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Vasculogenic mimicry (VM) is a novel cancer hallmark in which malignant cells develop

matrix-associated 3D tubular networks with a lumen under hypoxia to supply nutrients

needed for tumor growth. Recent studies showed that microRNAs (miRNAs) may have

a role in VM regulation. In this study, we examined the relevance of hypoxia-regulated

miRNAs (hypoxamiRs) in the early stages of VM formation. Data showed that after

48 h hypoxia and 12 h incubation on matrigel SKOV3 ovarian cancer cells undergo

the formation of matrix-associated intercellular connections referred hereafter as 3D

channels-like structures, which arose previous to the apparition of canonical tubular

structures representative of VM. Comprehensive profiling of 754 mature miRNAs at the

onset of hypoxia-induced 3D channels-like structures showed that 11 hypoxamiRs were

modulated (FC>1.5; p < 0.05) in SKOV3 cells (9 downregulated and 2 upregulated).

Bioinformatic analysis of the set of regulated miRNAs showed that they might impact

cellular pathways related with tumorigenesis. Moreover, overall survival analysis in a

cohort of ovarian cancer patients (n = 485) indicated that low miR-765, miR-193b,

miR-148a and high miR-138 levels were associated with worst patients outcome. In

particular, miR-765 was severely downregulated after hypoxia (FC < 32.02; p < 0.05),

and predicted to target a number of protein-encoding genes involved in angiogenesis

and VM. Functional assays showed that ectopic restoration of miR-765 in SKOV3 cells

resulted in a significant inhibition of hypoxia-induced 3D channels-like formation that

was associated with a reduced number of branch points and patterned tubular-like

structures. Mechanistic studies confirmed that miR-765 decreased the levels of VEGFA,

AKT1 and SRC-α transducers and exerted a negative regulation of VEGFA by specific

binding to its 3‘UTR. Finally, overall survival analysis of a cohort of ovarian cancer
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patients (n = 1435) indicates that high levels of VEGFA, AKT1 and SRC-α and low miR-

765 expression were associated with worst patients outcome. In conclusion, here we

reported a novel hypoxamiRs signature which constitutes a molecular guide for further

clinical and functional studies on the early stages of VM. Our data also suggested that

miR-765 coordinates the formation of 3D channels-like structures through modulation of

VEGFA/AKT1/SRC-α axis in SKOV3 ovarian cancer cells.

Keywords: ovarian cancer, vasculogenic mimicry, hypoxia, miR-765, VEGFA

INTRODUCTION

Tumor vasculogenic mimicry (VM) is a novel cancer hallmark
formerly described in malignant melanoma cells which involves
the formation of patterned three dimensional (3D) channels
networks by tumor cells (1). These tubular networks resemble
embryonic vasculogenesis, and they describe the ability of
certain types of aggressive cancer cells to express endothelium-
associated genes (2). Tumor VM occur de novo without or
in combination with blood vessels formation changing our
conventional acceptance that classical angiogenesis is the only
means by which cancer cells acquire a nutrients supply to
nourish tumors. Studies supporting these assumptions have
demonstrated that in vivo the 3D channels contain plasm,
erythrocytes and blood flow with a hemodynamics similar to
those occurring in endothelial vessels (3). Evidences for VM
have been found in other solid tumors and cancer cell lines
such as in glioblastoma (4), breast (5, 6), prostate (7), lung
(8), hepatocellular (9) and ovarian cancers (10, 11), among
others. This morphologic plasticity have been associated to
aggressive tumor phenotypes, increased metastasis and tumor
progression of certain types of cancers. Moreover, meta-analysis
studies have established a definitive association between VM
with poor clinical poor prognosis in human cancer patients
(12). Remarkably, tumor VM may contribute to the resistance
of diverse type of tumors against anti-angiogenic therapy (13,
14). Therefore, the exploration of the multiple roles of VM in
cancer hallmarks, especially in drug resistance, would broaden
our knowledge and eventually ameliorate the treatment efficacy
in cancer.

Cellular features underlying VM are diverse although they
may summarized as follows: (i) vascular-like tubules are lined by
tumor cells in combination or not with endothelial cells forming
complex 3D mosaic patterns; (ii) VM cells achieve remodeling
of extracellular matrix and tumor microenvironment; (iii)
3D channels assembled during VM connects with the tumor
microcirculation system providing blood and supplies for tumor
growth, (iv) VM provides also a perfusion route for metabolic
waste; and (v) in tumor tissues VM cells showed Periodic-
acid Schiff (PAS) positive and CD31 negative staining which
provides a new tool for potential use in clinical practice
(15). Nonetheless, in vitro reports on VM are still debatable
because only few studies provide solid evidence of 3D tube
formation (1, 16–19) or use malignant melanoma or ovarian
cancer cell lines previously confirmed to form tubular 3D
structures (19–21). In an outstanding paper from Owen’s lab

this controversy was addressed by characterizing VM in vitro
using SKOV3, HEY and other ovarian cancer cell lines, as well as
spheres and primary cultures derived from ovarian cancer ascites
(19). Using dye microinjection, X-ray microtomography 3D-
reconstruction, and confocal microscopy studies they confirmed
that glycoprotein-rich lined 3D tubular structures are present in
in vitro cultures and were able of conducting fluids. This study
highlights the importance of confirmatory in vitro assays for VM,
and surprisingly suggested that many of 3D cellular networks
reported in the literature may not represent genuine VM (19).

Diverse molecular mechanisms and signaling pathways have
been described to be involved in VM formation (22–24).
Moreover, it has been described that aggressive tumor cells
undergoing VM showed specific gene-expression profiles that
resembles that of an undifferentiated, embryonic-like cells (2).
Molecular mechanisms operating in VM have been extensively
studied recently with some master regulators identified (25).
For instance, hypoxia inducible factor 1-α (HIF-1α) greatly
promotes VM formation in response to hypoxia as it occurs
in angiogenesis (26). The role of other proteins and signaling
pathways that promote cell proliferation, migration, invasion
and matrix remodeling during tumor VM also has been
described. These include factors such as the vascular endothelial-
cadherin (VE-cadherin) (21, 27), epithelial cell kinase (EphA2)
(18), phosphoinositide 3-kinase alpha (PI3K-α) (6), matrix
metalloproteinase (MMPs), laminin 5 (Ln-5) γ2 chain, focal
adhesion kinase (FAK) (23–25) and proto-oncogene tyrosine-
protein kinase SRC-α (6). Although important advances in
deciphering the molecular mechanism underlying VM, the fine-
tuning modulation and the role of non-coding RNAs in the early
stages of VM remains poorly understood.

During the last decades, the study of non-coding RNAs in
cancer biology has exploded revealing unsuspected functions
in tumorigenesis. MicroRNAs (miRNAs) are non-coding single-
stranded small RNAs of 21-25 nucleotides in length that function
as negative regulators of gene expression (28). MiRNAs function
as guide molecules in post-transcriptional gene silencing by
partially complementing with the 3

′

-end of target transcripts
resulting in mRNA degradation or translational repression in
cytoplasmic P-bodies (29). These small non-coding RNAs may
target a plethora of regulatory molecules driving tumorigenesis.
Recent studies showed that some miRNAs have a pivotal role
in VM in diverse types of solid tumors. For instance, miR-
26b targets EphA2 a VM regulator in glioma (30). In breast
cancer, miR-204 exerts a fine-tuning regulation of the synergistic
transduction of PI3K/AKT1/FAK mediators critical in VM
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formation (6). In ovarian cancer only two studies about the
role of miRNAs, specifically miR-200a and miR-27b, have been
reported (31, 32), indicating that detailed miRNAs functions in
VM regulation in ovarian cancer remains to be elucidated. In
the present investigation, we reported a novel miRNAs signature
activated during the hypoxia-induced 3D channels-like networks
formation in ovarian cancer cells. Also, we provide functional
data suggesting a role for miR-765 in VM through regulation of
VEGFA/AKT1/SRC-α axis.

MATERIALS AND METHODS

Cell Lines
Human ovarian cancer cell line SKOV-3 was obtained from
the American Type Culture Collection (ATTC HTB-77), and
routinely grown in Dulbecco’s modification of Eagle’s minimal
medium (DMEM) supplemented with 10% fetal bovine serum
and penicillin-streptomycin (50 unit/ml; Invitrogen, Carlsbad,
CA, USA).

Periodic Acid Staining
3D-cultures were fixed in 4% formaldehyde in phosphate
buffered solution (PBS) 1X for 30min at room temperature.
Coverslips were incubated with 0.5% periodic acid for 5min,
washed with PBS 1X for 5min and Schiff reagent for additional
15min. Then, cells were washed with PBS 1X for 5min. Later
they were incubated with hematoxylin for 1min and washed in
tap water for 5min. Samples were dehydrated and mounted in
coverslip using a synthetic mounting medium for microscopy.

Three Dimensional (3D) Cultures
Experiments were performed with 70–80% confluent cell
cultures. 3D cultures were prepared for confocal microscopy
analysis as follow: 18 × 18mm glass coverslips were acetone-
washed, air-dried and placed in 6-well culture plates, coated with
50 µL of Matrigel per coverslip and air-dried for 60min at room
temperature. Cell cultures were trypsinized, and 60,000 cells were
resuspended in 200 µL of culture medium, which was seeded on
matrigel-coated coverslips. Cells were incubated at 37◦C for 3 h
to allow its adhesion to the matrix and then covered with 3ml of
culture medium.

Immunofluorescence Analysis
Briefly, 3D-cultures were fixed in 4% formaldehyde in PBS 1X
for 30min at room temperature. Coverslips were incubated with
0.1% Triton X-100 for 3min. Following washing with PBS 1X,
cells were blocked for 40min at room temperature with 0.2% BSA
in PBS 1X, and incubated with Phalloidin 1X (Abcam, ab235138)
for 30min at room temperature. Stained cells were then washed
with PBS 1X for 15min and mounted for confocal microscopy.

RNA Isolation
Total RNA was extracted using 500 µl Trizol (Invitrogen,
Carlsbad, CA) for 1 × 104 cells/well as described the
manufacturer. RNA integrity was assessed using capillary
electrophoresis system Agilent 2100 Bioanalyzer. Samples with a
RNA integrity >5 were processed.

MicroRNAs Expression Profiling
The Megaplex TaqMan Low-Density Array (TLDA) v 3.0
(Applied Biosystems, Foster City, CA) platform was used to
measure the expression of 754 human specific miRNAs in
parallel. Briefly, total RNA (600 ng) was retro-transcribed using
stem-loop primers specific for each miRNA in order to obtain
complementary DNA (cDNA) templates. Subsequently, a pre-
amplification step of 12 cycles was included to increase the
concentration of low-level miRNAs. The pre-amplified products
were loaded into the TLDA and reactions were started using
the 7900 FAST real-time thermal cycler (ABI). RNU44 and
RNU48 expression was used as internal control. For statistical
analysis miRNAs levels were measured by quantitative reverse
transcription polymerase chain reaction (qRT-PCR) in TLDA
using the comparative Ct (211Ct) method. All analyses were
done using R (HTqPCR and gplots-bioconductor). The Ct
raw data were determined using an automatic baseline and a
threshold of 0.2. A fold change (FC) (log2 RQ) value >1.5
was used to define the differentially expressed miRNAs. An
adjusted t-test was used to evaluate the significant differences
in Ct values between groups. To identify subgroups defined by
miRNA expression profiles, an unsupervised clustering analysis
using Spearman correlation and average linkage was used.

Bioinformatics Analysis
MiRNA targets were identified using TargetScan 7.0 (http://
www.targetscan.org/vert_71/), and PicTar (http://www.pictar.
org/) softwares. Only target genes that were predicted by the
two algorithms were selected for further analysis. Gene ontology
and enrichment cellular pathway analyses were performed using
David tool.

Transfection of miR-765 Mimic
MiRNA-765 mimic (AM17100 ThermoFisher), and pre-miR-
negative control scramble (AM17110 ThermoFisher) were
transfected in SKOV3 cells using siPORT amine transfection
agent. Briefly, miR-765 (80 nM) and scramble (80 nM) were
individually added to wells containing 1 × 104 cells cultured in
DMEM for 48 h. Then, overexpression of miR-765 was confirmed
by quantitative RT-PCR at 48 h postransfection using total RNA.
MiR-765-expressing cells were used for downstream analysis.

3D Channels-Like Networks Inhibition
Assays
3D channels-like networks experiments were performed through
3D-dimensional cultures on matrigel. Firstly, SKOV3 cells (1
× 104 cells/well) were transfected with pre-miR-765 (80 nM)
or scramble (30 nM) negative control as previously described.
The cells were cultured in 96-well plate covered with geltrex
matrix (50 µl). Afterward, cells were incubated at 37◦C in
5% CO2 atmosphere in hypoxia conditions (1% O2) for 48 h.
Then, the formation of 3D channels formation was induced
by seeding cells on matrigel and then capillary-like structures
were observed under an inverted microscope (Iroscope SI-PH)
and imaged during 0, 6, and 12 h. Two observers individually
counted the number of branch points and tubular structures.
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Data were expressed as mean ±S.D. p<0.05 was considered as
statistically significant.

Western Blot Assays
30 µg of whole protein extracts were separated on 12% SDS-
PAGE and transferred to 0.2µm nitrocellulose membrane (Bio-
Rad) and then incubated with the following primary antibodies:
anti-AKT1 (1:1000, C74H10 Cell signaling), anti-SRC-α (1:1000;
sc-130124 Santa Cruz), anti-VEGFA (1:500, ab183100 abcam)
and anti-GAPDH (1:1000, sc-365062 Santa Cruz). Densitometry
analysis of immunodetected bands in Western blots assays were
performed using the public domain myImage Analysis software.

Luciferase Gene Reporter Assays
DNA fragments of the 3’UTR of VEGFA gene containing
the predicted miR-765 binding sites were cloned into p-miR-
report vector (Ambion) downstream of luciferase gene. All
constructs were verified through automatic sequencing. Then,
recombinant pmiR-LUC-VEGFA plasmid was transfected into

SKOV3 cells using lipofectamine 2000 (Invitrogen). At 24 h
after transfection, pre-miR-765 (80 nM) and scramble were co-
transfected with lipofectamine RNAi max (Invitrogen). Then,
24 h after transfection firefly and Renilla reniformis luciferase
activities were both measured by the Dual-Glo luciferase
Assay (Promega) using a Fluoroskan AscentTM Microplate
Fluorometer. Firefly luciferase activity was normalized with
Renilla reniformis luciferase.

Kaplan Meier Analysis
Overall survival analysis using Kaplan Meier plotter for miR-
765, VEGFA, AKT1, and SRC-α genes in ovarian cancer patients
were evaluated as previously described (33, 34). Briefly, we
used the Start KM plotter for ovarian cancer tool that use
genome-wide for mRNA expression data and overall survival
clinical information of cancer patients, which were downloaded
from Gene Expression Omnibus GEO (Affymetrix HG-U133A,
HG-U133A 2.0, and HG-U133 Plus 2.0 microarrays) and The

FIGURE 1 | 3D channels-like formation in SKOV3 ovarian cancer cells. (A-F) SKOV3 cells were previously incubated onto matrigel with serum free medium for 12 h

(time 0), and then imaged during course of time (0–12 h) as showed in (A-C) normoxia and (D-F) hypoxia conditions. Arrows denote the capillary-like tubes.

Arrowheads denote the branch points. (G) Graphical representation of quantification of cellular networks and (H) branch points number after 0, 6, and 12 h.

Experiments were performed three times by triplicate and data were expressed as mean ± S.D. ***p < 0.001. (I) Bright field images (10×) and (J) Periodic acid-Schiff

(PAS) stained images (10×) of cultures on matrigel. (K-O) Images of 3D-culture observed under confocal laser-scanning microscopy. Cells in (K,M) clear field and

stained with (L,N,O) rhodamine-phalloidin. (O) Confocal microscopy Z-stack reconstruction of cellular networks.
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FIGURE 2 | MicroRNAs deregulated in SKOV3 cells after 48 h hypoxia. Upper Table illustrate the hypoxamiRs regulated in SKOV3 cells. The miRNAs expression

status and clinical value predicted after Kaplan Meir analysis is depicted. Bottom Images showed the Kaplan Meir plots for four hypoxamiRs with potential clinical

value using Start miRpower for pan-cancer as implemented in the KM plotter online tool (http://kmplot.com/analysis/index.php?p=backgroundr).
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Cancer Genome Atlas TCGA, whereas for miRNAs expression
we used Start miRpower for pan-cancer as implemented in
the KM plotter at the URL (http://kmplot.com/analysis/index.
php?p=backgroundr). To define the prognostic value of genes
the samples were split into two groups according to various
quantile expression of miR-765 (n= 485) and VEGFA, AKT1 and
SRC-α genes in ovarian cancer patients (n = 1435). A Kaplan-
Meier survival plot compared the two patient cohorts, and the
hazard ratio with 95% confidence intervals and logrank P-value
were calculated.

Statistical Analysis
Experiments were performed three times by triplicate and results
were represented as mean ±S.D. One-way analysis of variance
(ANOVA) followed by Tukey’s test were used to compare the
differences between means. A p < 0.05 was considered as
statistically significant.

RESULTS

MicroRNAs Modulated During
Hypoxia-Induced 3D Channels-Like
Structures Formation in Ovarian Cancer
Cells
To investigate the role of hypoxia in expression of miRNAs
associated with the initial phases of vasculogenic mimicry (VM),
firstly we established an in vitro model for three-dimensional
(3D) channels-like structures formation representative of the
early stages of VM. We have chosen the SKOV3 ovarian cancer
cells which were previously unequivocally demonstrated to form
vasculogenic mimicry in vitro after 4 days incubation in hypoxia
(19). Here, SKOV3 cells were grown in confluent monolayers

under hypoxia (1% O2) or normoxia conditions during 48 h.
Then, cells were seeding on matrigel and incubated for 0, 6,
and 12 h to track the formation of 3D capillary-like structures,
which represent the stages previous to VM formation. Results
showed that SKOV3 cells grown in normoxia hardly exhibited
the formation of cellular networks after 6 and 12 h incubation on
matrigel (Figures 1A–C). When cells were grown in hypoxia, a
dramatical increase in extend of cellular networks was observed
during the course of time. SKOV3 cells exhibited the typical
morphologic changes indicative of 3D channels-like networks
formation after 0 and 6 h incubation on matrigel (Figures 1D,E).
Remarkably, after 12 h incubation a significant and gradual
increase in networks was found (Figure 1F). Quantification of
the number of cellular networks showed that these structures
were significantly augmented from 98 ± 4 to 172 ± 7 after
6 and 12 h incubation, respectively (Figure 1G). Likewise, the
number of branch points was significantly increased from 43
± 2 to 71 ± 4 after 6 and 12 h, respectively (Figure 1H). At
12 h, positive PAS staining was found mainly along the length
of the cellular networks suggesting the existence of extracellular
matrix compounds (Figures 1I,J). To evaluate the potential
presence of tubular structures with a hollow tube, SKOV3
cells were stained with rhodamine-phalloidin and analyzed
by confocal microscopy (Figures 1K,L). Immunofluorescence
images of the cellular networks showed very discrete elevated
structures with tubular-like appearances as observed in bright
field and red channel (Figures 1M,N). A confocal microscopy
Z-stack reconstruction of 12 h old 3D-cultures of SKOV3 cells
hardly showed the presence of proper tubular structures with
hollow centers (Figures 1N,O). These findings indicate that after
48 h hypoxia and 12 h incubation on matrigel, no clear tubules
with hollow centers were generated by SKOV3 cells. Instead of

FIGURE 3 | Core miRNA/mRNA interaction networks. (A). Supervised hierarchical clustering of signaling pathways affected by deregulated miRNAs. MicroT-CDS

function and Euclidean correlation were used; a p<0.05 was considered to identify significantly differentially expressed miRNAs in SKOV3 cells after 48 h in hypoxia.

Columns display the clustering of cellular pathways. Rows indicate the clustering of miRNAs names, and pathways are denoted at bottom. (B) Illustration depicts the

modulated miRNAs after 48 h of hypoxia and predicted target mRNAs involved in angiogenesis and vasculogenic mimicry.
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TABLE 1 | Modulated microRNAs after 48 h hypoxia in SKOV3 ovarian cancer cells and predicted targets with functions associated to cancer.

MicroRNAs Predict target Protein namea Functions References

UPREGULATED

miR-486-3p HIF1AN Hypoxia inducible factor 1 alpha subunit inhibitor Oxygen sensor Kang et al. (35)

SRCIN1 SRC kinase signaling inhibitor 1 Inhibitor of AKT/RAS pathway

miR-138 FAM13 Fas apoptotic inhibitory molecule 3 Inhibitor of RAS pathway Kang et al. (35)

PTGFRN Prostaglandin F2 receptor inhibitor Inhibitor of angiogenesis, VM Colin et al. (36)

HIF1AN Hypoxia inducible factor 1 alpha subunit inhibitor Oxygen sensor

DOWNREGULATED

miR-765 VEGFA Vascular endothelial growth factor A Angiogenesis, proliferation, VM Chen et al. (37)

AKT1 RAC-alpha serine/threonine-protein kinase Angiogenesis, proliferation, migration, VM Rana et al. (38)

HIF-3A Hypoxia inducible factor 3 alpha Angiogenesis, VM Li et al. (39)

PDGFR Platelet-derived growth factor receptor Proliferation, angiogenesis, migration Wei et al. (40)

TGFBR2 Transforming growth factor, beta receptor II Proliferation, differentiation, angiogenesis, VM Salinas-Vera et al. (6)

MMP2 Matrix metallopeptidase 2 Angiogenesis, metastasis, VM Ando et al. (41)

Cuomo et al. (42)

Avril et al. (43)

Thijssen et al. (44)

Plantamura et al. (45)

Khalkhali-Ellis et al. (46)

Kang et al. (47)

Liang et al. (48)

miR-660 VEGFA Vascular endothelial growth factor A Angiogenesis, proliferation, VM Luengo-Gil et al. (49)

SRC Proto-oncogene tyrosine-protein kinase Proliferation, migration, VM Salinas-Vera et al. (6)

HIF-1A Hypoxia inducible factor 1, alpha Angiogenesis, VM Jaraíz et al. (50)

TGFBR2 Transforming growth factor, beta receptor II Proliferation, differentiation, VM. Chen et al. (37)

PDGFR2 Platelet-derived growth factor receptor Proliferation, differentiation, VM Rana et al. (38)

Plantamura et al. (45)

Khalkhali-Ellis et al. (46)

Avril et al. (43)

Thijssen et al. (44)

miR-218 SHC1 SHC-transforming protein 1 Proliferation, angiogenesis, VM Salinas-Vera et al. (6)

CDH8 Cadherin-8 Migration Thomas et al. (51)

Memi et al. (52)

miR-198 SRC Proto-oncogene tyrosine-protein kinase Proliferation, migration, VM Salinas-Vera et al. (6)

SHC1 SHC-transforming protein 1 Proliferation, angiogenesis, VM Jaraíz et al. (50)

HIF-3A Hypoxia inducible factor 3, alpha subunit Angiogenesis, VM Thomas et al. (51)

PTK2 Focal adhesion kinase 1 Proliferation, migration, VM Suen et al. (53)

Ando et al. (41)

Cuomo et al. (42)

miR-518b MAPK1 Mitogen-activated protein kinase 1 Angiogenesis, proliferation, VM Wei et al. (40)

TGFBR2 Transforming growth factor, beta receptor II Proliferation, differentiation, angiogenesis, VM Flum et al. (54)

Plantamura et al. (45)

Khalkhali-Ellis et al. (46)

miR-148a TGFBR2 Transforming growth factor, beta receptor II Proliferation, differentiation, angiogenesis, VM Plantamura et al. (45)

MMP16 Matrix metallopeptidase 16 Angiogenesis, metastasis Khalkhali-Ellis et al. (46)

HIF-3A Hypoxia inducible factor 3 alpha subunit Angiogenesis, VM Kang et al. (47)

Li et al. (55)

Ando et al. (41)

Cuomo et al. (42)

miR-1290 VEGFA Vascular endothelial growth factor A Angiogenesis, proliferation, VM Chen et al. (37)

PTK2 Focal adhesion kinase 1 Proliferation, migration, VM Rana et al. (38)

(Continued)
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TABLE 1 | Continued

MicroRNAs Predict target Protein namea Functions References

SRC Proto-oncogene tyrosine-protein kinase Proliferation, migration, VM Luengo-Gil et al. (49)

HIF-1A Hypoxia inducible factor 1 alpha Angiogenesis, VM Salinas-Vera et al. (6)

TGFBR2 Transforming growth factor, beta receptor II Proliferation, differentiation, angiogenesis, VM Jaraíz et al. (50)

Chen et al. (37)

Rana et al. (38)

Plantamura et al. (45)

Khalkhali-Ellis et al. (46)

miR-193b SHC3 SHC-transforming protein 3 Proliferation, angiogenesis, VM Liu Y et al. (56)

GRB2 Growth factor receptor-bound protein 2 Proliferation, angiogenesis, VM Salinas-Vera et al. (6)

CDH4 Cadherin 4, type 1 Angiogenesis, VM Zhang et al. (57)

HIF3A Hypoxia inducible factor 3 alpha subunit Angiogenesis, VM Xie et al. (58)

Ando et al. (41)

Cuomo et al. (42)

miR-222 VEGFB Vascular endothelial growth factor B Angiogenesis, proliferation, VM Chen et al. (37)

VEGFC Vascular endothelial growth factor C Angiogenesis, proliferation, VM Rana et al. (38)

SHC4 SHC-transforming protein 4 Proliferation, angiogenesis, VM Ikeda et al. (59)

HIF1A Hypoxia inducible factor 1, alpha subunit Angiogenesis, VM Thomas et al. (51)

Suen et al. (53)

Chen et al. (37)

Rana et al. (38)

aUniprot database name; VM, vasculogenic mimicry.

we found cellular networks which were organized and lined in a
time-dependent manner.

In order to identify the set of miRNAs regulated by hypoxia
(hypoxamiRs) before VM formation, we profiled 667 mature
miRNAs using Taq Man Low Density Arrays (TLDAs) after
48 h hypoxia. Our results showed that 11 unique hypoxamiRs
were significantly modulated (FC>1.5; p < 0.05) in SKOV3
cells. Of these 9 miRNAs were downregulated (miR-765, miR-
660, miR-218, miR-198, miR-518b, miR-148a, miR-1290, miR-
193b, miR-222) and 2 upregulated (miR-486-3p, miR-138) in
comparison to control cells grown without hypoxia (time 0)
(Figure 2). Next, we were wondering if expression levels of the set
of modulated miRNAs may have clinical implications in ovarian
cancer. Therefore, we performed overall survival analysis using
Kaplan Meier tool (Start miRpower pan-cancer) which utilize
genome-wide transcriptome data and overall survival clinical
information from a large cohort of ovarian cancer patients
(n= 485) with a follow-up of 180 months as described in
material and methods (33, 34). To define the prognostic value
of genes the samples were split into two groups according to
quantile expression of miRNAs. A Kaplan-Meier survival plot
compared the two patient cohorts, and the hazard ratio with
95% confidence intervals and logrank P-value were calculated.
Results showed that high expression of miR-138 (HR = 1.80,
logrank P = 5.3e-07) and low levels of miR-765 (HR =

0.77, logrank P = 0.05), miR-193b (HR = 0.86, logrank P
= 0.25), and miR-148a (HR = 0.63, logrank P = 0.0001)
genes were associated to low overall survival of ovarian cancer
patients (Figure 2).

HypoxamiRs Regulate Cellular Pathways
Associated With Cancer
Predictive analysis of the set of regulated hypoxamiRs suggested
that they might impact common cellular processes and signaling
pathways related with tumorigenesis (Figure 3A). The signaling
pathways enriched were TGF-β, WNT, mTOR, AMPK, estrogen
receptor and RAP1. Computational predictions also indicated
that these miRNAs may target a number of genes involved in
VM and angiogenesis including HIF-1A, HIF-1AN, HIF-3A,
PTGFRN, AKT1, VEGFA, VEGFB, VEGFC, PDGFR, TGF-βR2,
MMP2, PTK2, SRC, SHC3, and GRB2, among others (Table 1).
In particular, we focused in miR-765 for further functional
analysis because: (i) it was severely downregulated after hypoxia
(FC < 32.02; p < 0.05), (ii) it was predicted to target a number of
genes involved in VM (Figure 3B), and (iii) there is no reports
about the functions of miR-765 in ovarian cancer neither in
tumor VM.

Hypoxia-Suppressed miR-765 Inhibits
Channels-Like Networks Formation
To examine the functional role of miR-765 on 3D channels-
like networks, we restored its expression in SKOV3 cells
by transfection of specific RNA mimics. Then, 3D channels-
like networks formation was induced by 48 h hypoxia as
described before. Non-transfected and scramble-treated cells
were included as controls. Interestingly, ectopic restoration
of miR-765 produced a dramatic inhibition of 3D channels-
like networks formation (Figure 4A). A significant reduction
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FIGURE 4 | miR-765 inhibits hypoxia-induced 3D channels-like structures. (A) 3D channels-like structures of SKOV3 cells transfected with miR-765 mimics (right

panel), scramble (middle panel) and no-transfected control cells (left panel) and grown for 48 h in hypoxia and then 12 h in matrigel. (B) Graphical representation of the

number of branch points and capillary-like channels from (A). (C) Cell viability assays of SKOV3 cells transfected with increasing concentrations of miR-765.

Experiments were performed by three times by triplicate and data were expressed as mean ± S.D. ***p < 0.001. NS, non-significant.

of the number of branch points (up to 85%) and capillary
tubes (up to 92%) were found in miR-765-transfected cells in
comparison to control cells (Figure 4B). To discard pleiotropic
effects of miR-765 overexpression in cell survival of ovarian
cancer cells, we performed cell viability assays. Data showed no
significant changes in viability of miR-765-expressing SKOV3
cancer cells at the tested concentrations which indicate that the
effect of miR-765 in 3D channels-like networks impairment was
specific (Figure 4C).

MiR-765 Downregulates VEGFA, AKT1 and
SRC-α and Directly Target VEGFA
Because the bioinformatics predictions of gene targets suggested
that several signaling pathways such as VEGFA, AKT, and
SRC/FAK, could be affected in SKOV3 cells transfected withmiR-
765, we proceed to evaluate the changes in expression of the
aforementioned proteins using available antibodies in Western
blot assays (Figure 5). Results showed that VEGFA protein
was expressed at low levels in cells cultured under normoxia
conditions, but its expression was significantly increased under
hypoxia. Moreover, we observed a significant decrease in VEGFA

levels in SKOV3 cells transfected with miR-765 mimics in
comparison to non-treated and scramble transfected controls
cells (Figures 5A,B). Likewise, a significant decrease in both
SRC-α and AKT1 levels was found in cells transfected with miR-
765 mimics in comparison to control cells (Figures 5A,C,D).
No significant changes were observed in GADPH levels used
as control. Computational predictions also showed that miR-
765 may target a number of protein-encoding genes with
known roles in VM. Of these, we focused in the study of
VEGFA as it was downregulated by miR-765 and it contain
a potential miR-765 binding site at 3′UTR (Figure 5E). To
corroborate whether miR-765 can exert posttranscriptional
repression of VEGFA, we performed luciferase reporter assays.
A DNA fragment corresponding to 3′UTR of VEGFA was
cloned downstream of the luciferase-coding region of pmiR-
LUC vector (Figure 5E). In addition, a mutated version of
the miR-765 binding site at the VEGFA 3’UTR was included
as a plasmid control. Data showed that ectopic expression of
miR-765 and co-transfection of recombinant VEGFA 3′UTR
wild type plasmid into SKOV3 cells resulted in a significant
reduction of the relative luciferase activity in comparison with
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FIGURE 5 | miR-765 downregulates VEGFA, AKT1 and SRC-α proteins and target VEGFA. (A) Immunoblots of whole proteins extracts (30 µg) from SKOV3 cells

grown in normoxia or hypoxia (48 h) using specific antibodies against VEGFA, AKT1, and SRC-α. GADPH was used as loading control. Lane 1, SKOV3 cells in

normoxia; lane 2, non-transfected control cells and incubated in hypoxia; lane 3, cells transfected with scramble control and incubated in hypoxia; lane 4, cells

transfected with miR-765 mimics and incubated in hypoxia. (B–D) Densitometric quantification of immunodetected bands in panel A. Experiments were performed by

triplicate and data were expressed as mean ± S.D. (E) Schematic representation of p-miR report construct containing the 3
′

UTR of VEGFA gene cloned downstream

of luciferase gene. Seed sequence is indicated in colored blue box. Point mutations in the miR-765 binding sites of 3
′

UTR of VEGFA gene is denoted in bold. Mutations

in seed sequence are denoted in bold letters. (F) Luciferase assays in SKOV3 cells transfected with miR-765 mimics and wild type or mutated constructs described in

panel E. Cells transfected with p-miR report plasmid alone or with scramble were used as controls. Data represent the mean ± S.D. of three independent experiments.

controls (Figure 5B). In addition, when mutated sequence was
assayed no significant changes in luciferase activity were found.
Altogether these data confirmed that VEGFA is a novel target
of miR-765.

Expression Levels of miR-765, VEGFA,
AKT1, and SRC-α Correlate With Poor
Patient’s Outcome
Then we were wondering if changes in expression levels of miR-
765, VEGFA, AKT1 and SRC-α have clinical implications in
ovarian cancer. Thus, we performed overall survival analysis
using Start Kaplan Meier plotter for ovarian cancer which use
genome-wide transcriptome data and overall survival clinical
information from a large cohort of ovarian cancer patients
(n = 1485) with a mean follow-up of 170 months. To
define the prognostic value of genes the samples were split
into two groups according to various quantile expression of
VEGFA, AKT1 and SRC-α genes. A Kaplan-Meier survival plot
compared the two patient cohorts, and the hazard ratio with
95% confidence intervals and logrank P-value were calculated.
Results showed that low levels of miR-765 (HR = 0.77, logrank
P = 0.05) and high expression of its targets VEGFA (HR =

1.38, logrank P = 1.8e-05), AKT1 (HR = 1.19, logrank P =

0.0071), and SRC-α (HR= 1.39, logrank P = 0.000092) signaling
genes were associated to low overall survival of ovarian cancer
patients (Figure 6).

DISCUSSION

Tumor VM is a highly orchestrated cellular mechanism in which
highly aggressive and metastatic tumor cells form vascular-
like 3D networks to provide an efficient and functional fluid-
conducting system for blood and oxygen supply, as an alternative
to classical vasculogenesis. This morphologic plasticity is
associated to high aggressiveness, increasedmetastasis and tumor
progression of certain types of cancers. In clinical VM has
been related with low overall survival and resistance to current
anti-angiogenic therapies (60). Remarkably, tumor VM can be
potentially targeted by novel therapeutic agents, thus currently
diverse investigations in the search of novel VM regulators are
undergoing. In order to contribute with the understanding of the
role of small non-coding RNAs in the molecular mechanisms
responsible for VM, here we have uncovered a novel set of
miRNAs modulated at the early onset of hypoxia-induced
3D channels-like structures formation, previous to the proper
formation of tubules indicative of VM in SKOV3 cells. We fist
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FIGURE 6 | Kaplan-Meier curves for overall survival according the expression of miR-765, VEGFA, AKT1 and SRC-α. Overall survival analysis using Kaplan Meier

plotter for (A) miR-765, (B) VEGFA, (C) AKT1, and (D) SRC-α genes. Start KM plotter for ovarian cancer tool used genome-wide for mRNA expression data and

overall survival clinical information of cancer patients, which were downloaded from Gene Expression Omnibus GEO (Affymetrix HG-U133A, HG-U133A 2.0, and

HG-U133 plus 2.0 microarrays) and The Cancer Genome Atlas TCGA, whereas for miRNAs expression we used Start miRpower for pan-cancer as implemented in

the KM plotter. Samples were split into two groups according to various quantile expression of miR-765 (n = 485) and VEGFA, AKT1 and SRC-α genes in ovarian

cancer patients (n = 1435). Kaplan-Meier survival plots compared the two patient cohorts, and the hazard ratio with 95% confidence intervals and logrank P-value

were calculated.

set-up an in vitro model, and using PAS staining we confirmed
that SKOV3 cells efficiently form 3D channels-like networks in
agreement with other studies (16, 61–63). It’s important to note
that the tubular-like structures we have analyzed here, may not
reflect VM properly, but they represents the early stages of VM
and the morphological and transcriptional programs activated
by 48 h hypoxia, previous to VM appearance. It’s important to
remarks the urgency of confirmatory in vitro assays for proper
VM in the different types of cancer, as a recent report (19)
surprisingly suggested that many of structures reported in the
literature at early times of hypoxia may not represent VM, as we
can confirms in the present study.

Hypoxia is an important activator of VM, thus we decided
to search for the miRNAs regulated by hypoxia (hypoxamiRs)
during initial stages of VM, as it remains largely unknown
in ovarian cancer. Our results showed that 11 hypoxamiRs

were significantly modulated. Of these 9 miRNAs were
downregulated (miR-765, miR-660, miR-218, miR-198,
miR-518b, miR-148a, miR-1290, miR-193b, miR-222) and 2
upregulated (miR-486-3p, miR-138) (Figure 2). Interestingly,
high expression of miR-138 and low levels of miR-765, miR-193b,
and miR-148a genes were associated to low overall survival
suggesting a potential clinical value in ovarian cancer patients
(Figure 2). However, we cannot drawn a solid connection
between outcome and VM in patients, as we have collected the
clinical data from KMplot databases, and unfortunately no VM
presence/absence data is available for the cohort of patients
analyzed here. Thus, we have limited the conclusions only to
a correlation between miRNAs regulated by hypoxia and the
overall survival. On the other hand, several of the regulated
miRNAs have been previously associated with tumorigenesis in
diverse types of cancer. For instance, miR-660 was reported as
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downregulated in in lung cancer patients and its transient and
stable overexpression using RNA mimics reduced migration,
invasion, and proliferation properties and increased apoptosis
in p53 wild-type lung cancer cells (64). Likewise, miR-218-5p
expression was lower in cervical cancer tumors in comparison
with normal tissues. MiR-218-5p suppressed the progression
of cervical cancer via LYN/NF-κB signaling pathway (65). In
addition, miR-138 promotes cell proliferation and invasion
on colorectal cancer (66), and it contributes to resistance to
therapy in multiple myeloma and non-small cell lung cancer
(67, 68). Of the set of regulated hypoxamiRs, we focused in
the study of functional relationships between miR-765 and
3D channels-like formation. Recently, miR-765 have been
reported as upregulated or downregulated in diverse types
of malignancies such as esophageal squamous cell carcinoma
(69), melanoma (70), osteosarcoma (71), oral squamous cancer
(72) and hepatocellular carcinoma (73). Nevertheless, miR-765
functions in ovarian cancer and tumor VM remains largely
unknown. Our data showed that the ability of SKOV3 cells to
develop 3D channels-like structures formation under hypoxia
was significantly reduced after transfection of miR-765 mimics.
This may be explained as the target predictions indicate that
miR-765 may regulate genes associated to the cell proliferation,
matrix remodeling, migration, and invasion, angiogenesis,
and VM formation. Indeed, we demonstrated that miR-765
was able to downregulate the VEGFA, AKT1 and SRC-α
signaling transducer critical in VM. Also important is the
fact that expression of miR-765 and its aforementioned gene
targets have a potential clinical value as its deregulation was
associated with worst outcome in ovarian cancer patients
(Figure 6). Main limitations of the present study are denoted
by the use of a single cell model, which however, permit us
to delineate important conclusions about the hypoxamiRs
modulated in SKOV3 cells, and guide us to the analysis of
miR-765 and its role in 3D channels-like structures formation.

Nonetheless, we understand the need to extend our initial
findings in additional ovarian cancer cell lines in future studies.
Also, a limitation of the present study is that we specifically
analyzed here the early stages of VM (after 48 h hypoxia);
thus the potential role of the revealed miRNAs signature at
later stages of proper VM is unknown. Taken altogether, we
propose that miR-765 may regulate 3D channels-like structures
formation through both direct and indirect targeting of signaling
transducers. Also, we suggested that miR-765 could impair
VEGFA by direct binding to VEGFA and AKT1; as well as by
indirect downregulation of SRC-α which in turn may block
the VEGFA/AKT1 signaling transduction. In conclusion, in the
current work we provide a novel set of regulated hypoxamiRs
and experimental data supporting an unexpected role for
VEGFA/AKT1/SRC-α axis in 3D channels-like structures
formation in SKOV3 cells. As novel therapies targeting hypoxic
cancer cells are needed to improve therapy treatment of cancer,
we consider that our data are relevant and deserves further
in vivo validation.
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