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Cancer-associated fibroblasts (CAFs) are important cells of the tumor microenvironment

that can communicate with tumor cells through various mechanisms. Recently,

increasing studies have found that exosomes transmit biological information by carrying

microRNAs, lncRNAs, proteins, metabolites, and other substances, and thus exert

biological and therapeutic effects. CAF-secreted exosomes can also affect the tumor

phenotype, while the exosomes released by tumor cells can activate CAFs. Here, we

review the role of exosomes in the crosstalk between CAFs and tumor cells and elaborate

its mechanism.
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INTRODUCTION

Fibroblasts are common cells of the connective tissue and are very crucial in the wound healing
process (1). In many cases, tumors are analogous to wounds that do not heal, the reconstruction
process of stromal cells shares some similarities with the wound healing process. Activated
fibroblasts also exist in cancer stroma and are commonly known as cancer-associated fibroblasts
(CAFs) (2).

CAFs express specific markers distinct from normal fibroblasts (NFs) and participate in tumor
microenvironment construction to promote tumor invasion, proliferation, and metastasis. They
can produce a variety of proinflammatory factors and even recruit other types of stromal cells
to the primary and the metastatic sites of cancer (3). The multiple signaling axes, including IL-
6/STAT3, FGF-2/FGFR1, NF-κB, and TGF-β1/SMAD axes appear to be abnormally activated in
CAFs compared to those of NFs. The exact origin of CAFs and the mechanism of how normal
cells become CAFs is still unclear, but based on current evidence, it is reasonable to believe that a
considerable number of CAFs originate from NFs surrounding cancer cells (4).

Exosomes are membrane-enclosed vesicles derived from the endosomal system during the
formation of multivesicular bodies, with a diameter of ∼30–100 nm (5). In carcinogenesis,
exosomes participate in proliferation, angiogenesis, immunosuppression, and preparation of
premetastatic niches in secondary organs (6). Exosomes have been widely reported to mediate local
and systemic cell communication through the horizontal transfer of information via microRNAs,
long non-coding RNAs (lncRNAs), proteins, mRNAs, metabolites and other substances. Also,
exosomes are considered to play an anti-tumor role by carrying and transporting various substances
such as cisplatin (7, 8), paclitaxel (9), and RNA (10). However, the mechanisms of packaging and
release of exosomes have not been completely characterized (11).

Recently, it has been reported that exosomes play an important role in the crosstalk between
CAFs and cancer cells (12). Specific exosomes released from CAFs can be internalized by
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cancer cells and contribute to the progression and metastasis
by transferring various types of substances (Figure 1).
Correspondingly, the exosomes released by cancer cells can
also promote the transformation of CAFs. In this review, we will
discuss the role of exosomes in the crosstalk between CAFs and
cancer cells.

ROLE OF CAF-DERIVED EXOSOMES
IN CARCINOGENESIS

In 2012, Luga et al. first proved that CAFs in breast cancer stroma
can secrete CD81-positive exosomes, which promote breast
cancer cell (BCC) motility, protrusive activity, and metastasis by
activating Wnt-PCP autocrine signaling in BCCs. The published
gene expression data of carcinoma-associated stroma indicated
that in human CAFs, CD81 expression is upregulated and might
be correlated with the disease stage (13). However, in different
tumor microenvironments, exosomes from CAFs may differ
significantly. Miki et al. reported that CD81 is unexpressed in
exosomes released from gastric cancer CAFs, and only scirrhous-
type gastric cancer cells can uptake CD9-positive exosomes
released from CAFs, which can promote cancer cell migration
and invasion by activating the MMP2 signaling pathway (14).
Hence, exosomes can play specific roles in cancer cells and
these roles might be related to exosome-specific membrane
proteins. The carcinogenic ability of exosomes is attributed to
non-coding RNAs (ncRNA), proteins, metabolites and other
substances present within them.

Non-coding RNA (ncRNA)
Non-coding RNAs (ncRNA) are receiving considerable attention
in exosome research and are modulators of recipient cells in
most instances, thereby favoring tumor development (15). In
many liquid biopsy sample types, large amount of miRNAs
are packaged into exosomes (16). Certain types of circulating
miRNAs are strongly correlated with the progression of different
cancer types. Herrera et al. extracted RNA from exosomes of
CAFs and NFs from colorectal cancer (CRC) tissues and normal
mucosa tissues, resected from nine patients, respectively. Next-
generation sequencing (NGS) results showed that the levels of
52 ncRNAs differed between exosomes derived from NFs and
CAFs, and bioinformatic analysis revealed that CAF-derived
exosomes can affect cancer cells and other cells in the tumor
microenvironment, thereby promoting tumor progression (17).

Various miRNAs are enriched in CAF-derived exosomes and
regulate cancer cells via multiple mechanisms. miR-21 has been
shown to exhibit oncogenic effects across several tumor types,
among which the best-described interactions are those with
tumor suppressor genes, such as PTEN, p21, and PDCD4 (18).
Yeung et al. by NGS analysis found that the expression of miR-
21 was significantly higher in CAF-secreted exosomes than in
exosomes from ovarian cancer cells. Functional studies revealed
that miR-21 is exosomally transferred from CAFs to cancer
cells, where it suppresses ovarian cancer cell apoptosis and
increases paclitaxel resistance by binding to its novel, direct target
APAF1(19). Similarly, Bhome et al. found that miR-21 is enriched

and is present abundantly in CAF-derived exosomes. They used
miR-21 overexpressing fibroblasts and CRC cells in orthotopic
xenografts and observed increased liver metastasis compared to
those established with control fibroblasts (20). Donnarumma
et al. found that the expression levels of miR-21, miR-378e, and
miR-143 were increased in exosomes from CAFs as compared
to those from NFs in breast cancer patients. Transfection of
BCCs with these threemiRNAs promoted stemness and epithelial
mesenchymal transition (EMT) in these cells (21).

Other miRNAs are also involved in cancer proliferation.
Zhang et al. by miRNA sequencing found that miR-320a level was
significantly reduced in exosomes than in matched para-cancer
fibroblasts in patients with primary hepatocellular carcinoma
(HCC). miR-320a can bind to PBX3, thereby suppressing
proliferation, migration and metastasis of HCC cells. Xenograft
experiments involving CAFs mixed with MHCC97-H cells
showed that miR-320a overexpression in CAFs can suppress
carcinogenesis (22). Besides, miR-34a-5p (23) and miR-148b (24)
in CAF-derived exosomes regulate the EMT of oral squamous cell
carcinoma (OSCC) and endometrial cancer cells, respectively.
miR-196a in CAF-derived exosomes binds to novel targets,
such as CDKN1B and ING5, in head and neck cancer cells,
resulting in cisplatin resistance (25). CAF-derived exosomes
do not always lead to malignant phenotypes in cancer cells.
Li et al. found that CAF-derived exosomes could inhibit
the growth, invasion and metastasis of cholangiocarcinoma
tumors by carrying miR-195 in vitro. This observation was
also confirmed in a rat model of cholangiocarcinoma (26).
CAFs might also have different biological effects in different
tumor microenvironments. Estrogen receptor (ER) expression
in ER-positive breast cancer cells was significantly decreased
after co-culturing with conditioned media from CAFs derived
from ER-negative breast cancer cells. Further, studies have
found that this phenomenon might be due to the release of
CAF-derived exosomes from ER-negative breast cancer cells
containingmiR-221/222. Since miR-221/222 knockdown rescued
ER repression in ER-positive breast cancer cell lines (27). Using
NFs and esophageal cancer cells, Nouraee et al. developed a
co-culture system that mimicked the tumor microenvironment.
They detected increased expression of miR-33a and miR-326 in
exosomes from co-cultured conditioned media, which indicated
that miRNAs secreted from CAFs could play a role in tumor
microenvironment (28).

Recently, many studies have found that exosomes secreted
by tumor-associated macrophages (TAMs) and mesenchymal
stem cells (MSCs) can regulate the biological behavior of tumors
by carrying lncRNA (29). LncRNA might also exist in CAF-
derived exosomes in addition to miRNAs. Ren et al. found that
CAFs expressed significantly higher levels of lncRNA-H19 than
NFs. Exosomal H19 from CAFs could promote stemness and
oxaliplatin resistance in CRC cells by activating the β-catenin
pathway via acting on miR-141 through competitive endogenous
RNA sponge mechanism (30).

Proteins
Proteins in CAF-derived exosomes are mostly associated with
EMT in cancer cells. Chen et al. reported that p85α is an
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FIGURE 1 | Exosomes in crosstalk between CAFs and cancer cells. Specific exosomes released from CAFs can be internalized by cancer cells and regulate

carcinogenesis by transferring ncRNA, proteins, and metabolites. Correspondingly, the exosomes released by cancer cells can also promote the transformation of

CAFs from NFs and MSCs.

essential protein of stromal fibroblasts, and loss of p85α could
stimulate fibroblasts to express and secrete additional Wnt10b,
which is transported to adjacent epithelial cancer cells, thus
activating the EMTpathway viaWnt/β-catenin signaling, thereby
leading to BCC metastasis (31). Li et al. found that TGF-β
is upregulated in CAF-derived exosomes compared to normal
omentum fibroblasts in ovarian cancer patients. Further, in vitro
experiments showed that CAF-derived exosomes were taken up
by ovarian SKOV-3 and CAOV-3 cells, thereby activating the
SMAD signaling pathway and enhancing the migration and
invasion capacity and promoting EMT in ovarian cancer cells
(32). Recently, Hu et al. found that exosomal Wnts released
from CAFs induce de-differentiation of CRC cells into cancer
stem cells (CSCs) and promote chemoresistance in vitro and in
vivo (33).

Other Substances
In addition to ncRNAs and proteins, the presence of other
substances inside CAF exosomes, including DNA and
metabolites, have been reported. Nabet et al. showed that
stimulation of stromal NOTCH-MYC by BCCs leads to high
RN7SL1 levels driven by an endogenous RNA POL3, which
is usually shielded by SRP9/14 RNA binding protein. The
elevated RN7SL1 level alters its stoichiometry with SRP9/14 thus
generating unshielded RN7SL1 in stromal exosomes. Upon its
transfer to BCCs, unshielded RN7SL1 acts as an activator of PRR
RIG-I, thereby promoting proliferation, metastasis and resistance
to treatment. Combined with evidence from patient blood and
tumor tissues, these results demonstrated that the regulation
of RNA unshielding connects stromal activation with the use
of RNA DAMPs that promotes carcinogenesis (34). Richards
et al. found that gemcitabine-treated CAFs abundantly secrete
exosomes that contain chemoresistance-promoting factors,
such as miR-146a and snail mRNA, which are transferred to
the pancreatic ductal adenocarcinoma cells and then promoted

chemoresistance and proliferation. Finally, a reduction in
exosome release reduces the chemoresistance-promoting
abilities of CAF cells (35).

Zhao et al. found that CAF-derived exosomes could inhibit
mitochondrial oxidative phosphorylation, thereby increasing
glutamine-dependent reductive carboxylation and glycolysis in
cancer cells. The 13C isotope-labeling experiments showed
that exosomes can provide amino acids for nutrition-deficient
cancer cells through a mechanism similar to that of macro-
cytoplasmic cell proliferation. They performedGC-MS and ultra-
high-performance liquid chromatography (UPLC) experiments
and confirmed that exosomes in both prostate and pancreatic
CAFs contain complete metabolites, including amino acids
such as glutamine, threonine, serine and valine; lipids such
as palmitate and stearate; TCA cycle intermediates such as
citrate, pyruvate, a-ketoglutarate, fumarate and malate, which are
extensively used by cancer cells for carbon metabolism, in case of
nutritional deficiency or nutritional stress thus promoting tumor
growth (36).

ROLE OF EXOSOMES IN THE TRANSITION
OF CAFS

CAFs arise from neighboring NFs or other cells that undergo
a differentiation process induced by tumor cells and develop
invasive and migratory capacities. Increasing studies have
revealed that CAFs originate from various cells through different
mechanisms related to exosomes, and the most common origin
are NFs and MSCs (4).

Normal Fibroblasts
Compared to NFs, CAFs overexpress markers such as α-smooth
muscle actin (α-SMA), fibroblast activation protein (FAP), and
galectin. Genetic heterogeneities have also been detected in CAFs
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(37). Array data of primary cultures of CAFs vs. paired NFs from
resected breast cancer tissues identified 11 dysregulated miRNAs,
and the predicted target genes were mainly related to migration,
secretion, adhesion, and cell-cell interaction (38).

The abundant miRNAs in exosomes of tumor cells play an
important role in reprogramming of NFs into CAFs. In breast
cancer, when exosomes from cancer cells were co-cultured with
NFs, an alteration of such “CAF phenotype” was observed. miR-
9 was found to convert NFs into CAFs, and the overexpression
of miR-9 also identified a signature of different genes related to
cell motility and ECM organization such as MMP1, EFEMP1,
and COL1A1 (39). In melanoma, exosomal miR-155 induces
the proangiogenic switch of CAFs by inhibition of SOCS1
expression and then activates the JAK2/STAT3 signaling pathway
(40). On the contrary, miR-211 in melanoma exosomes could
block the switch of CAFs by activation of the IGF1R/MAPK
signaling pathway (41). In addition, various novel miRNAs were
investigated recently. For example, metastatic HCC cells secrete
exosomal miR-1247-3p that targets B4GALT3, thereby activating
β1-integrin via NF-κB signaling in fibroblasts (42). In OSCC
cells, exosomes containing lncRNA-CAF released from cancer
cells could increase its expression in stromal fibroblasts, which
then upregulated IL-33 by blocking its degradation by p62-
dependent autophagic activity, promoting the conversion of NFs
into CAFs (43).

Proteins delivered by exosomes can also induce NF-CAF
transition. Webber et al. found that exosomes could deliver
TGF-β and promote NF differentiation into myofibroblasts
(44). Exosomal TGF-β accounts for 53.4–86.3% of the
total TGF-β present in the cancer cell supernatant, and
exosomal TGF-β is localized inside exosomes (45). Moreover,
exosomal TGF-β instead of cell-secreted TGF-β is involved in
the activation of SMAD signaling, thereby inducing NF-CAF
transition. Recently, Rai et al. performed proteomic profiling and
functional dissection of colorectal cancer cell-derived exosomes.
They found that these exosomes could activate normal quiescent
fibroblasts into CAF-like fibroblasts. Interestingly, fibroblasts
activated by exosomes derived from primary and metastatic
cancer cells have distinct protein profiles and functions, and
exhibit elevated expression of pro-angiogenic proteins (IL8,
NDRG1, RAB10), pro-proliferative proteins (FFPS, SA1008)
pro-invasive regulators of membrane protrusion proteins
(MYO1B, PDLIM1), and matrix-remodeling proteins (MMP11,
ADAM10, EMMPRIN) (46).

Mesenchymal Stem Cells (MSCs)
MSCs also give rise to CAFs. They are fibroblast-like cells
which can be isolated from different kinds of tissues such
as fresh umbilical cords and adipose tissue. In gastric cancer
mouse models, at least 20% of CAFs originate from the bone
marrow and are derived from MSCs (47). Recent studies have
shown that tumor exosomes can interact with local and distant
MSCs, both in transforming MSCs and setting a premetastatic
niche (48, 49). Cho et al. demonstrated that exosomes from
breast and ovarian cancer cells can induce a phenotype of
tumor-supporting myofibroblasts on MSCs (50, 51). Different

miRNAs, such asmiR-21 andmiR-146a, that are known as critical
regulators of CAF induction, MSC proliferation, and angiogenic
activities, are involved in this process (4, 52, 53). However,
further investigations are needed to understand the specific
underlying mechanism. Various proteins also take part in this
process although some of them are limited in the exosomes. For
example, tetraspanins can be delivered into MSCs by exosomes
thereby promoting activation, growth, and motility which are
recognized as the characteristics of CAFs (54). Interestingly,
similar to NF-CAF transition, TGF-β pathway was investigated
as well, and a study verified that the TGF-β/TGF-β R1 interaction
mediates Smad2/3 activation and increases the expression of FAP
and α-SMA in MSCs, which is always recognized as CAFs (55).
However, since there is no established definition to distinguish
CAFs from MSCs, more studies are needed to elucidate the role
of exosomes in the transformation between MSCs and CAFs.

CAFs are also found to originate from other cells. Endothelial
cells can be induced by TGF-β and converted into CAFs
through endothelial to mesenchymal transition (56). Pericytes
are identified as a reservoir for CAFs induced by tumor-derived
exosomes in gastric cancer, and the transition of pericytes
to CAFs is induced by exosome-mediated BMP transfer and
activation of PI3K/AKT and MEK/ERK pathways (57). Besides,
CAFs are also thought to originate from fat cells (58).

PROSPECT

Exosomes play an important role in the crosstalk between CAFs
and cancer cells, thereby contributing to carcinogenesis and
tumor microenvironment. With the increasing importance of
tumor microenvironment in cancer treatment, the study of
exosomes and its mechanism in crosstalk might be a promising
direction in the future. However, the tumor microenvironment
is extremely complex, and the relationship between CAFs and
cancer cells is far from the simple interaction of cells in vitro.
For example, acidic cancer environment will produce completely
different biological effects compared to normal environment (59,
60). Some studies have found that both the quality and quantity
of exosomes will change in an acidic environment (61, 62). These
observations also indicate that the research aspects discussed
in this review should be viewed in a broader context. In the
future, more in-depth and innovative research is required to
elucidate the role of exosomes in the crosstalk between CAFs and
cancer cells.
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