
REVIEW
published: 10 June 2019

doi: 10.3389/fonc.2019.00451

Frontiers in Oncology | www.frontiersin.org 1 June 2019 | Volume 9 | Article 451

Edited by:

Axel zur Hausen,

Maastricht University Medical

Centre, Netherlands

Reviewed by:

Giuseppe Palma,

National Cancer Institute G. Pascale

Foundation (IRCCS), Italy

Anca Maria Cimpean,

Victor Babes University of Medicine

and Pharmacy, Romania

*Correspondence:

Antoine Touzé

antoine.touze@univ-tours.fr

Specialty section:

This article was submitted to

Molecular and Cellular Oncology,

a section of the journal

Frontiers in Oncology

Received: 07 December 2018

Accepted: 13 May 2019

Published: 10 June 2019

Citation:

Kervarrec T, Samimi M, Guyétant S,

Sarma B, Chéret J, Blanchard E,

Berthon P, Schrama D, Houben R and

Touzé A (2019) Histogenesis of Merkel

Cell Carcinoma: A Comprehensive

Review. Front. Oncol. 9:451.

doi: 10.3389/fonc.2019.00451

Histogenesis of Merkel Cell
Carcinoma: A Comprehensive
Review
Thibault Kervarrec 1,2,3, Mahtab Samimi 2,4, Serge Guyétant 1,2, Bhavishya Sarma 3,

Jérémy Chéret 5, Emmanuelle Blanchard 1,6, Patricia Berthon 2, David Schrama 3,

Roland Houben 3 and Antoine Touzé 2*

1Department of Pathology, Centre Hospitalier Universitaire de Tours, Tours, France, 2 ISP “Biologie des infections à

polyomavirus” team, UMR INRA 1282, University of Tours, Tours, France, 3Department of Dermatology, Venereology and

Allergology, University Hospital Würzburg, Würzburg, Germany, 4Departement of Dermatology, Centre Hospitalier

Universitaire de Tours, Tours, France, 5Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster,

Germany, 6 Plateforme IBiSA de Microscopie Electronique, INSERM 1259, Université de Tours, Tours, France

Merkel cell carcinoma (MCC) is a primary neuroendocrine carcinoma of the skin. This

neoplasia features aggressive behavior, resulting in a 5-year overall survival rate of 40%.

In 2008, Feng et al. identified Merkel cell polyomavirus (MCPyV) integration into the host

genome as the main event leading to MCC oncogenesis. However, despite identification

of this crucial viral oncogenic trigger, the nature of the cell in which MCC oncogenesis

occurs is actually unknown. In fact, several hypotheses have been proposed. Despite the

large similarity in phenotype features between MCC tumor cells and physiological Merkel

cells (MCs), a specialized subpopulation of the epidermis acting as mechanoreceptor of

the skin, several points argue against the hypothesis that MCC derives directly fromMCs.

Alternatively, MCPyV integration could occur in another cell type and induce acquisition

of an MC-like phenotype. Accordingly, an epithelial as well as a fibroblastic or B-cell origin

of MCC has been proposed mainly based on phenotype similarities shared by MCC and

these potential ancestries. The aim of this present review is to provide a comprehensive

review of the current knowledge of the histogenesis of MCC.

Keywords: merkel cell polyomavirus (MCPyV), epithelial, fibroblast, B cell, Merkel cell carcinoma (MCC),

histogenesis, origin

INTRODUCTION

Merkel cell carcinoma (MCC) is an aggressive neoplasm defined as a primary neuroendocrine
carcinoma of the skin. The incidence is still low, with for example 0.7 cases per 100,000 person-years
in the United States in 2013, but has increased by 95% from 2000 to 2013, and a further increase
in incidence has been predicted (1). MCC occurs essentially in older people, with known risk
factors being sun exposure (2) and immunosuppression (3, 4). MCC is characterized by aggressive
behavior resulting in a 5-year overall survival rate of 40% (5). Combined radiotherapy and surgery
is considered the mainstay of treatment for patients with localized disease, but until recently, those
with advanced, inoperable disease received various regimens of cytotoxic chemotherapy, without a
significant effect on survival (6). Recently, restoration of T-cell responses by inhibitors targeting
programmed cell death 1 (PD-1) and its ligand (PD-L1) checkpoints has been identified as an
effective approach in such patients (7). Indeed, after failure of first-line chemotherapy, treatment
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with avelumab resulted in objective tumoral responses in 32%
of MCC patients with advanced disease (7), and avelumab has
been approved for advanced MCC both in the United States
and European Union (7, 8). Avelumab is being investigated
as first-line therapy in this setting, with objective responses in
approximately 60% of patients in preliminary reports (9).

MCC is diagnosed on the basis of histological examination,
which reveals infiltration of the dermis or hypodermis by
proliferating tumor cells harboring high-grade neuroendocrine
carcinoma features (10) (Figure 1). Blastic lymphomas as well
as other small round blue cell tumors must be considered in the
differential diagnosis. Immunohistochemical investigation of
MCC cases (Figure 1) reveals the expression of both epithelial
(pancytokeratin AE1/AE3) and neuroendocrine markers
such as chromogranin A (11), synaptophysin (11), CD56
(10) and INSM1 (insulinoma-associated 1) (12). In addition,
the combination of cytokeratin 20 (CK20) positivity with
thyroid transcription factor-1 negativity (13) is currently used
to distinguish MCC from other metastatic neuroendocrine
carcinomas. Neurofilament and special AT-rich sequence-
binding protein 2 (SATB2) have been proposed as additional
markers providing high diagnostic accuracy (14, 15).

Significant progress in understanding the MCC pathogenesis
occurred in 2008, when Feng et al. reported a yet undescribed
virus, the Merkel cell polyomavirus (MCPyV), whose genome
was integrated in 80% of MCC tumors (16). MCPyV was further
found to be an ubiquitous virus responsible for an asymptomatic
life-long infection, because the episomal genome of MCPyV can
be detected in the skin flora of most healthy people (17) and
antibodies directed against the viral capsid are highly prevalent
in the general population (18, 19).

Despite the high population prevalence of MCPyV, viral
integration probably occurs very rarely, which accounts for the
rarity of MCC tumors, and constitutes the main oncogenetic
event leading to MCC oncogenesis. MCPyV integration together
with mutations of the viral sequence (20) result in loss of
replicative abilities of the virus before MCC development. As
a consequence, MCPyV-positive MCC tumors do not produce
MCPyV virions but are characterized by permanent nuclear
expression of the viral T-antigen proteins (small T [sT] and large
T [LT] antigen in a truncated form). Both sT and LT antigens
bear oncogenic properties, by targeting various host cell proteins
involved in cell cycle control and proliferation, and are now
considered as the key actors of oncogenesis in MCPyV-positive
MCC (21). By contrast, MCPyV-negative MCC, which accounts
for approximately 20% of MCC cases, have a high mutational
burdens, with a prominent UV signature, which affects various
oncogenes. Among these, mutations of the tumor suppressor
genes RB1 and TP53 appear to be critical oncogenic events (22).

Despite identification of both viral and UV-induced
oncogenetic triggers in MCC, the nature of the cell where
MCC oncogenesis occurs remains unknown (23). Actually,
several hypotheses have been advanced. The aim of this article is
to provide a comprehensive review of current knowledge of the
histogenesis of MCC.

The Merkel Cell: the Historical Candidate
According to Boyd et al. rare cancer types identified before
the molecular biology era were “either tumors presumed to
originate from or resemble a cell type that infrequently gave
rise to cancer, or histologically defined subsets within a more
common type of cancer” (24). MCC, a perfect illustration of
the first group, was classified according to its similarities with
skin physiological Merkel cells (MCs). MCs are highly specialized
epithelial cells located in the basal layer of the epidermis and
in the external part of the hair follicle (Figure 2). They have
been shown to act as mechanoreceptors by transforming tactile
stimuli into Ca2+-action potentials (25) and serotonin release
(26) and pass these signals on to Aβ-afferent nerve endings. The
protein allowing transformation of mechanic into electric signals
is the ion channel Piezo2 (25), which is also highly expressed
by MCC cells [(27), unpublished data]. Expression of this MC-
characteristic molecule is only one of many features shared
by MCs and MCC cells. Originally described as “trabecular
carcinomas of the skin” by Toker (28), ultrastructural studies
of such cases revealed numerous neuroendocrine dense cores
neuroendocrine granules, which are hallmarks of MCs (28, 29)
(Figure 2). Hence, these “trabecular carcinomas” were suggested
to derive from MCs, leading to their reclassification as MCC
(29). Further immunohistochemical studies corroborated these
initial findings by revealing a shared expression ofmany common
markers in MCs and MCC (10, 30) but only a limited number of
markers distinguishing them from each other (Table 1; Figures 1,
2). Indeed, both MCs and MCC express cytokeratin 20 (CK20)
(13, 15, 31), neuroendocrine markers chromogranin A and
synaptophysin (11, 37) and neuropeptides (30, 47). In contrast,
the expression of vasoactive intestinal peptide andmetenkephalin
(44) are specific to MCs, whereas CD117 and CD171 are detected
in only MCC cells (49, 61).

Despite the large similarity in phenotypic features, several
points argue against MCC deriving directly from MCs.
First, in other organs such as lung, strong data suggest
that neuroendocrine carcinoma derives more from epithelial
progenitors rather than an neuroendocrine cell (66, 67). Second,
MCs are mainly post-mitotic cells (31) and thus have low
sensitivity to oncogenic stimuli. Accordingly, ectopic expression
of sT antigen in MCs failed to induce cell proliferation or
transformation in a transgenic mouse model (68). Of note,
hyperplasia of MCs as well as mitotic activity in keratin
20-positive cells has been reported in pathologic conditions
(69, 70); however, whether these observations are due to
proliferation of already differentiated MCs or MC precursor
cells is still unclear. Third, MCs are most frequently present
in the palm and sole in humans (71, 72), whereas MCC
occurs mainly in sun-exposed areas [head and neck, legs
(2, 73)]. Moreover, no infection of MCs by MCPyV has
been reported (74). Finally, in an in vitro model, MCPyV
pseudovirions could barely infect CK20-positive cells obtained
from the fetal scalp (0.8%) (75), which argues against an efficient
MCPyV infection triggering MCC oncogenesis in an already
differentiated MC.

Frontiers in Oncology | www.frontiersin.org 2 June 2019 | Volume 9 | Article 451

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Kervarrec et al. MCC Histogenesis

FIGURE 1 | Morphological and immunohistochemical features of Merkel cell carcinoma: (A–C): hematein-phloxin-saffron staining revealed sheet of tumor cells with

high mitotic activity (bar = 100µm). Whereas, MCPyV-positive MCC (A,B) harbor scant cytoplasm, round nucleus and dusty chromatin, MCPyV negative tumor cells

have more abondant clear cytoplasm and irregular nucleus (C). (D) chromogranin A cytoplasmic positivity, (E) cytokeratin 20 expression with paranuclear dot-pattern;

(F) thyroid transcription factor-1 negativity; (G) membranous synaptophysin expression; (H) membranous CD56 expression; (I) special AT-rich sequence-binding

protein 2 (SATB2) nuclear expression; (J) neurofilament expression with a dot-pattern; (K) terminal deoxy nucleotidyl transferase weak/moderate expression,

(L) paired box 5 weak expression in tumor cells in comparison with intratumor lymphocytes (arrows).
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FIGURE 2 | Continued.
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FIGURE 2 | Immunohistochemical and ultrastructural features of physiological Merkel cells: immunohistochemical staining of normal skin (A,B) revealed one Merkel

cell located in the infundibulum of a hair follicle and coexpressing cytokeratin 20 (cytoplasmic expression in red) and SATB2 (nuclear expression in brown) (bar = 100

and 50µm for A,B). Immunofluorescence staining of healthy skin revealed some Merkel cells expressing cytokeratin 20 (C,D), cytokeratin 8 (E) and Piezo2 (F) in the

epidermis (C) and in hair follicles (D–F) (bar = 40µm for C–F). Electron microscopy of a Merkel cell (G,H) revealed numerous dense-core granules (bars = 2 and

0.5µm for G,H, respectively). A cropped region is shown in the inset (H).

Putative Mechanism of a “Non-MC” Origin
for MCC
The tumor classification system is based on tumor differentiation
and should not be considered a direct indicator of tumor
histogenesis (76). Indeed, several phenotypic changes
occurring during the oncogenic process contribute to the
final differentiation profile of tumor cells, which consequently
differ from the primary cell in which the first oncogenic
event took place (76). Accordingly, acquisition of an MC-like
phenotype including neuroendocrine differentiation (77) during
MCC oncogenesis could explain the similarities between MCs
and MCC (23). In MCC, both UV and virus-induced oncogenic
triggers are thought to act on shared molecular pathways,
accounting for the similar phenotype between MCPyV-positive
and -negative tumors (78). In this respect, disruption of pRB
function occurs by somatic mutations and repression of protein
expression in virus-negative tumors (22), whereas sequestration
by MCPyV LT antigen inactivates pRB1 in virus-positive
MCC cells (79). Interestingly, disruption of this pathway has
been identified as a main contributor driving acquisition of a
neuroendocrine phenotype in tumors of other organs (80–82).

In the skin, MC differentiation occurs in specific epithelial
precursors upon expression of one main transcription factor,
atonal homolog 1 (ATOH1) (31). Under physiologic conditions,
ATOH1 expression in the skin is restricted to MCs (31). Because
ATOH1 is also observed in MCC, its expression could explain
the shared phenotype between MCs and MCC (83). Moreover,
genetic ablation of Rb1 and the related Rb-family protein
p130 in the intestinal epithelium in a mouse model led to
increased expression of Atoh1 (84), which suggests that Atoh1
induction could occur during an oncogenic process associated
with Rb inactivation.

Considering these findings, a non-MC could also be candidate
for the ancestry of MCC, and an epithelial non-MC as
well as a fibroblastic and B-cell origin has been proposed
(Figure 3; Table 2).

A Non-MC Epithelial Origin
For quite some time it has been a matter to debate whether
MCs derive from the neural crest or epidermal lineage. Of
note both neural crest and epidermal lineages derived from the
same embryologic structure and this common ectodermal origin
might explain the mixed phenotype observed in Merkel cell
Indeed, ultrastructural studies of MC revealed on the one hand
intracytoplasmic neuroendocrine granules suggesting a neural
crest origin (85) and on the other hand frequent desmosomes
and cytokeratins, two hallmarks of the epithelial subset (86).
Accordingly, also immunohistochemistry demonstrated both
expression of “neural crest” as well as epithelial markers

(Table 1). Although the neural crest origin hypothesis was
additionally supported by chimeric chicken/quail models (87,
88), xenograft of human fetal skin free of neural crest progenitors
in immunocompromised mice led to the development of
human Merkel cell suggesting an epidermal origin of this
population (89).

An epithelial origin of Merkel cells in mammals was finally
demonstrated in 2009 by two consecutive transgenic mouse
studies (31, 90). In both studies it was shown that deletion of
Atoh1 in epidermal progenitors resulted in a complete absence of
MCs. Additionally, Morrison and colleagues demonstrated that
Atoh1 deletion in the neural crest lineage did not affect the MC
population (90).

Additional studies in mice models revealed that MC
phenotype acquisition upon Atoh1 expression seems to be
restricted to a specific subpopulation of keratinocyte progenitors
characterized by an activated Sonic Hedgehog pathway (91, 92).
Indeed, Atoh1 expression failed to induce MC differentiation
in other keratinocyte populations (31) and gave rise to distinct
differentiation in other cell types (93–95).

A thorough characterization of the MC progenitor population
in humans is still missing (96). Therefore, our current knowledge
of this cellular subset is mainly based on findings in mice,
in which cells bearing MC differentiation potential are mainly
located in the outer root sheet and bulge region of the hair follicle
(97, 98) but are also present in the interfollicular epidermis
in specialized structures called touch domes (92). Interestingly,
these hair follicle- and touch- dome–derived stem cells have
been found as preferentially the origin of basal cell carcinomas
(99). Therefore, their ability to acquire an MC phenotype and to
proliferate, as well as their high sensitivity to oncogenic stimuli,
should promote their transformation into MCC, rendering them
likely candidates as cells of origin. Of note, MCC developing
within follicular cysts (100) as well as preferential MCPyV
infection of the dermal cells around hair follicles (75) support
MCPyV(+) MCC as being derived from hair follicles.

A hair-follicle origin of MCC would also weaken
one argument frequently used against an epithelial
origin of MCC. Because MCC cells are mostly found
in the dermis and subcutis lacking a connection to the
epidermis, an epidermal origin is unlikely (62). However,
some appendage tumors such as trichoblastoma and
spiradenoma (101, 102) are well known to lack an epidermal
connection (10).

The observation of so-called combined MCC or MCC with
divergent differentiation further supports an epithelial origin
of MCC. Combined MCC represents 5 to 10% of cases and is
characterized by the association of an MCC component with
a tumor of another differentiation lineage (103–105). Although
several divergent additional components have been described
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TABLE 1 | Markers expressed by physiological Merkel cells and Merkel cell

carcinoma.

Markers Merkel cells Merkel cell

carcinoma

EPITHELIAL MARKERS

Cytokeratin 20 +(31, 32) +(10, 15)

Cytokeratin 8 +(31, 32) +(33)

Cytokeratin 18 +(31, 32) +(34, 35)

ß1 integrin +(36)

LRIG1 +(36)

CSPG4 +(36)

NEUROENDOCRINE MARKERS

Chromogranin A +(37, 38) +(10, 11)

Synaptophysin +(37, 38) +(10, 11)

CD56 +(39, 40) +(10, 41)

ISL1 +(42) +(43)

INSM1 Lacking data +(12)

Vasoactive intestinal peptide +(44, 45) –(44, 45)

Metenkephalin +(44, 45) –(44, 45)

MAO A and B +(46) Lacking data

NEUROGENIC/ MECHANORECEPTOR MARKERS

Neuropeptides +(30) +(47)

Neurofilament −(48)+ +(14, 15)

CD171 −(49) +(49)

SATB2 +(50) +(15, 50)

PIEZO2 +(38) +(unpublished

data)

PGP9.5 +(51) +(52, 53)

SOX2 +(42) +(54, 55)

WNT1 +(56) Lacking data

TUBB3 +(51) +(57)

p75NTR +(58) Lacking data

TrkC +(58) Lacking data

NT-3 +(58) Lacking data

Advillin +(59) Lacking data

B CELL MARKERS

CD117 (c-KIT) –(60) +(61)

PAX5 Lacking data +(15, 62, 63)

TDT Lacking data +(15, 62, 63)

Immunoglobulins Lacking data +(64, 65)

(+), positivity of the marker; (–), negativity of the marker; CSPG4, chondroitin sulfate

proteoglycan 4; INSM1, insulinoma associated 1; ISL1, Islet-1; LRIG1, leucin rich repeats

and immunoglobulin like domains 1; MAO, monoamine oxydase; NT-3, neurotrophin 3;

p75NTR, neurotrophin receptor p75; PAX5, paired box 5; PGP9.5, ubiquitin C-terminal

hydrolase L1; SATB2, special AT- rich sequence binding site 2; SOX2, SRY-box2; TDT,

terminal deoxynucleotidyltransferase; TRKC, neurotrophic tyrosine kinase receptor type

3; TUBB3, tubulin beta 3 class III; WNT1, Wnt family member 1.

(sarcomatous, adnexal) (104, 106), MCC is most frequently
found associated with squamous/eccrine carcinoma (105, 107)
(Figure 4). For individual cases, the same genetic alterations have
been reported for both components, which implies a common
progenitor (108), whereas other cases gave proof of a collision
tumor (109). Furthermore, similar aberrant p53 expression is
frequently observed in both components of combined MCC
(105). In some combined MCC cases, intra-epidermal neoplasia

such as actinic keratosis or Bowen’s disease (107) was detected
close to the squamous cell carcinoma component. Bowen’s
disease originates from the epidermis, and invasive squamous cell
carcinoma can derive from Bowen’s disease; hence, the clonality
between squamous cell carcinoma and the MCC component
(108) favors an epidermal origin of MCC (97). Of note, the
hyperplasia of MCs in the squamous cell carcinoma component
of combined tumors (70) might suggest that such components
contain precursors with the ability to acquire an MC phenotype.

Importantly, such combined cases have been described to
be usually typical UV-induced MCCs, harboring morphologic
and immunohistochemical features distinct from MCPyV-
positive MCC and high mutational load (104, 106, 108)
as depicted in Table 3. Of note low viral load of MCPyV
in some cases is probably related to an episomal viral
genome present in the skin (105). In our experience
[(118), Figure 4], rare cases of MCC with intra-epidermal
involvement [2% in our previously reported cohort (73)]
are also related to the UV-induced subset. Hence, although
combined cases imply that MCPyV-negative cases derive
from some epidermal progenitors of the interfollicular
epidermis, they provide no information about MCPyV-induced
tumors (119).

In agreement with this observation, Sunshine et al.
hypothesized that there might be two different cells of origin
for the two MCC subtypes (119). They provided several
arguments for this conclusion. For example while the UV-
mutation signature of virus-negative MCC favors an epidermal
origin the failure of epidermis targeted TA-expression to
produce tumors resembling human MCC in mouse models
(68, 120, 121) suggests that other cells in the skin such as
dermal fibroblast may serve as origin of MCC (119). Since
both UV- and virus-induced MCC occur in sun-exposed
areas where frequent UV-induced mutations are observed
in keratinocytes (122), but only MCPyV-negative cases are
characterized by high mutational load and UV signature
(22, 119) Sunshine and colleagues excluded an epithelial and
instead proposed a fibroblastic origin of MCPyV(+) MCC
(119). However, low mutational burden as well as lack of
UV-signature in MCPyV(+) MCC might also be explained by
MCPyV integration into a cell from the hair follicle which like
dermal fibroblasts is located deeper in the skin then normal
epidermal keratinocytes.

In conclusion and acting on the assumption that MCC
generally has an epithelial origin, one could speculate that
UV-induced MCC derives from a keratinocytic progenitor
from the interfollicular epidermis that acquires the ability to
differentiate into MCs during the oncogenic process, whereas
MCPyV-driven oncogenesis is initiated in a progenitor from a
hair follicle.

A Fibroblastic Origin
Another hypothesis is MCC developing from fibroblastic cells.
This hypothesis might account for the quasi-exclusive dermal
location of MCC, discussed above. Furthermore, the fibroblastic
origin of MCCs would be consistent with our knowledge of the
MCPyV cycle because fibroblasts of the papillary dermis have
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FIGURE 3 | Graphic summary of the 4 putative cells of origin of Merkel cell carcinoma (MCC). (A) Physiological MC differentiation (B) First hypothesis: physiological

MC as the cell of origin of MCC, suggesting that T antigens can induce transformation in this cell type. (C–E) Second hypothesis: oncogenic events occur in a

non-MC and induce transformation and acquisition of an MC-like phenotype. Potential ancestries are epithelial progenitors (C), fibroblast/dermal stem cells (D) or

pre/pro B cells (E) from the B cell lineage (F). MC, Merkel cell; MCPyV, Merkel cell polyomavirus.

been identified as the main site of replicative MCPyV infection
(75). Although infectious MCPyV particles can enter several
cell types including keratinocytes with various efficiency rates
(75, 123), fibroblasts remain the only host cell evidencing early
and late viral protein expression. One could argue that replication
and transformation can occur in independent cell types, as was
previously demonstrated for polyomavirus SV40 (124); however,
the ability of fibroblasts to allow replication of the MCPyV
genome increases the likelihood of accidental integration of the
viral genome. Moreover, the in vitro transforming potential of
sT antigen has until now been demonstrated only in fibroblasts
(68, 124, 125). Notably, ectopic expression of SV40T antigens
in fibroblastic cells (126) triggered the induction of cytokeratin
expression, which suggests that polyomavirus infection can
influence a differentiation lineage. In such a setting, acquisition
of an MCC phenotype induced by viral protein expression could
require a transient pluripotent stage. Indeed, fibroblasts are
widely used for reprogramming to pluripotent cells. The resulting
induced pluripotent stem cells (127) can be differentiated into

epithelial cells in vitro. Furthermore, physiological stem cells

of the papillar dermis [i.e., dermal skin precursors or skin-
derived precursors (128)] share phenotypic similarities with

induced pluripotent stem cells, such as expression of the

stem cell factors c-Myc and Sox2 (129), two markers also
expressed by MCC (54, 130). These dermal skin precursors
are able to differentiate into epithelial or neuronal cells in
vitro. Hence, because of the close proximity of these cells
to dermal fibroblasts, which can support productive MCPyV
infection (75), as well as their expression of pluripotent factors
and their differentiation abilities, MCPyV integration in such
cells could lead to MCC oncogenesis and acquisition of an
MCC phenotype.

A Pre/Pro or Pre–B-Cell Origin
Because of the recurrent association between MCC and B-
cell neoplasias (131–134) as well as phenotypic similarities and
the occasional integration of MCPyV in hematopoietic cells, a
lymphoid pre/pro B-cell origin is also discussed (62, 64).
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TABLE 2 | Pros and cons of current hypotheses for the potential cell of origin of Merkel cell carcinoma (MCC).

Candidate Pros Cons

Merkel cell Phenotypic similarities: (immunohistochemical profile: CK8,

CK18, CK20 + neuroendocrine markers+ultrastructural

findings)

No mitotic activity

No demonstrated MCPyV demonstration

No transformation by MCPyV antigens

Lack of epidermal connection in almost all MCC cases

Epithelial progenitor Ability to differentiate into Merkel cells

Ability to generate combined MCC

Most probable origin of neuroendocrine carcinoma in

other sites

Exclusive dermal/hypodermal location of MCC

No UV signature

Lack of epidermal connection in almost all MCC cases

Fibroblast and dermal

stem cell

Site of replication of the MCPyV

Ability of MCPyV antigens to induce transformation in these

cell types

Presence of SKP with reprogramming abilities

No proof of the ability of fibroblasts to acquire an MC-like

phenotype

Unexpected origin for a neuroendocrine carcinoma

Pre/pro B cell Epidemiologic association between MCC and B-cell

neoplasia

Co-expression of B-cell markers (PAX5, TdT and

Immunoglobulins)

Detection of MCPyV integration in B-cell neoplasia

No proof of the ability of B cells to acquire an MC-like

phenotype

Unexpected origin for a neuroendocrine carcinoma

MC, Merkel cell; MCPyV, Merkel cell polyomavirus; SKP, skin-derived precursors.

FIGURE 4 | Microscopy features of MCC with divergent differentiation or intra-epidermal involvement [bars = 5mm and 200µm (A,B) and 100µm (C,D). (A–C)

combined MCC is characterized by the association of MCC with another differentiation subset, mainly squamous cell carcinoma (SCC). In some specimens,

intra-epidermal neoplasia (IEN) such as Bowen disease, deriving from the non-neoplasic epidermis (NE) can be detected in tumor in close contact. (D) MCC harboring

an intra-epidermal component.

Indeed, chronic lymphocytic leukemia is the most frequent
neoplasia associated with MCC development. Whether this
is due to a common transforming event or the first tumor
creating an immunological microenvironment facilitating the
development of the second tumor or merely due to both tumors

appearing in older immunocompromised subject has yet to be
determined (131).

Moreover, MCC shares morphological features with other
small round blue cell tumors, which explains why B-cell neoplasia
must be considered a differential diagnosis of MCC. In addition,
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TABLE 3 | Distinct features of MCPyV-positive and -negative MCC cases.

Features MCPyV(+) Merkel cell

carcinoma

MCPyV(–) Merkel cell

carcinoma

MORPHOLOGY

Nucleus Round (110, 111) Irregular/spindle

(110, 111)

Cytoplasm Few (110, 111) More abundant

(110, 111)

Divergent

differentiation

No (103, 104) Yes (103, 104)

IMMUNOHISTOCHEMICAL MARKERS

CK20 +(112, 113) +/–(112, 113)

CK7 –(112) +/–(112)

TTF1 –(112, 114) +/–(112, 114)

Neurofilament +(14, 106, 112) +/–(14, 106, 112)

Oncogenic

triggers

MCPyV T antigens

(16, 68, 79, 115)

UV induced genetic

alteration (22, 116, 117)

Mutation load Low (22, 116, 117) High (22, 116, 117)

(+), frequent positivity of the marker; (–), frequent negativity of the marker; (+/–) increased

or decrease expression frequency of this marker compared to the MCPyV(+) subset.

Compared to the MCPyV-positive MCC cells MCPyV-negative MCC tumor cells have

been described to harbor more irregular nuclei, more abundant cytoplasm and display

more frequently so called divergent differentiation.. Moreover, MCPyV-negative cases are

characterized by an specific immunohistochemical profile with frequent lack of expression

of CK20 and neurofilaments, and more frequent positivity for TTF1 and CK7. Finally, very

high mutational burden with UV signature are observed only in MCPyV-negative cases.

the coexpression of terminal deoxy nucleotidyl transferase (TdT),
paired box 5 (Pax5) and immunoglobulin chains, all markers
expressed during B-cell differentiation, has been observed in
MCC tumors (62, 64). Initially, the frequency of TdT and
Pax5 positivity was reported to be about 65% (N = 187)
and 90% (N = 143) of MCC cases (64); however, recently
observed rates were lower, 26% (N = 217) or 23% (N =

213) (15, 63). Of note, expression of immunoglobulin chains
was restricted to the MCPyV(+) subset and detected in about
70% of cases (65). In addition, rare observations of MCC
cases with monoclonal immunoglobulin rearrangement of heavy
chain as well as monoclonal expression of Kappa light chain
were reported (62, 65). As already discussed, determination
of the histogenesis based on phenotype similarities between
terminally differentiated tumor and physiological cells does not
account for phenotypic changes during oncogenesis (76). In
this regard, induction of immunoglobulin expression during
the oncogenic process has been reported for several epithelial
and soft-tissue neoplasias (135, 136) and may contribute
to tumor aggressiveness (137). Furthermore, immunoglobulin
rearrangement due to the expression of essential enzymes
required for gene rearrangement and class switch recombination
has been described in non-hematopoietic neoplasia (136).
Hence, immunoglobulin expression and rearrangement might
result from the oncogenic process, and their occurrence in
MCC cannot rule out a non-lymphoid cell origin. Induction
of immunoglobulin expression in epithelial cells has been
reported to result from Epstein-Barr virus infection (138) and
was also observed in papillomavirus-induced neoplasia (139).

These findings, combined with the exclusive expression of
immunoglobulins in MCPyV(+) MCC, led Murakami and
colleagues to hypothesize that the immunoglobulin expression
in MCC cells is induced by MCPyV oncoproteins (65). In
the same manner, the concomitant expression of TdT and
Pax5 is restricted to immature B cells and thymocytes under
physiological conditions (140) and is also observed in MCC.
While co-expression have not yet been described positivity of one
of these markers has also been demonstrated in several epithelial
neoplasias (141, 142), which indicates that these markers can
be acquired during the oncogenic process. Moreover, MCPyV
genome integration (143) associated with a deletion leading
to a truncated LT antigen (144), the two hallmarks of MCC
oncogenesis, have been evidenced in some cases of chronic
lymphocytic leukemia and tropism of other tumor viruses for the
Pre-Pro B cells has been previously emphasized (145). Although
these findings demonstrate that MCPyV integration associated
with transformation can occur in B cells, lack of acquisition of
an MCC phenotype in these cases argue against a B-cell origin
of MCC.

SUMMARY

To conclude, reviewing the current knowledge of MCC
histogenesis allows for also underlining the basis of the current
tumor classification system. Indeed, tumors are mostly classified
according to their differentiation status and their level of
similarities with physiological cells at the same location (24).
However, we should keep in mind that the final phenotype of a
given tumor cell may result from strong differentiation changes
occurring during oncogenesis and thus does not necessarily
directly reflect the cell ancestry (76). Accordingly, despite
strong similarities, MCC likely does not derive from already
differentiated MCs, which suggests that acquisition of an MC-
like phenotype occurs during the oncogenic process (Figure 3).
From the observations of combined MCC tumors, high somatic
pathologic variant loads and detection of an UV signature in
this subset, UV-induced MCC cases probably derive from a
progenitor cell of the epidermis. By contrast, the nature of the
cell in which MCPyV integration occurs remains to be clarified.
The lack of connection between tumor cells and the epidermis as
well as lack of a UV signature could favor a non-epithelial origin
but alternatively could be explained by integration of MCPyV
in cutaneous appendage enriched with MC precursors. Use of
experimental models in addition to phenotypic characterization
of MCC to monitor phenotype changes induced by MCPyV in
several cell types are needed to fully address this question.
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