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Recent studies have uncovered an important role for RNA modifications in gene

expression regulation, which led to the birth of the epitranscriptomics field. It is now

acknowledged that RNA modifiers play a crucial role in the control of differentiation of

stem and progenitor cells and that changes in their levels are a relevant feature of different

types of cancer. To date, among more than 160 different RNA chemical modifications,

the more relevant in cancer biology is the reversible and dynamic N6-methylation of

adenosine, yielding N6-methyladenosine (m6A). m6A is the more abundant internal

modification in mRNA, regulating the expression of the latter at different levels, from

maturation to translation. Here, we will describe the emerging role of m6A modification in

acute myeloid leukemia (AML), which, among first, has demonstrated howmis-regulation

of the m6A modifying system can contribute to the development and progression of

cancer. Moreover, we will discuss how AML is paving the way to the development of

new therapeutic options based on the inhibition of m6A deposition.
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INTRODUCTION

Chemical modifications in eukaryotic RNAs are known from decades. However, until recent years,
their role in cancer development was largely unknown. One of most studied RNA modifications
with a well-define role in gene expression regulation is the N6-methyladenosine (m6A), which
is present in all RNA species including mRNAs, lncRNAs, rRNAs, tRNAs, and snRNAs. Here,
we will focus on the dynamic m6A modification of mRNAs. m6A is the most abundant internal
modification in mRNA where it can be embedded and erased by specific proteins (1–5). m6Amark
can specifically recruit reader proteins, such as the YT521-B homology (YTH) domain family of
proteins, or it can produce conformational changes within local RNA structures that may indirectly
affect the interaction with RNA binding protein (6–9). As a result, m6A may regulate mRNA
expression at different levels by affecting splicing, nuclear export, stability and translation [reviewed
in (10, 11)].

The methyltransferase-like protein 3 (METTL3, also known as MT-A70) and the
methyltransferase-like protein 14 (METTL14) complex (also called MAC, m6A-METTL Complex)
installs m6A inmRNAs and lncRNAswithin theDRACHmotif (D=A/G/U, R=A/G;H=A/C/U)
while the methyltransferase-like protein 16 (METTL16) is responsible for the m6A modification in
the U6 snRNA and specific mRNAs and lncRNAs containing the UACAGAGAA sequence within a
specific stem-loop structure (4, 5). Notably, METTL3 is the only catalytic component of the MAC
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but it requires the interaction with METTL14 for RNA binding
and m6A deposition. The m6A modifications present in rRNAs,
tRNAs, and U2 and U4 snRNAs are installed by still unknown
methyltransferases. The METTL3/METTL14 core complex is
assisted by a regulatory complex (named MACOM, m6A-
METTL-associated complex) composed of Wilms tumor 1-
associated protein (WTAP), Vir-like m6A methyltransferase-
associated (VIRMA, also known as KIAA1429), Cbl proto-
oncogene like 1 (CBLL1, also known asHakai),RNA-bindingmotif
15 (RBM15), and zinc finger CCCH-type containing 13 (ZC3H13)
proteins (12). Interestingly, even if the METTL3/METTL14
consensus sequence can be found along all the mRNA body, m6A
deposition is enriched nearby the stop codon, 3′-UTR and long
internal exons. Therein, it has been suggested that MACOM is
responsible for guiding the METTL3/METT14 core complex on
a specific region of the mRNA. In view of its reversible nature,
m6A modification can be removed by ALKBH5 (alkB homolog
5) and FTO (fat-mass and obesity associated protein) proteins.
They belong to the AlkB family of the Fe(II) and α-ketoglutarate-
dependent dioxygenases, which includes also DNA and histone
demethylates (10).

m6A was initially identified in pioneering studies in early
1970s in mammals, and later on, in flies, plants, yeast and also
RNA viruses (13–16). However, the identification and mapping
of m6A modification in whole transcriptome in different cell
types, states and diseases was possible only in the last years
with the development of m6A specific antibodies coupled to
next generation RNA sequencing technologies (17–19). We are
now witnessing the dawn of a new era in cancer biology
studies in which gene expression data and epigenetic status of
cancer cells are integrated with epitranscriptomics analysis to
acquire a better comprehension of the molecular mechanisms
that drive tumorigenesis. In this context, the first experimental
evidences of a direct involvement of m6A deposition in the
development of cancer have been obtained in acute myeloid
leukemia (AML), a devastating blood cell cancer. In this review,
we describe accepted knowledge on the critical role for the m6A
modifiers, erasers, and readers in AML (Figure 1). Furthermore,
in view of the fact that AML represents a remarkable example
of malignancy with defects in cell differentiation, we also
report recent results obtained in normal hematopoietic stem
cells biology. Finally, we discuss the feasibility of chemical
inhibition of the writing complex as novel therapeutic option for
AML patients.

m6A DEPOSITION IS REQUIRED FOR AML
CELLS SURVIVAL

The MACOM components WTAP and RBM15 had already
been involved in AML before knowing they were regulators of
m6A modification. In particular, WTAP was initially identified
as interactor of the Wilms’ tumor gene [WT1; (20)], whose
high expression in AML is associated with poor prognosis
(21). Later on, WTAP protein was found upregulated in AML
and to act as an oncogene (22). According to its oncogenic
role, WTAP knockdown in AML cell lines and AML xenograft

model decreased proliferation and induced apoptosis (22).
Mechanistically, WTAP silencing in AML cell lines altered
alternative splicing (22, 23) and this was in accordance with
its previously reported localization in nuclear speckles (24),
where the mRNA splicing reaction occurs. Notably, before
knowing its role as regulator of m6A deposition, the WTAP
complex was purified from human cell lines and different
components of the MACOM complex were identified as
interacting proteins, including VIRMA, RBM15, and CBLL1
(23). Furthermore, in agreement with its role in splicing
regulation, it was also demonstrated a transient interaction of
the WTAP complex with the splicing machinery (23). Notably,
the METTL3 and METTL14 proteins were also identified
as WTAP complex interactors in different cell lines (23).
However, albeit it was known since 1990s that METTL3 was
responsible for m6A modification in human mRNAs (25) and
that it was implicated in splicing regulation (26, 27), the link
between WTAP and m6A was initially ignored. Few years later,
with the birth of epitransciptomics, the WTAP protein was
identified as an important regulator of the METTL3/METTL14
complex (28).

RBM15 is a member of the SPEN (Split-end) family of
proteins, a group of proteins with RNA recognition motifs
that functions in transcriptional regulation, post-transcriptional
processing and nuclear export of mRNAs (29, 30). RBM15 is
highly expressed in the hematopoietic system (29). Notably,
chromosomal translocation between RBM15 and MKL1 were
identified in some forms of pediatrics AML (also referred
to as Acute Megakaryoblastic Leukemia). Similar to WTAP,
knockdown of RBM15 in AML cell lines inhibited cell
differentiation and induced apoptosis (31, 32). In mouse, RBM15
has an important role in regulating HSCs expansion and
differentiation. In particular, conditional knockout of RBM15
in the hematopoietic compartment produced a block in B cell
differentiation and myeloid and megakaryocytic development
(29, 33). Strikingly, it was shown that the effect of RBM15
in the hematopoietic system and AML was partly due to
deregulation of the Notch signaling (31, 34) and regulation
of c-MYC expression (33), which were later identified as
relevant m6A targets in haematopoiesis and AML (35–38). In
addition, RBM15 protein can be modified by protein arginine
methyltransferase 1 (PRMT1), resulting in its ubiquitylation
and degradation by proteasome (39). Overexpression of PRMT1
altered alternative splicing and blocks AML cell differentiation
(39). Therein, it is very likely that PRMT1 can indirectly control
m6A deposition by regulating MACOM activity through RBM15
post-translational modification.

More recently, m6A modification came into focus of AML
studies (40). AML is one of the cancers with the highest
expression of both METTL3 and METTL14. Both genes were
found upregulated in all subtypes of AML compared to normal
hematopoietic cells (37, 38, 41, 42), despite the heterogeneity of
this blood cell cancer in terms of chromosomal rearrangement
and gene mutations. Moreover, this correlate with higher levels
of m6A modified mRNAs in AML cell compared to normal
hematopoietic progenitors (37, 38, 41). Downregulation of
METTL3 and METTL14 expression has been performed in cell
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FIGURE 1 | Schematic representation of m6A function in AML. The MACOM and MAC complex components are required for AML survival (see main text for details).

(A) RBM15 protein controls cell expansion and differentiation by regulating c-Myc levels and the Notch signaling pathway. In some forms of pediatric AML, RBM15 is

fused to MKL1 and induced leukemia by aberrant regulation of the Notch signaling pathway. (B) WTAP protein is upregulated in AML, localized in nuclear speckles,

and regulates alternative splicing. (C) METTL3 and METTL14 upregulation in AML increases m6A methylation of specific mRNAs, including MYC, MYB, PTEN, and

BCL2 mRNAs. (D) In addition, METTL3 is recruited by CEBPZ on specific promoter regions and this results in co-transcriptional m6A methylation of different mRNAs,

including that one encoding for the SP1 and SP2 transcription factors. (E) Increased m6A methylation enhances mRNA translation and produced increased protein

levels. (F) In AML, METTL3 mis-localizes in the cytoplasm where it can increase the translation of specific mRNAs independently from its catalytic activity by

recruiting eIF3h.

lines derived from different human AML subtypes by RNA
interference and CRISPR/Cas9 genome editing. In all cases, it
has been reported an inhibition of differentiation, proliferation
arrest and massive induction of apoptosis (37, 38, 41). Strikingly,
the apoptotic response is specific for leukemic cells and it has
not been observed in normal hematopoietic progenitors. On
the other hand, overexpression of METTL3 and METTL14
promoted AML cell proliferation and the effect was abolished
by a catalytic inactive form of METTL3. Despite the common
results observed at the cellular level by independent studies,
the molecular mechanisms identified differ (Table 1). However,
it should be considered that the strong induction of apoptosis
observed upon METTL3/METTL14 depletion complicates the
subsequent gene expression analysis. Moreover, the techniques

to study m6A level in the transcriptome are impacted by the
methodology, the antibody and sometimes also influenced by
culture/experimental conditions (19, 45). In particular, in a first
study performed on the MOLM-13 AML cell lines, which carries
the FLT3 internal tandem duplication (FLT3-ITD) that in patients
is associated with a more aggressive disease, knockdown of
METTL3 resulted in a m6A dependent reduction of c-MYC,
BCL2 and PTEN mRNA translation while the overexpression
of METTL3 produced increased protein levels of all three
proteins (37). c-MYC is a well-known oncogene in leukemia,
while BCL2 and PTEN are negative regulators of apoptosis
and PI3K/AKT pathway, respectively. However, activation of
the PI3K/AKT pathway was also observed by increasing the
expression of a non-functional METTL3 indicating that it is
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not merely due to m6A modification (37). In addition, the
translation defects of BCL2 and c-MYC mRNA are recovered
after few days of METTL3 silencing despite the persistence
of the proliferation arrest and apoptosis (37). Therein, this
indicates that additional mechanisms might be responsible for
the observed cellular phenotype.

A second study performed again in MOLM-13 cells, showed
that METTL3 is recruited on specific promoter transcription
start sites (TSS) by the transcription factor CCAAT enhancer
binding protein zeta (CEBPZ, also known as DDIT3 and CHOP)
(41). This has been indicated as a mechanism that produces
co-transcriptional m6A modification on specific RNAs. Notably,
CEBPZ gene was found recurrently mutated in different AML
subtypes (46, 47), suggesting that this might result in altered
recruitment of METTL3. Similarly, METTL14 was also found
associated with several TSS but, surprisingly, METTL14 peaks
do not overlap with those of METTL3 (41). As METTL14 is
strictly required for METTL3 modifying activity, this suggests
that the function of the two proteins on chromatin might
be independent from m6A modification. Interestingly, the
Saccharomyces cerevisiae METTL14 homologous protein KRF4
was also found associated to chromatin and initially described
as a transcription factor (48). Two of the relevant METTL3
modified transcripts identified in MOLM-13 cells were the
mRNAs encoding for the SP1 and SP2 transcription factors.
SP1 and SP2 belong to the SP/FLF family, whose members
have several roles in tumor development (49). Similar to what
has been found for c-MYC, upon METTL3 knockdown these
transcripts are translated less efficiently even if mRNA levels
are not changed. Interestingly, it has also been demonstrated
that SP1 and SP2 proteins directly regulate c-MYC transcription
(41). Therein, in this case the regulation of c-MYC by METTL3
appears to be indirect. Notably, in MOLM-13 cells silenced for
METTL3, overexpression of SP1 rescues cell growth. On the
other hand, deletion of SP1 is lethal (41), thus, indicating a
relevant role for SP1 in supporting METTL3 function in AML
cells. However, SP1 is ubiquitously expressed, and regulates the
expression of many genes within the cells. Furthermore, while
SP1 knockout mice die early during embryogenesis, mESCs from
SP1 knockout animals are viable and they can be induced to
differentiate and form embryoid bodies (50). On the other hand,
METTL3 knockout in mESCs impairs exit from self-renewal and
block differentiation (51), indicating SP1 independent function.
It is worth noting that some of the differences between these
two studies performed on the same AML cell line might depend
from the different antibodies utilized for the identification of
m6A modified mRNAs. Indeed, it has been shown that the
anti-m6A antibody influences the efficiency of m6A detection
(19, 45).

Human AML subtypes are characterized by the presence of
gene translocation that results in the expression of oncogenic
fusion proteins that contribute to the differentiation block
observed in AML (52). Expression of these proteins in
normal mouse hematopoietic progenitor cells strongly induced
expression of METTL3 and METTL14 (38). More importantly,
conditional deletion of METTL14 strongly reduce the oncogenic
potential of AML fusion proteins both in primary cells and

in recipient mice (38). In addition, the ablation of METTL14
delayed the onset of leukemia and prolonged the survival of
mice. Knock-down of METTL14 in the Mono-Mac 6 and NB4
human AML cell lines, which express the oncogenic MLL-AF9
and PML-RARα fusion proteins, respectively, strongly reduced
both the mRNA stability and translation of the oncogenes MYB
and c-MYC (38). However, it should be considered that the
fate of m6A modified mRNAs depend on the identity of the
reader protein. For instance, in contrast to YTHDF2, IGF2BPs
were shown to stabilize mRNAs, including MYC (53). Moreover,
ectopic overexpression of MYB and c-MYC partially counteracts
the effect of METTL14 depletion on AML cell proliferation
and differentiation. Notably, similar to c-MYC, also the MYB
promoter is regulated by the SP1 transcription factor (54),
whose levels are regulated by m6A (see above). Thus, some
of the observed phenotypes might be due to indirect effects.
Taken together, these results indicate that the oncogenic function
of m6A writers in AML is mediated by different pathways,
which include modulation of SP1, c-MYC, and MYB expression.
However, not all the observed cellular phenotypes may be
ascribed to the identified regulatory networks and it should
be considered that simple m6A/target relationships may dictate
some phenotypes and complex networks of m6A changes within
the all transcriptome may underlie others.

Interestingly, a genome-wide CRISPR/Cas9 screening
performed in mouse primary leukemia cells expressing both
FLT3-ITD and MLL-AF9 fusion genes identified besides
METTL3 and METTL14 also METTL16 as critical gene for AML
survival (41). METTL16 positively regulates the expression of
the human S-adenosylmethionine (SAM) synthetase MAT2A
(4, 5, 55), whose expression contribute to appropriate SAM
levels. SAM is the major donor of methyl transfer within the
cell. Therein, METTL16 expression may indirectly regulate the
activity of METTL3/MELL14 and also of many other RNA, DNA
and protein methyltransferases.

In some tumors, including AML, METTL3 mis-localize to
the cytoplasm where it can promote the translation of specific
mRNAs independently from its catalytic domain (42, 56).
In particular, it has been shown that METTL3 binds m6A
modified regions close to the stop codon promoting mRNA
circularization and, eventually, mRNA translation by interacting
with the eIF3 translation initiation factor subunit eIF3h (57).
In AML, higher levels of cytoplasmic METTL3 results in
concomitant increase of WTAP protein expression (42). This
mechanism might be relevant to increase WTAP protein levels
concomitantly to the METTL3/METTL14 complex and sustain
its oncogenic role in AML (42). Importantly, the binding of
cytoplasmic METTL3 to mRNA occurs independently from
METTL14 and it is still not clear howMETTL3 would specifically
recognize m6A mRNAs and, above all, how it will remain stably
associated to mRNAs. In the nucleus, the RNA binding activity
of METTL3 depends on the presence of a conserved cluster
of positively charged residues across the METTL3/METTL14
heterodimer interface and a N-terminal Zinc finger domain in
the METTL3 protein (58–61). However, as expected for a writing
complex, the affinity of the METTL3/METTL14 heterodimer for
RNA is very weak (61). Thus, it is very likely that METTL3
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TABLE 1 | The role of m6A regulators in leukemia.

Protein Organism Cell line Feature Molecular mechanism

METTL3 Human MOLM-13 FLT3-ITD METTL3 induces proliferation by methylation of MYB, MYC BCL2

and PTEN mRNAs in order to increase their translation.

Knockdown of METTL3 inhibits proliferation, and induce

apoptosis (37).

Human MOLM-13 FLT3-ITD METTL3 is recruited on specific TSS by the transcription factor

CEBPZ that produces co-transcriptional m6A modification and

increase translation of SP1 and SP2 transcription factors.

Knockdown of METTL3 inhibits proliferation, and induce

apoptosis (41).

Human K562 BCR-ABL1 METTL3 delocalized in cytoplasm, where it promotes translation of

WTAP mRNA (42). Knockdown of METTL3 inhibits proliferation.

Mouse Primary AML cells FLT3-ITD and MLL-AF9 METTL3 is required for AML survival ex vivo (41)

METTL14 Human MONOMAC6

NB4

MLL-AF9 PML-RARα METTL14 induces proliferation by methylation of MYB, and MYC

mRNAs in order to increase their stability and translation.

Knockdown of METTL14 inhibits proliferation, and induce

apoptosis (38).

Mouse Primary AML cells FLT3-ITD and MLL-AF9 METTL14 is required for AML survival ex vivo (41)

METTL16 Mouse Primary AML cells FLT3-ITD and MLL-AF9 METTL16 is required for AML survival ex vivo (41)

WTAP Human HL-60

K562

MYC+BCR-ABL1 WTAP knockdown decrease proliferation and increases apoptosis

by affecting alternative splicing (22).

RBM15 Mouse

Human

Human

32DWT18

HEL

K562

(Epo)/G-CSFR

JAK2 V617F

BCR-ABL1

RBM15 expression inhibits myeloid differentiation (31). Knockdown

of RBM15 inhibits proliferation, and induce apoptosis (32).

FTO Human MONOMAC6

MV4-11

NB4

MLL-AF9

KMT2A/AFF1 and FLT3-ITD

PML-RARα

Inhibition of FTO activity inhibits AML cell proliferation by regulating

ASB2 and RARA mRNA methylation (43, 44).

needs specific protein partners for stable mRNA binding in
the cytoplasm.

By contrast with the reported oncogenic role of m6A in AML,
high expression of the FTO demethylase has been also reported
in AML carrying the FTL3-ITD, MLL-AF9 or PML-RARA gene
translocations (43). Moreover, it was also shown that inhibition
of FTO activity in the Monomac6, MV4-11, and NB4 cell lines
affected AML cell proliferation capacity (43, 44). These results
are in sharp contrast with what has been shown upon METTL3
and METTL14 downregulation in the same AML cell lines (see
Table 1). However, in addition to m6A, it has been recently
reported that FTO also demethylates N6, 2-O-dimethyladenosine
(m6Am) at the 5’ cap in mRNA and N1-methyladenosine (m1A)
in tRNA (62). Therein, it is very likely that the observed
phenotype may be m6A independent. The PCIF1 protein (also
referred to as CAPAM, cap-specific adenosine methyltransferase)
has been recently identified as the methyltransferase responsible
for the m6Ammodification at the 5’ cap in mRNA (63, 64). Thus,
it would be very interesting to investigate the potential impact of
PCIF1 in AML.

NON-CODING TRANSCRIPTS AS m6A
TARGETS IN AML

Despite many of the studies on m6A performed in AML focused
on coding RNAs, the METTL3/METTL14 and METTL16
methyltransferases can also modify non-coding transcripts with

relevant role in cancer, such as lncRNAs and circular RNAs
(circRNA). For example, deletion in the mouse hematopoietic
system of the X-inactive specific transcript (Xist), which controls
X-dosage compensation in mammals, causes blood cancer
(65). Notably, Xist contains several m6A modifications that
are required for Xist-mediated transcriptional repression (66),
thus suggesting that alteration of m6A levels might alter
Xist function in hematopoietic cells. Metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1, also known as NEAT2)
is another highly methylated lncRNA (17). MALAT1 is mis-
regulated in several human cancers, including leukemia (67).
MALAT1 is a nuclear lncRNA that interacts with splicing factors
and regulates alternative splicing (68). Moreover, MALAT1
has also been shown to act as a competing endogenous RNA
(ceRNA) (69) and as a scaffold for the polycomb repressive
complexes 1 and 2 (PRC1 and PRC2) (70–72). Two of the m6A
marks in MALAT1 affect local RNA structures and regulate the
accessibility of RNA binding proteins, a mechanism referred to
as m6A-riboswitch (73, 74). Therein, it is possible that the higher
levels of m6A observed in AML might increase the binding of
proteins, such as splicing regulators or epigenetic modifiers, that
results in gene mis-regulation. Several other lncRNAs have been
shown to play critical role in AML (75). Hence, alteration of
their structure or expression levels by m6A modifications might
influence their activity.

Another important class of m6A modified molecules is the
circRNA family (76). circRNAs are covalently closed circular
molecules derived from back-splicing reactions, in which the
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5′ splice site of the exon joins with the 3′ splice site of
an upstream intron (77). Interestingly, m6A modifications in
circRNAs differ from the patters of the corresponding linear
mRNAs (76) and, more importantly, m6A-modified circRNAs
regulate the stability of the corresponding linear mRNA in a
YTHDF2-dependent manner (76). Thus, it is likely that changes
in circRNA m6A levels might have a great impact in gene
expression regulation. Notably, a correlation between circRNA
levels and cell proliferation has already been shown in cancer
(78). Moreover, about half of AML patients carry aberrant
chromosomal translocations that can produce specific fusion-
circRNAs (f-circRNA) between rearranged loci (79). In particular,
the PML/RARα translocation, which characterizes a subtype
of AML referred to as acute promyelocytic leukemia (APL),
produces oncogenic f-circRNAs that have been shown to favor
leukemia progression in transgenic mouse models (79). Therein,
it will be interesting to study the relationship between the m6A
modifications and f-circRNA activity. circRNAs may regulate
gene expression by several mechanisms, including regulators of
splicing and transcription, ceRNAs and protein competitors (77).
Moreover, specific circRNA can also be translated in protein
by a cap-independent manner (77). This kind of translation is
less efficient than cap-dependent translation, but might have
an important role under stress condition and in tumor and,
importantly, can be regulated by m6A modifications (10).
A peptide produced from a circular form of the linc-PINT
lncRNA has been recently shown to play an important role
in glioblastoma tumorigenesis (80) and it is very likely that
other examples of translated circRNAs with a role in cancer
will follow.

m6A ROLE IN NORMAL HEMATOPOIESIS

Defects in cell differentiation are a hallmark of AML. In
particular, AML is characterized by an accumulation of immature
cells which fail to respond to normal regulators of differentiation
within the bone marrow (52). Therein, the role of m6A RNA
modification in normal hematopoiesis has been also analyzed
in both purified hematopoietic stem/progenitor cells (HSPCs)
and mouse model systems. In cytokine-driven differentiation
of human CD34+ HSPCs purified from umbilical cord blood,
METTL3/METL14 expression decreased with the progression of
myeloid differentiation (37, 38). Furthermore, similar to AML
cells, knockdown of METTL3 and METTL14 in CD34+ HSPCs
accelerated myeloid differentiation while their overexpression
stimulated proliferation and inhibited differentiation (37, 38).
Notably, downregulation of METTL3 and METTL14 in purified
HSPCs inhibits cell growth but does not inducemassive apoptosis
as in AML cells (37, 38). In contrast, conditional knockout of
METTL3 in the adult mouse hematopoietic system produced an
expansion of the HSCs in bone marrow without any significant
alteration in mature myeloid cells production (81). Similar
results were obtained with the conditional knockout of the
m6A reader YTHDF2 (77, 82) but, surprisingly, not upon
deletion of METTL14 (81), which is required for METTL3
function.Moreover, HSCwith ablation of YTHDF2 have elevated

regeneration capacity (77). The differences observed in vitro
and in vivo might reflect the fact that purified cord blood cells
differ from their counterparts in the bone marrow (BM). In
particular, they have greater proliferative response to cytokines
and are less dependent on stromal cells than the corresponding
HSCPs in the BM (83). Under physiological conditions, HSPCs
homeostasis is maintained by the interaction with stromal cells
within the BM and the conditional system utilized for METTL3
and YTHDF2 deletion may also target the stromal cells. Thus,
the expansion observed in HSCs in vivo might be also due to an
alteration of the stem cell niche. However, these data indicate that
m6A modification plays an important role in maintaining adult
HSCs quiescence and, above all, that the inhibition of the m6A
modification system is well tolerated by the normal HSCs in vivo.

m6A AS AN ANTICANCER DRUG TARGET

Targeting m6Amodification writers, erasers and readers by small
molecules has been frequently hailed as a potential treatment
for several kinds of cancer. Inhibitors targeting 2-oxoglutarate
(2OG) and iron-dependent oxygenases [e.g., ALKBH5 (2)
and FTO (84)], belonging to the 2OG-dependent nucleic acid
oxygenase (NAOX) family and suppressing m6A modification
demethylation of RNA, have been extensively discussed in
a recent review (85). Here, we will focus on therapeutic
strategies and small molecules targeting the METTL3/METTL14
complex and discuss their potential applications in
cancer treatment.

Although thus far no inhibitors of METTL3/METTl14
have been reported in the literature, other than the reaction
product SAH and the general nucleoside analog Sinefungin (86),
the recent availability of high-resolution crystal structures for
METTL3/METTL14 complexes [(58–60); (Figure 2)] provides
a basis for structure-guided drug design, as the latter can be
exploited by computational tools for the rational design of novel
inhibitors (87). Current structural information for METTL3 and
METTl14 and the potential druggability of these targets are
therefore discussed.

The crystal structures of METTL3–METTL14 complex
show that both proteins belong to the class I methyltransferase
family, the largest homologous group of SAM-dependent
methyltransferases. The latter is characterized by a Rossman fold
catalytic domain and several conserved sequence motifs (88, 89),
and comprises most tRNA, cap, and m6A methyltransferases,
as well as DNA methyltransferases (DNMTs), arginine
methyltransferases (PRMTs), and some histone-lysine N-
methyltransferases (90). METTL3 and METTL14 form an
asymmetric heterodimer in which only the former is able
to bind SAM and carry out the catalytic methyltransferase
reaction. Structural analysis and mutagenesis indicate that both
proteins are involved in RNA binding, although a complex with
RNA has yet to be determined. However, because METTL3
and METTL14 are both members of the SAM-dependent
methyltransferase superfamily, structural insights on RNA
substrates binding mechanism can come from the comparisons
with the three-dimensional structures between members of the
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FIGURE 2 | Structural comparison between METTL3/METTL14 complex and EcoP15I in complex with its DNA substrate. PDB codes for METTL3/METTL14 and

EcoP15I are 5IL1 and 4ZCF, respectively. The hypothetical binding groove of RNA, just beside the SAM binding site, is shown (A) and compared to the DNA binding

mode of EcoP15I (B). In (C,D), the structures are rotated by 90◦, to show the DNA base flipping that is supposed to be required for DNA/RNA methylation of N6 of

adenosine.

same family. Indeed, as shown in Table 2, METTL3 shows a
high structural similarity with other DNA methyltransferases
(e.g., Adenine Specific DNA Methyltransferases), for which
the dimeric structure in complex with the DNA substrate for
methylation is already known [PDB: 1G38; (91)]. On the ground
of these homology-based, functional and structural similarities,
several conclusions can be drawn on the hypothetical mechanism
that is responsible for m6A of mRNAs by METTL3/METTL14.
Intriguingly, both METTL3 and METTL14 contain sequence
motifs characteristic of amino-methyltransferases, including the
“DPPW” motif that is equivalent of the “DPPY” sequence in
motif IV (92). The linear order of these motifs and structural
comparison with other amino-methyltransferases (e.g., EcoP15I,
PDB: 4ZCF) suggests that one methyltransferase (i.e., METTL3)
plays a more dominant role in adenine methylation, while
the other one (i.e., METTL14) plays a more central role in
recognition of the surrounding RNA secondary structure

(93) (Figure 2). Moreover, a mechanism can be envisaged
where, as in the case of other amino-methyltransferases and
restriction endonucleases (92), the target adenosine base to be
methylated is “flipped” outside the nucleic acid double helix and
positioned inside the active site cleft, facing SAM and stabilized
with stacking interactions with the Tryptophan residue of the
conserved “DPPW” motif (88–90).

As previously mentioned, in spite of the fact that no
inhibitors of METTL3/METTl14 have been found yet, it is
reasonable to expect that such a goal is achievable, given that
potent and selective inhibitors have been found for the closely
related members of the class I methyltransferase family, e.g.,
protein lysine methyltransferases (PKMTs), protein arginine
methyltransferases PRMTs and DNMTs.

The methyl-donating SAM cofactor and methyl-accepting
adenosine substrate bind at distinct sites of METTL3 (71).
These binding pockets are common to the Rossmann fold
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TABLE 2 | First 10 results of a DALI search in PDB25 for structural similarities among METTL3 homologous proteins.

PDB Z-Score RMSD Aligned residues Total residues %Identity Description

5IL0 34.6 0.5 204 211 100 Human Mettl3

5L6D 21.5 2.5 177 238 36 Human Mettl14

1G60 14.4 2.8 167 239 18 Adenine-Specific Methyltransferase Mboiia

5HFJ 14.1 2.9 163 205 18 Adenine Specific Dna Methyltransferase

1NW6 13.3 2.7 169 272 14 Modification Methylase Rsri

5HEK 13.2 2.6 147 177 18 Adenine Specific Dna Methyltransferase

4ZCF 13.1 3.2 182 616 13 Ecop15i Restriction Endonuclease

2ZIF 13.1 3.8 169 244 16 Putative Methylase

1BOO 12.3 2.8 166 283 12 Protein Cytosine-Specific Methyltransferase

5I2H 7.3 2.2 89 335 13 O-Methyltransefrase Family 2

FIGURE 3 | Substrate RNA and cofactor (SAM) of METTL3/METTL14 bind at distinct sites. The crystal structure of the METTL3 monomer in complex with SAM (PDB:

5IL1), shows that the adenosine-binding site (cyan) and the cofactor-binding pocket (purple) are connected by a narrow channel in the protein core. METTL14 is not

directly involved in reaction but is probably necessary for RNA binding. A nucleotide base flipping-mechanism is also proposed.

enzymes of class I family and are connected by a narrow
channel in the protein core. Therefore, in conceiving potential
METTL3/METTL14 inhibitors, nucleosides, and SAM analogs
could be considered, or bisubstrates ligand mimicking both
(Figure 3). For example, Azacytidine (Vidaza) and Decitabine
(Dacogen) are nucleoside analogs targeting DNMTs and
being approved for clinical use in hematological malignancies
(94). Unfortunately, these drugs display poor bioavailability
and toxicity. By contrast, small-molecule inhibitors binding
within the SAM pocket have shown good pharmacological
properties and oral bioavailability and are currently under
clinical investigation as cancer therapeutics mainly against
PKMT and PRMT protein families (95–97). Despite the fact
that these SAM mimicking inhibitors share the same cofactor-
binding site, side chains lining the SAM-binding cleft are
usually not conserved. As in the case of protein kinases,

therefore, such structural diversity could be exploited, at least
in principle, to achieve highly selective inhibition (98). For
example, the methylthioadenosine endogenous compound is
a highly specific PRMT5 inhibitor (99). However, structure-
based design of bisubstrate inhibitors holds great promise
for far higher selectivity, compared to SAM and nucleoside
analogs. Recently, (100) designed DNMT3A and DNMT1
bisubstrate inhibitors by linking together SAM and the
deoxycytidine substrate. This approach resulted in quinazoline–
quinoline derivatives as potent inhibitors, some showing
also isoform selectivity. The most potent inhibitors induced
demethylation of CDKN2A promoter in colon carcinoma
HCT116 cells and its reactivation after 7 days of treatment.
In this study, the authors highlighted the importance of the
nature and rigidity of the linker between the two moieties
for optimal inhibition, an issue that should be taken into
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account also in designing potential bisubstrate inhibitors
of METTL3/METTL14.

In conclusion, the high structural diversity of these
compounds pinpoints the significant range of inhibition
strategies that can be conceived to target the class I
methyltransferases. Although the structural details of the
various members of this family are unique, the success stories
of drug design for several enzymes belonging to this family
portends the likely achievement of discovering potent and
selective inhibitors of METTL3/METTL14.
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