ligand; DCs, Dendritic

cells; TNF-α, Tumor necrosis factor-α; SDF-1α, Stromal cell-derived factor-1α;

MDSCs, Myeloid-derived suppressor cells; Arg-I, Arginase I; iNOS, Inducible

nitric oxide synthase; PDL-1, Programmed death-ligand 1; BMDCs, Marrow-

derived cells; TAMs, Tumor associated macrophages; CAFs, Cancer-associated

fibroblasts; APCs, Antigen presenting cells; TILs, Tumor infiltrating lymphocytes;

GMFs, Gastric myofibroblasts; MCP-1, Monocyte chemoattractant protein-1;

RANTES, Regulated on activation, normal T cell expressed and secreted; PGE2,

Prostaglandin E2; PGE1, Prostaglandin E1; HIF-1α, Hypoxia-inducible factors-

1α; VEGF, Vascular endothelial growth factor; MIP-2, Macrophage inflammatory

protein-2; IDO, Indoleamine 2,3-dioxygenase; PMP, Platelet microparticles; CpG-

ODNs, CpG oligodeoxynucleotides; pDCs, Plasmacytoid dendritic cells; TLR-9,

Toll-like receptor 9.

changes favor cancer progression (4). In addition, a correlation
between the increased number of Th17 (5) and Treg (6) cells
and course of disease was reported in the previous studies.
The main concept of the present review is clarifying the role
of tumor microenvironment in Th17 and Tregs induction as
well as Th17/Treg balance in gastric cancer. Then we pay more
attention to the role of cancer stem cells in changing the balance
of Th17/Treg and its clinical perspective.

THE ROLE OF THE MICROENVIRONMENT
IN GASTRIC CANCER DEVELOPMENT

Tumor microenvironment consists of diverse cell types such
as tumor cells, gastric epithelial cells, tumor fibroblasts, cancer
stem cells, and components of the innate and adaptive immune
system. Each cell not only affects on tumor progression
but also modulates immune system locally. Indeed persistent
chronic inflammation provokes to damage of gastric epithelial
mucosa followed by recruitment of bone marrow-derived cells
(BMDCs). BMDCs fusion with local gastric epithelial cells
leading to tissue remodeling, transformation, and potentially
progression of malignancy (7). Moreover, fibroblasts gradually
recruit from bone marrow to stomach in response to produced
TGF-β and SDF-1α following the inflammation caused by
H. pylori, to inhibit inflammation and repair the injury,
however chronic inflammation derived-dysplasia differentiates
them to cancer-associated fibroblasts (CAFs) with the potential
to gastric cancer development (8). It has been also observed
that CAFs constitute a major stromal compartment actively
communicate with cancer cells through growth factors or
inflammatory cytokines such as HGF, IL-6, TGF-β, VEGF, FGF,
and CXCL12 that can promote tumorigenesis and progression
(9). Crosstalk between tumor cells and other stromal cells
including MSCs (10), endothelial cells (11), vascular cells,
extracellular matrix, tumor-infiltrating lymphocytes (TILs) (12),
and tumor-associated macrophages (TAMs) (13) consequently
give rise to morphogenesis, angiogenesis, invasion andmetastasis
of tumor (14), and also modulate the immune system (Table 1).
Mechanistically, they act through the cell to cell contact
and largely by their secretome including various angiogenic
factors, comprising vascular endothelial growth factor (VEGF),
interleukin-8, and platelet-derived endothelial cell growth factor
(PDGF) in gastric cancer that help tumor progression through
escaping the active antitumor immunity (9).

Tumor infiltrated immune cells in gastric cancers are included
different types of cells such as mast cells, TAMs, and TILs consist
of T cells, B cells, andNK cells. The subset of T cells is represented
by CD8+ cytotoxic T cells, CD4+ T helper cells, CD45RO+

memory T cells, NK cells, and FOXP3+ regulatory T cells. These
cells can infiltrate stroma and tumor cells and are considered
a manifestation of the host immune response against tumor
cells (27).

Clinical studies have indicated that the increased number of
Treg cells within TILs may be one of the reasons for insufficient
antitumor immunity in cancers (28). The increasing number of
Tregs also acts as a tumor promoter in early stages and even in
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TABLE 1 | Cellular components of gastric cancer microenvironment.

Cells Function Mediators Reference

Tumor components Gastric cancer cells Induce Treg cells differentiation TGF-β (15, 16)

Gastric epithelial cells Recruitment of neutrophils and enhanced

inflammation

IL-8 (17)

CD14+ gastric cancer

mucosa

Mediate FoxP3+ Treg cells infiltration in early stages

of gastric cancer

CCL-22 / CCL-17 (6)

Tumor-derived stromal cells,

fibroblasts, and APCs

Recruitment and expansion of Th17 and Treg cells IL-1β/ IL-6 /IL-23 and TFG-β (5, 6, 18)

Gastric epithelial cells Inhibition of T cell activation PDL-1 (19)

Attenuation of MHC-II expression and subsequent

antigen presentation

TGF-β

Host immune system Neutrophils Suppress T cells PD-L1 (20)

Recruitment of BM-derived cells IL-6, IL-1β, TNF-α, CXCL-12 (21)

MDSCs Deplete arginine and suppress T cells proliferation Arg-I, iNOS (22)

TAMs Promote the proliferation, invasion, and metastasis

of gastric cancer cells

CCL-5 (23)

Th17 cells Angiogenesis

Tumor progression

IL-17 (24–26)

Th1 cells Cause chronic gastric inflammation IFN-γ (17)

FoxP3+ Treg cells Limit Th17 cancer-associated inflammation (24)

ALDH, Aldehyde dehydrogenase; CD, Cluster of differentiation; GCSC, Gastric cancer stem cell; CTC, Circulating Tumor Cell; EpCAM, Epithelial cell adhesion molecule; Lgr5m, Leucine

Rich Repeat Containing G Protein-Coupled Receptor 5; ABC, ATP-binding cassette.

later stages of disease which in turn, can develop progression
andmetastasis of cancer (29). Moreover, the increased number of
Th17 in TILs detected in gastric cancer patients may also involve
in gastric cancer development (5).

GASTRIC CANCER AND IMMUNE
MODULATION

Gastric tumors like other tumors consist of cellular and
non-cellular components while their activation promotes
initialization, evasion, migration, and progression of cancer.
Commonly, tumor cells evade the immune system through
downregulation and impairment of the immune responses
in malignancies including gastric cancer (Figure 1). One
of the critical mechanisms is to interfere and attenuate
antigen processing and presentation pathways, leading to
the impediment of exposure of neo-antigens (30). Induction
of apoptosis through Fas/FasL pathway is the other major
mechanism by which tumor cells expressing FasL interact with
TILs expressing Fas contributing to Fas-mediated apoptosis (31).
Furthermore, immune-suppressor neutrophils expressing PD-L1
activated by tumor-derived granulocyte-macrophage colony-
stimulating factor (GM-CSF), have been reported to increase
in gastric cancer microenvironment. The activated neutrophils
subsequently suppress T cells through engagement of PD-L1:
PD-1 inhibitory pathway leads to impairment of antitumor
immunity and gastric cancer progression (20). Moreover, TAMs
as one of themost frequent infiltrated population in gastric tumor
stroma, inhibit antitumor T cell immunity and are related to poor
prognosis (31). Macromolecules secreted by fibroblasts (e.g.,
collagen, fibronectin, and proteoglycan) as extracellular matrix
not only shape the tumor and stabilize the physical structure of

tumor tissue but also regulate the behavior of infiltrated immune
cells inside the tumor microenvironment (32).

Another major component of infiltrated immune cells in the
tumor microenvironment are Treg cells. Treg induced anergy
contributes to the reversal of recognition and eradication of
cancer cells via antitumor T cell immunity. Therefore, Treg
cells play a critical role in evading antitumor immunity (30).
Interestingly, a unique subpopulation of Treg cells has been
identified among infiltrated immune cells in gastric cancer.
CD45RA−CCR7−Treg cells with an effector/memory phenotype,
express low level of HLA-DR molecules and accumulated in
tumor tissues of patients with gastric cancer. TNF-α produced by
tumor cells induces CD45RA−CCR7−Treg subset and inhibits
their HLA-DR expression by phosphorylation and activation
of STAT3. This immune suppressive population substantially
prevents antitumor CD8+ T cells in vitro, while supports the
tumor growth and progression via IL-10 production as well as
cell to cell contact and also is associated with advanced stages of
the disease and reduced survival (33).

It has been shown that gastric myofibroblasts (GMFs)
that are highly-expressed MHC-II cells can induce Th17
cells differentiation from CD4+ T cells under Th17-polarizing
condition. The enriched Th17 population in inflammatorymilieu
might lead to the persistence of inflammation and is associated
with carcinogenesis (34).

Th17 AND Treg
RECRUITMENT/EXPANSION BY GASTRIC
CANCER COMPONENTS

CD4+CD25hi+Foxp3+ regulatory T cells are known with their
inhibitory activity, largely by production of TGF-β and play a
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FIGURE 1 | Illumination of immunomodulation induced by H. pylori infection and gastric cancer. (A) H. pylori-induced inflammation contributes to initiate damaging of

gastric epithelial cells and production of inflammatory cytokines leading to the immediate response of Neutrophils, Macrophages, NK cells, MDSCs, and recruitment of

fibroblasts from the bone marrow. Contribution of T cell subsets specifically Th1, result in partial but not complete elimination of bacteria. (B) Chronic

inflamed/damaged epithelium promotes atrophy. Continued inflammation with the activity of Th1 and Th17 leads to the emergence of Th2 cells that causes tissue

remodeling and promotes dysplasia. Production of TGF-β mainly by Treg cells accompanied by IL-6 result in the recruitment of stem cells and differentiation of CAFs

which help to initiate the malignancy. (C) Tumor angiogenesis contributes to the infiltration of immune cells and promotes tumor growth. The secretion of IL-17 from

Th17 cells leads to an increase in the angiogenesis and the further recruitment of suppressor immune cells through chemokines secreted by tumor cells. Further

immunosuppressive activity is caused by the expression of co-inhibitory molecules by tumor cells and the secretion of suppressive molecules.

critical role in preventing autoimmunity and tumor progression
(35), while IL-17 producing RORγ+ Th17 cells have well-
described roles in autoimmune disease, although their role
in tumor immunity remained unknown (36). As mentioned
previously, gastric cancer is a clinopathology state of chronic
sterile inflammation that provides an immunosuppressive
condition resulting infiltration of high frequencies of both
Th17 and Treg infiltration (37). Mechanistically, expression of
lymphoid homing receptors including CCR4, CCR6, and also
CD62L on Treg cells during cancer development leads to the
gradually increased number of tumor-associated Treg cells (38)
through secretion of CCL17 and CCL22 (ligands for CCR4) by
tumor cells as chemotactic factors in early stages of gastric cancer
(39). Indeed, tumor inflammatory milieu intelligently recruits
Treg cells to suppress antitumor immunity (18). Most of the
stromal cells beside gastric cancer cells have the potential of

producing TGF-β followed by activation of hypoxia-inducible
factors-1α (HIF-1α) in the tumor microenvironment. This in
turn promotes Treg infiltration (15). However, TGF-β alone is
not enough to infiltrate Treg (40) and presence of prostaglandin
E2 (PGE2) and also H-Ferritin may favor for FOXP3+ cells
infiltration and differentiation (16).

Although it has been frequently reported that Treg cells are
significantly prevalent in gastric cancer, recent evidence has
emphasized on the importance of the disturbed balance of Th17
and Treg cells in gastric cancer patients, while the ratio of
Th17/Treg is obviously higher in patients with advanced gastric
cancer compared to healthy controls. Furthermore, patients with
lymph node metastasis have indicated a significantly increased
ratio of Th17/Treg cells (24). Tumor-derived fibroblasts produce
MCP-1 (CCL2) and RANTES (CCL5) could attract Th17 cells
intensively. In the murine immune system, TGF-β, and, IL-6
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strongly stimulate Th17 and IL-17+CD8+ cells synchronously,
while exogenous IL-2 significantly reduces both Th17 and IL-
17+CD8+ cells in vitro and conversely increases the number of
Treg cells. Moreover, the blockade of IL-2 leads to a decrement
in number of Tregs, while enhancing IL-17+CD4+ and IL-
17+CD8+ populations. It can be concluded that IL-2 may have
opposite effects on Th17 and Treg differentiation in the murine
system. This is indicative of the key role of IL-2 besides TGF-β
and IL-6 in the regulation of Th17/Tregs balance (41). Moreover,
although Th17 cells differentiation is driven by TGF-β in mice, its
role in human remained controversial (42). MDSCs, a population
in tumor microenvironment also promote either Treg or Th17
cells expansion by their secretion (43). Most of the cells in
tumormicroenvironment recruit and expand Treg and Th17 cells
through production of cytokines and chemokines (44).

THE FUNCTION OF IL-17 PRODUCING
CELLS IN GASTRIC CANCER: A
CONTROVERSIAL STORY

CD4+T cells (Th17) and CD8+ IL-17 producing cells T
cells (Tc17) have reported in patients with gastric cancer
(45). It has been suggested that both IL-17+CD4+ and IL-
17+CD8+ in tumor microenvironment can take a pathogenic
role contributing to tumor progression (41). It has been also
depicted that the expression of IL-17 in gastric cancer tissues
and an increased number of Th17 might be related to tumor
promotion due to IL-17-mediated inflammation (24). Moreover,
there is evidence for the positive effect of IL-17 on the production
of pro-angiogenic factors including VEGF, prostaglandin E1
(PGE1), PGE2 and macrophage inflammatory protein-2 (MIP-
2) by fibroblasts and tumor. In addition, vascular endothelial
cell migration and cord formation stimulated by IL-17 leading
to increased angiogenesis and promote tumor growth. It has
been also dedicated that IL-17 can provoke production of IL-
8 in both epithelial cells and macrophages which in turn, may
enhance the recruitment of inflammatory cells into the tumor
sites. Neutrophils with or without macrophages are activated
through IL-8 stimulation, and also have been related to tumor
progression [77] by several mechanisms including angiogenesis
and invasion (46). These data suggest that IL-17 production
by Th17 CD4+ cells in tumor microenvironment leads to
tumor progression by angiogenesis and neutrophil infiltrating in
patients with gastric cancer (25). A novel subpopulation of ex-
Th17-FoxP3+ cells has been shown to have a substantial role
in tumor initiation and progression. This study has reported a
dual role for this population. While RORγt expression promotes
an inflammatory response, the expression of FoxP3 commits the
suppressor actions (47). These data propose a potential role for
inflammatory Th17 cells in cancer pathogenesis.

In contrast, some other studies have suggested that increased
level of IL-17 in tumor site leads to the improved antitumor
immunity of TCD4+IL-17+ cells through inducing Ag-specific
cytotoxic T cells (48), while tumor infiltrated Th17 cells per se
are not able to kill or inhibit tumor cells proliferation in vitro
and conversely, promote tumor progression due to the existence

of TGF-β and IL-6 in local tumor site (18). In addition, it has
been reported that tumor-infiltrating Th17 cells express several
effector cytokines in cancer patients, similar to that observed
in patients with infectious diseases. This suggests that tumor-
associated Th17 cells might also play an antitumor role in the
context of the tumor. According to this possibility, Th17 cells
are positively associated with effector immune cells, including
cytotoxic CD8+ T cells, NK cells, and IFNγ-producing Th1 cells
in the tumor microenvironment in vitro and human. Moreover,
it has been documented that tumor growth and lung metastasis
enhanced in many IL-17-deficient tumor models, and forced
expression of IL-17 in tumor cells was shown to suppress tumor
progression (49).

It has been investigated that IFN-γ-producing Th1-like
cells, which seemed to be converted from CD8+IL-17
producing cells, exhibited strong cytotoxicity for the
eradication of tumor cells. This conversion of Tc17 cells
into Th1-like cells may be due to epigenetic modifications
as seen in Th17 cells, appearing to be critical for the
acquisition of the antitumor feature for Tc17 cells in
tumor immunity (50). Therefore, depending on the milieu,
Th17 cells can accept both pro/antitumor roles in the
tumor microenvironment.

Th17/Treg PLASTICITY IN GASTRIC
CANCER

Different types of T cells including Th1, Th2, Th17, and Treg cells
exhibit significant developmental plasticity through epigenetic
mechanisms (51) that are required to preserve homeostasis
particularly in the gastrointestinal tract (52). The induction of
selective gene expression that results in the development of
distinct phenotypes, comes from changes in cytokine milieu
that can be sensed by the signal transducer of transcription
factors which in turn regulate the expression of master
regulators of each lineage with the consideration of chromatin
accessibility (53).

It has been suggested that FOXP3+ Treg cells might become
unstable under certain inflammatory conditions andmight adopt
a phenotype that is more characteristic of effector CD4+ T cells
(54). In addition, it was argued that loss of FoxP3 expression
resulted in the capacity to become IL-17-secreting cells.
Furthermore, in response to IL-12 in vitro, Treg cells can produce
IFN-γ (55).

Th17 cells have also shown the plasticity based on the milieu
in which they are located and emerge the transient phenotypes
with partially inflammatory and suppressive phenotype. IL-
17+Foxp3+ T cells can be derived from CCR6+ but not CCR6−

T cells and play role in Th17/Treg differentiation process. They
represent partially Th17 (inflammatory) and Treg (inhibitory)
cells. Moreover, IL-17+Foxp3+ T cells, as proinflammatory Treg
cells produce IL-17 and moderate levels of IL-2, IFN-γ, and
TNF-α resulting in the aggravated inflammatory response (56).
Identification of FoxP3hi and FoxP3lo-IL-17 producing Tregs is
evidence for de novo FoxP3 expression in IL-17 producing T cells
in human (57). Preclinical studies have implicated phenotypic
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markers in IL-17+Foxp3+ T cells overlapping between Treg
cells and Th17 cells. This population simultaneously expresses
CD25 and CCR4 that identified in Treg cells and CD161 and
CD49d as Th17 cell markers (37) as well as Th17/Treg plasticity
markers (58). Th17 cells also might be a source of tumor-
induced FoxP3+ cells besides nTreg and iTreg cells which
have developed from naïve CD4+ precursors (58). in addition,
FoxP3+RORγt+ IL-17-producing T cells as an unstable lineage
have detected in colon cancer (59) proposed that they can be
originated from FoxP3+Treg cells. This subset has preserved
their immune suppressive function, while they have lost their
anti-inflammatory function, Therefore regulation of the balance
between Th17 and Treg subsets from a common precursor
depend on the milieu and it seems that Treg cells enrichment
may have a key role in Th17 development (60). Further analysis
suggests that impairment of Th17-to-FoxP3+ T cells along
with induction of FoxP3+−to-Th17 (58)-to-Th1-like (61) IFN-γ
producing cells transdifferentiation can be a reliable approach for
Treg cells depletion within the tumor microenvironment, due to
the inability of committed Th1 to convert to Treg in Th1-Th17-
Treg axis (55). Studies on autoimmune disorders have shown
that ex-FoxP3+IL-17+ cells are accumulated selectively at the
inflammation sites. This is another proof of plasticity feature
of FoxP3+ T cell subset, whereas the committed Treg cells are
stable (62). Metabolic regulator of immune responses such as
nutrient, energy, oxygen, and stress level along with transduction
signals like mTOR, HIF-1α, and AMP-activated protein kinase
(AMPK) regulate the Th17/Treg balance. Therefore, besides
inter-conversion developmental factors, additional factors induce
the Th17/Treg balance through transcription factors. In this
context, the same signal might lead to both Th17 and Treg
induction depending on the microenvironment components. For
instance, PGE2 increase Th17 through the production of IL-23
and IL-1β by DCs and macrophages, while it can also induce
expansion of IL-10 producing Treg type-1 cells (Tr1) as a result
of tumor cells secretion as well as expression of COX2/PGE2
by Treg cells (63). Activation of JAK/STAT, TGF-β, STAT3 and
mTOR also skew the Th17/Treg balance toward Th17 cells
differentiation (64).

Recent studies have demonstrated that tumor-derived Th17
cells produce low levels of TGF-β and IL-10 after stimulation
with anti-CD3 in vitro and express CTLA4, FoxP3, and CD25 as
Treg cell markers, while they do not suppress tumor progression.
This in turn, confirms the developmental plasticity of Th17 cells
and exhibits a yin and yang performance, meaning that Th17
infiltrating cells have either a regulatory or an antitumor role
in gastric cancer microenvironment. Enhanced production of
PGE2, IL-1β, IL-6, TGF-β as well as arginase, indoleamine 2,3-
dioxygenase (IDO) and IL-10 from MDSCs implicitly mediate
reciprocal differentiation of Th17 and Treg cells in a defined
circumstance of tumor microenvironment (65). IDO and iNOS
produced by MDSCs both are critical molecules for regulation
of Th17/Treg balance. Descriptively, it has been investigated that
Th17 differentiation induces through IL-6R mediated pathway.
In addition, iNOS/NO induces TGF-β mediated FoxP3+

Tregs differentiation and downregulates IL-17-mediated Th17
responses (66). Moreover, Helios, a transcription factor involved

in FoxP3+Treg cells development stability, is also associated with
development of highly suppressive Treg cells (67) and is highly
expressed in the tumor microenvironment (68) which in turn,
might have a role in the regulation of the balance between Treg
and Th17.

GASTRIC CANCER STEM CELLS

Recent findings suggest that CSCs, as immortal tumor-initiating
cells with self-renewal property and pluripotent capacity, have
been characterized in multiple malignancies including leukemia
and different solid tumors. CSCs due to their exceptional features
are responsible for tumor initiation, development, metastasis,
and recurrence. Based on the CSC model, all other cells
within the tumor bulk are derived from primary differentiated
CSCs, without considering the existence of mutations and
genetic variations during tumor development. This event named
“clonal evolution model.” To date, CSCs have been identified
in various solid tumors including gastric cancer (69). GCSCs
are defined and isolated by cellular markers expression (70)
that are listed in Table 2. In addition to cellular markers, a
variety of methods are used to identification and isolation
of CSCs including side population, sphere formation, in vivo
tumorigenicity, self-renewal capacity and signaling pathways,
although these methods have advantages and disadvantages,
and should be used according to the tumor types and tumor
location (83). These cells exhibit potential to form tumor
spheres under non-adherent cell culture conditions and form
gastric tumor xenografts in immune-deficient mice (84), as
well as escape from immune-mediated destruction (85). The
chronic infection andH. pylori contribute to TGF-β1 production
that induces gastric cancer stem cells emergence that is in
favor of early stages of gastric tumorigenesis and elicits an
EMT (86).

CSCs similar to other tumor cells evade the immune system
by changing their immunogenicity and also are capable to impair
the immune response through the expression or secretion of
factors impeding antitumor immune responses. Interestingly,
CSCs are also able to partially mimic antigen presenting cells
(APCs) with regard to MHC I and PD-L1 expressions. Elevated
expression of PDL-1 on CSCs surface, inhibit T cell activation
and induce anergy. CSCs secret TGF-β in more concentration
than their non-CSCs. TGF-β secretion is associated with
decreased expression of MHC II and subsequently attenuate
antigen presentation, whereas it stimulates regulatory T cells
expansion (87).

Several studies have identified a connection between innate
immune cells (i.e., macrophages and MDSCs and DCs) and
adaptive immune cells such as regulatory T cells with CSC.
The immune cells could accelerate CSC-specific expansion and
maintenance both directly and indirectly via their secretions.
The interaction between Treg cells and CSCs largely remained
obscure, but a recent study concerning the role of Treg cells
in colorectal cancer has been proved that FoxP3+IL-17+ cells
promote the expansion of CSCs by secreting of hypoxia-induced
IL-17 (30).
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TABLE 2 | Gastric cancer stem cell markers.

Markers Sources Main Points Reference

ALDH high/low,CD133,

CD44

Sphere Mouse Forestomach

Carcinoma (MFC)

-ALDHhigh GCSCs possess a high level of

self-renewal ability but resting stage.

-The ALDHlow GCSCs with limited self-renewal

ability, but a rapid proliferation stage.

(71)

CD24, CD44, Vimentin,

ALDH, Cytokeratin

18low

Sphere MKN-45,

SGC7901

MKN45 cells exhibited a higher sphere-forming

efficiency than SGC7901 cells with higher

expression of CD44 and CD24.

(72)

CD44, CD133, CD24 Sphere Tumor tissue -Primary cancer tissues express less CD44 and

CD133 compared with metastatic

cancer tissues.

-CD44 increases Oct4 expression through ERK

pathway in a positive feedback loop and

maintains the stemness of gastric cancers.

-CD44 might be a driving factor in the

development of CSCs in addition to being a

surface marker.

(73, 74)

CD44, CD54 Sphere Tumor tissue

Circulating GCSC

-GCSCs are indeed in the circulation and

support the hypothesis that the CTC

population contains CSCs.

(75)

EpCAM, CD44 Sphere Tumor tissue -Both CD44 and EpCAM markers are needed

for isolation of cancer stem cells directly

from patients.

-In addition to in vivo experiments, gastric

cancer stem cells generate various

differentiated cells in cancer sphere culture.

(76)

CD90
Primary tumor cells

Tumor tissue

Xenotransplantation

A higher proportion of CD90+ cells correlates

with higher in vivo tumorigenicity of gastric

primary tumor models.

(77)

EPCAM, CD133,

CD166, CD44,

ALDHhigh

Primary tumor cells

Cell line

Cell line

Xenograft

MKN-45,

MKN-74

Sphere

Sphere

-CD44 and ALDH are the most specific

biomarkers to detect and isolate tumorigenic

and chemoresistant gastric CSCs in noncardia

gastric carcinomas.

-Tumorigenic and chemoresistant gastric CSCs

co-express EPCAM, CD133, CD166, CD44,

and ALDH.

-ALDH is the most specific biomarker for CSC

enrichment before CD44 in both diffuse- and

intestinal-type noncardia gastric carcinomas.

(78)

EpCAM, CD44,

CD44v8-10, CD133

Primary tumor

Primary tumor

Xenograft

Tumor tissue

Unlike CD44s that is expressed in many normal

tissues, CD44v8-10 marks human gastric

CSCs and contributes to tumor initiation,

possibly through enhancing oxidative stress

defense.

(79)

CD71 Cell line MKN-1 CD71− cells have important roles in cancer

development. This subtype also exhibits high

drug resistance to conventional chemotherapy.

(80)

Lgr5 Human gastric cancer

and animal model

Tumor tissue Gastric cancer develops when

cancer-associated genes are activated in

Lgr5-positive stem cells and change them to

CSCs.

(81)

ABCB1, ABCG2,

CD133

Human gastric cancer

Different differentiation

status cell lines

Xenograft

transplantation of 3

cell lines

Tumor tissue

HGC-27,

BGC-823,

SGC-7901

Injected

HGC-27,

BGC-823,

SGC-7901

cell lines

-The expression of the CSC markers ABCB1,

ABCG2, and CD133 differ in gastric cancers

with various degrees of differentiation.

-Poorly differentiated gastric cancers

expressing relatively more CSC markers.

(82)
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Th17/Treg PLASTICITY CAN BE POSSIBLY
MORE AFFECTED BY GASTRIC CANCER
STEM CELLS

Although the polarization of Treg vs. Th17 cells via interaction
with MSCs is indicated (88), the exact role of CSCs particularly
GCSCs on Th17/Treg plasticity remained to be determined.

Soluble factors and cell to cell contacts are two main factors
from GCSCs can affect Th17 differentiation.

Soluble Mediators in Th17/Treg
Polarization by GCSCs
As we stated previously, accumulating data have indicated that
a cocktail of IL-6, IL-1β, and IL-23 could be used as dedicated
cytokines for induction of Th17, whereas IL-2 and TGF-β have
been frequently considered as stimulating factors in human Treg
cells differentiation. Further analysis has suggested a dual role for
CSCs to induce Treg and Th17 subsets in several cancers through
alteration in cytokines balance in tumor milieu (Figure 2).

Despite intensive researches on CSCs in various cancers,
there is no evidence regarding the GCSCs effect on Th17/Treg
balance. Most of the evidence came from malignant tumors with
a higher incidence of GCSCs. High plasma levels of platelet
microparticles (PMP), VEGF, IL-6, and CCL5 in patients with
stage IV vs. those in patients with stage I or stage II/III that can be

related to metastatic gastric cancer (89) and gastric cancer stem
cells activation.

IL-6 that is important in Th17 differentiation, as well as
cancer-associated inflammation, was detected in oral squamous
cell carcinoma (90) and in vitro culture of KM22, a breast
cancer cell line (91). Alternatively, it was determined that IL-
6 is produced by CSCs in multiple myeloma, breast cancer
(22), and Squamous cell carcinoma with a relatively significant
concentration (92) rather than other cancer cells. Similarly,
IL-23 produced by ovarian CSCs (93) has been frequently
reported that plays an important role in maturation and
maintenance of Th17 cells phenotype. Of note, TGF-β a
critical cytokine for induction of Treg cells and inhibition of
Th17 cells differentiation has been detected in adenocarcinoma,
squamous cell carcinoma and lung cancer cell lines (94),
although it was produced in more concentration by CSCs in
squamous cell carcinoma (92). In addition, CCL5 a chemokine
that strongly attracts Th17 and Treg cells has been detected in
breast cancer at primary and metastatic tumor sites, ovarian,
gastric, and prostate cancers (95). Accordingly, some other
cytokines produced by tumor mass might induce Th17 and Treg
differentiation by crosstalk with the similar internal adaptors. IL-
8 produced by many types of cancers (94) has been demonstrated
that significantly secreted by squamous cell carcinoma CSCs
(92), and it can trigger differentiation of Th17 cells through
simultaneous activation of STAT3 with IL-6. Similarly, VEGF
produced by MKN-45 as a gastric cancer cell line (96), might

FIGURE 2 | Th17/Treg polarization might be influenced by CSC secretions rather than non-CSC secretions. Besides intrinsic mediators associated to Th17 (IL-1β,

IL-6, and Il-23) and Treg (TGF-β, IL-2) differentiation, some other cytokines produced by CSCs and non-CSCs might induce Th17 and Treg differentiation by crosstalk

with the similar internal adaptors.

Frontiers in Oncology | www.frontiersin.org 8 April 2019 | Volume 9 | Article 226

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Rezalotfi et al. Gastric CSc Regulate the Th17/Treg

induce Treg differentiation through ERK-JNK signaling pathway
activation (97, 98).

Direct Communication Between GCSCs
and T Cells
In addition to soluble factors secreted by CSCs that have
effect on Th17/Treg balance, existence of stemness genes in
Th17 cells (it will be discussed in part 5) can potentiate this
hypothesis that they can transfer between CSCs and CD4+ T
cells through cell to cell communication. This in turn, can induce
Th17 cells differentiation. Diverse mechanisms of intercellular
communication have been already well documented including
chemical synapses, gap junctions, and plasmodesmata. High
sensitive nanotubular structures can be established probably
between immune cells, tumor cells, and also between infiltrating
T cells and distant tumor cells, facilitate simplify selective transfer
and communication (99). Thereupon, stemness genes might
transfer from CSCs to T cells through tunneling nanotubes and
differentiate CD4+ T cells to long-lived Th17 stem-like cells.
STAT3, a pleiotropic transcription factor activated downstream
of cytokines, is overexpressed in gastric cancer stem cells and
metastatic tumor samples (100). Activated STAT3 can be either
pro-oncogenic or tumor-suppressive according to the tumor
etiology and mutational landscape (101), and it considers as
a critical transcription factor for Th17 differentiation, while
represses the development of Tregs (102). Therefore, we can
conclude that STAT3 might be able to pass through membrane
structures between gastric cancer stem cells and Treg/CD4+

uncommitted T cells to change the shift them to Th17 cells.
The tumor’s immune cell polarization changes are basically

beneficial to the tumor, leading to escape from the immune
system and tumor progression. However, the antitumor or
protumor activity of Th17 cells induced by GCSCs should
be investigated.

FUTURE PROSPECTIVE

While CSCs are a small population among tumor cells, their
importance in immune modulation should not be neglected.
These cells produced a high concentration of soluble factors that
differ from other tumor cells, therefore determine the fate of
Th17 and Treg cells by changing in differentiation, recruitment.
Thus, the imbalanced Th17/Treg in peripheral blood and tumor
tissues could be considered as new hallmarks of CSCs activity
and metastasis.

Recently, cancer immunotherapy aims to elicit the activity
of CTLs within a tumor, strengthening the helper CD4+ T
cells function can improve the efficiency of antitumor activity
of CTLs, clonal expansion, and providing effector and memory
CTL (103). Although most researches have focused on immune
activation using T CD8+ and even CD4+, the exact role
of Th17 and its potential in immune cell therapy remained
unknown. In the present study, we reviewed the characteristic
of Th17 cells, as they are not fully differentiated subset with
self-renewal ability, sustained survival, capable of plasticity, and
representing stem cell-like memory cells features. They have been

reported as a precursor of Th1 cell-like cells producing IFN-
γ and CD8+ cytotoxic cells which play an important role in
antitumor immunity (104). Hence, they could be considered to
be promising for using in cancer immunotherapy strategies. Two
strategies including:

Conversion of FoxP3+CD4+Treg Cells to
the Hybrid Th17/Th1 to Elicit a Potent and
Prolonged Antitumor Immune Response
In contrast to Th17, Th1 as a key player in antitumor immunity
possessing functional mediators including IFN-γhi, CD107ahi, T-
bethi, and Granzyme-Bhi as markers of activities are not able to
persist in tumor microenvironment to show a long-term effect
probably due to the lack of stem cell features. Recent data has
been shown that KLF4, a key transcription factor in pluripotency
of stem cells, binding to the promoter of Il17a plays a critical role
in Th17 differentiation but not in other subsets of helper T cells
(105). Moreover, the long-lived Th17 cells with the capacity of
plasticity, exhibit an increase in expression of genes associated
with self-renewal including HIF-1a, Notch, Bcl2, OCT4, and
Nanog (106). In addition, Th17 cells do not express PD-1, FoxP3,
KLRG-1, CD57, and IL-10, therefore they are not a candidate
for being functionally exhausted PD-1+ T cells, suppressive
Foxp3+, IL-10+ T cells or senescent CD28−CD57+KLRG-1+ T
cells (106).

We propose an approach to convert CD4+FoxP3+ cells
isolated from patients to transient ex-FoxP3+Th17 cells. Th17
cells have been observed to be able to switch to ex-Th17IFN-
γ+ from IFN-γ+IL-17+ cells in autoimmune diseases and
inflammatory infections (50). Therefore, the next step would
be the differentiation of Th17/Th1 as desired cells with an
antitumor activity by providing proper cytokine cocktail. We
suggest that the combination of the potent Th1 effectiveness
with the stemness features of Th17 to produce hybrid Th17/Th1
in human and mouse can be more efficient to control tumor
progression compared to Th1 or Th17 alone as previously
reported in melanoma. The hybrid Th17/Th1 has exhibited
a potent effector function and an increased persistence with
less susceptibility to induced cell death through activity (107).
Although it might be more challenging to identify and keep the
hybrid phenotype.

Production of Tc17/CTL Population From
FoxP3+CD8+Treg Cells With Higher
Potential of Antitumor Immunity
It has been documented that Tc17 cells show no strong
cytotoxicity, whereas plastically changed IL-17/IFN-γ cells
through epigenetic modification (108) have a strong antitumor
effect. Cultivation of Tc17 cells with further IL-12 convert them
to IL-17/IFN-γ double producing cells with acquired cytotoxic
function in vitro and in vivo (50). Therefore, we propose
a strategy in order to convert CD8+FoxP3+ cells into ex-
Foxp3+Tc17 cells and then into the Tc17/CTL population which
plays a crucial role as final effector cells with cytotoxicity in the
tumor microenvironment.
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FIGURE 3 | A therapeutic approach based on Treg/Th17/Th1 axis. IL, Interleukin; CCL, C-C motif chemokine; CXCL, Chemokine (C-X-C motif) ligand; APC,

Antigen-presenting cells; TGF-β, Transforming growth factor beta; PDL-1, Programmed death-ligand 1; MHC, Major histocompatibility complex; MDSC,

Myeloid-derived suppressor cell; Arg-I, Arginase I; iNOS, Inducible nitric oxide synthase; TAM, Tumor-associated macrophage; IFN-γ, Interferon-gamma.

Further attempt for the two strategies is would be focusing on
stabilization of induced (reactivated) antitumor immune cells by
keeping the one-way conversion of inefficient to efficient cells
as well as blocking internal pathways to unfavored cell fates
(Figure 3). We believe that recent strategies are able to bring new
insight to apply T cells plasticity in cancer immunotherapy and
suggest that this feature can be used as a promising approach in
the treatment of cancers and also autoimmune diseases.

CONCLUSION

Accumulating evidence suggests that CSCs including GCSCs can
have a greater effect on Th17/Treg balance than other tumor
cells. Therefore, the observation of imbalanced Th17/Treg in
liquid biopsy of cancer patient’s blood could be considered
as a diagnostic marker for activation of CSCs. In addition, a
change in the axis of Th17/Treg indicates that CSCs alter the
balance between them through the plasticity of T cells with
the focus on Th17 plasticity. Therefore, this feature can be an
opportunity and uses in immunotherapy of cancers to convert the
patient’s inefficient cells into active and antitumor cells to remove
the tumor.
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