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Purpose/Objectives: There are several popular treatment options currently available

for stereotactic radiosurgery (SRS) of multiple brain metastases: 60Co sources and

cone collimators around a spherical geometry (GammaKnife), multi-aperture dynamic

conformal arcs on a linac (BrainLab ElementsTM v1.5), and volumetric arc therapy on

a linac (VMAT) calculated with either the conventional optimizer or with the Varian

HyperArcTM solution. This study aimed to dosimetrically compare and evaluate the

differences among these treatment options in terms of dose conformity to the tumor

as well as dose sparing to the surrounding normal tissues.

Methods andMaterials: Sixteen patients and a total of 112metastases were analyzed.

Five plans were generated per patient: GammaKnife, Elements, HyperArc-VMAT, and

two Manual-VMAT plans to evaluate different treatment planning styles. Manual-VMAT

plans were generated by different institutions according to their own clinical planning

standards. The following dosimetric parameters were extracted: RTOG and Paddick

conformity indices, gradient index, total volume of brain receiving 12Gy, 6Gy, and 3Gy,

and maximum doses to surrounding organs. The Wilcoxon signed rank test was applied

to evaluate statistically significant differences (p < 0.05).

Results: For targets ≤ 1 cm, GammaKnife, HyperArc-VMAT and both Manual-VMAT

plans achieved comparable conformity indices, all superior to Elements. However,

GammaKnife resulted in the lowest gradient indices at these target sizes.

HyperArc-VMAT performed similarly to GammaKnife for V12Gy parameters. For targets

≥ 1 cm, HyperArc-VMAT and Manual-VMAT plans resulted in superior conformity vs.

GammaKnife and Elements. All SRS plans achieved clinically acceptable organs-at-risk

dose constraints. Beam-on times were significantly longer for GammaKnife.

Manual-VMATA and Elements resulted in shorter delivery times relative to Manual-

VMATB and HyperArc-VMAT.
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Conclusion: The study revealed that Manual-VMAT and HyperArc-VMAT are capable

of achieving similar low dose brain spillage and conformity as GammaKnife, while

significantly minimizing beam-on time. For targets smaller than 1 cm in diameter,

GammaKnife still resulted in superior gradient indices. The quality of the two

sets of Manual-VMAT plans varied greatly based on planner and optimization

constraint settings, whereas HyperArc-VMAT performed dosimetrically superior to the

two Manual-VMAT plans.

Keywords: stereotactic radiosurgery, multiple brain metastases, conformity index, dynamic conformal arcs,

volumetric arc therapy

INTRODUCTION

Stereotactic radiosurgery (SRS) was first conceptually introduced
by neurosurgeon, Lars Leksell, in 1951 (1, 2). The evolution
of this technology alongside advances in image guidance have
enabled the Gamma Knife to serve as the leading workhorse for
treating cranial malignancies with hypofractionation. Although it
was the first of its kind to perform SRS, the Gamma Knife has not
been the only player, with other accelerator modalities adapting
to offer solutions for patients requiring SRS (3, 4). Advancements
in hardware and software design have since propelled linacs
to become a popular and more widely available technology for
stereotactic treatment capability. This is particularly pertinent
for the treatment of multiple brain metastases, which were
traditionally treated with surgery and/or whole brain radiation
therapy (WBRT).

With more studies promoting the benefits of SRS for multiple
brain metastases such as: improved local control when adding
SRS to WBRT (5–8), similar survival (WBRT+SRS vs. SRS
only) (8–17) and less cognitive deterioration (SRS only) (18–
21), the ratio of patients receiving SRS treatments annually
increased 15.8 percentage points from 2004 to 2014 and
the number of facilities offering SRS annually increased 19.2
percentage points (22). Supporting evidence for SRS of a large
number of brain metastases has further contributed to this
effect (14, 20, 23–29). This growing demand for SRS, coupled
with the ease of access to conventional linacs, has stimulated
the development of a number of new technologies to facilitate
the implementation of linac-based SRS for the treatment of
multiple metastases. The common goal of all these linac SRS
techniques is to use a single isocenter to treat all of the metastases
simultaneously, in order to avoid prohibitively long treatments
with multiple isocenters and thereby improve patient comfort
and throughput. The most current single isocenter linac-based
SRS options include multi-aperture dynamic conformal arcs on
a linac (30–32) (BrainLab ElementsTM v1.5, Munich, Germany),
volumetric arc therapy (VMAT) calculated with the conventional
optimizer (33–43) (Varian Medical Systems, Palo Alto, CA) or
VMAT delivery calculated with the newer Varian HyperArc
solution (44–47).

With this large variety of commercially available SRS
treatment techniques, it is important to assess and be aware
of the different strengths and weaknesses of the numerous
options available for patients seeking treatment for multiple

metastases. As the different technologies have emerged, there
have been a number of studies comparing some of the techniques
against each other. Thomas et al. (48), Liu et al. (49), and
Potrebko et al. (50) each compared VMAT to GammaKnife for
28 patients with 2–9 targets, 6 patients with 3–4 metastases
and 12 patients with at least 7 metastases, respectively. Mori
et al. compared Elements to GammaKnife for two patients each
with 9 metastases (32). Ohira et al. (44) compared HyperArc
to conventional VMAT for 23 patients with 1–4 metastases,
meanwhile Slosarek et al. (46) has most recently compared
CyberKnife, VMAT and HyperArc for a set of 15 patients with
3–8 metastases each. Overall, these studies have found that
VMAT is generally comparable to GammaKnife (with some
minor differences such as improved conformity indices at the
cost of potentially increased low dose spread), as is Elements
to GammaKnife, and similarly now HyperArc is to VMAT.
However, most of the published studies have only compared
two technologies to each other, with the exception of Slosarek
et al. (46), which added CyberKnife to the mix. This makes it
difficult to assess whether one technique may truly be superior
to another for a certain patient scenario because there is a
lack of comparison data on the same subset of patients for the
multiple SRS techniques available. It is therefore the aim of this
work to provide a more rigorous and comprehensive evaluation
of the dosimetric differences between the following state-of-
the-art SRS modalities: GammaKnife, Elements, Manual-VMAT,
and HyperArc-VMAT.

METHODS AND MATERIALS

Sixteen patients with a range of 4–10 metastases each, for
a total of 112 metastases, were included in this study. The
patient’s age ranged from 36 to 81 years old and consisted of
the following primary cancers: renal cell carcinoma, esophageal,
oropharyngeal, melanoma, breast, colon, and non-small cell
lung carcinoma (adenocarcinoma and large cell). Five of the
16 patients did receive prior radiation treatment: SRS alone,
WBRT alone, or both SRS and WBRT. The target volumes and
prescribed doses (Gy) are detailed in Table 1 for each of the
16 patients.

Details on each of the SRS modalities utilized in this
comparison study are described as follows. The most up to
date commercially available product is the Leksell GammaKnife
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TABLE 1 | Target size and prescribed dose per metastasis for the 16 patients included in this SRS study comparison.

Patient#1 Target A B C D

Target volume (cc) 0.97 0.37 4.59 9.63

Prescription (Gy) 21 21 18 15

Patient #2 Target A B C D E

Target volume (cc) 1.41 0.25 0.52 0.31 0.95

Prescription (Gy) 21 21 21 21 21

Patient #3 Target A B C D E

Target volume (cc) 0.33 0.65 0.51 0.18 0.17

Prescription (Gy) 24 21 24 24 24

Patient #4 Target A B C D E

Target volume (cc) 2.73 0.40 0.29 0.30 0.20

Prescription (Gy) 15 21 21 21 21

Patient #5 Target A B C D E F

Target volume (cc) 3.54 0.18 0.23 2.26 0.48 0.15

Prescription (Gy) 15 18 18 15 18 18

Patient #6 Target A B C D E F

Target volume (cc) 3.4 8.01 0.21 1.52 0.58 2.78

Prescription (Gy) 21 15 21 21 21 16

Patient #7 Target A B C D E F

Target volume (cc) 7.12 6.48 0.55 0.37 6.45 2.49

Prescription (Gy) 15 18 24 24 15 21

Patient #8 Target A B C D E F G

Target volume (cc) 0.13 0.14 0.21 0.12 7.98 0.23 0.15

Prescription (Gy) 21 21 21 21 15 21 21

Patient #9 Target A B C D E F G

Target volume (cc) 1.93 4.08 0.31 2.05 8.36 1.62 1.22

Prescription (Gy) 21 18 21 21 15 21 21

Patient #10 Target A B C D E F G

Target volume (cc) 0.69 0.71 0.98 0.55 5.02 0.36 1.3

Prescription (Gy) 21 21 21 21 15 21 21

Patient #11 Target A B C D E F G H

Target volume (cc) 1.7 0.31 0.15 0.31 0.21 2.45 0.76 0.72

Prescription (Gy) 21 21 21 21 21 21 21 21

Patient #12 Target A B C D E F G H

Target volume (cc) 2.17 0.44 0.25 0.10 3.62 0.38 0.31 0.32

Prescription (Gy) 21 21 21 21 18 21 21 21

Patient #13 Target A B C D E F G H

Target volume (cc) 0.91 8.62 0.21 0.33 0.26 0.12 4.21 0.23

Prescription (Gy) 21 15 21 21 21 21 18 21

Patient #14 Target A B C D E F G H I

Target volume (cc) 0.16 0.11 0.19 0.94 0.26 5.05 0.38 3.56 0.50

Prescription (Gy) 21 21 21 21 21 18 21 18 21

Patient #15 Target A B C D E F G H I J

Target volume (cc) 7.67 0.61 0.20 0.17 0.17 0.47 0.41 0.24 0.21 0.35

Prescription (Gy) 15 21 21 21 21 21 21 21 21 21

Patient #16 Target A B C D E F G H I J

Target volume (cc) 0.22 0.10 0.59 1.58 0.25 1.64 0.91 0.37 0.30 0.40

Prescription (Gy) 18 18 18 18 18 20 20 20 20 20

Icon (Elekta, Stockholm, Sweden), containing 192 60Co sources
and 4, 8, and 16mm cone collimator options, which is an
upgrade of the Perfexion unit, in that it allows frameless
treatments with the addition of on-board cone-beam computed

tomography (CBCT) imaging and a real-time motion tracking
device. BrainLab ElementsTM v1.5 is a commercial treatment
planning system that automatically optimizes a dedicated group
of dynamic conformal arcs to treat each of the lesions within
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the brain (via a single arc or a composition of multiple arcs)
with a single common isocenter. Volumetric arc therapy enables
intensity-modulated dose delivery via varying MLC positions
and dose rate, simultaneous to varying gantry rotation speed,
thus significantly increasing the degrees of freedom for the
optimization algorithm. There is no physical difference in terms
of the delivery for conventional VMAT vs. HyperArc. The major
difference lies on the planning side for HyperArc, where the
software assists the user by automatically selecting an optimal
mono-isocenter, collimator angles, and non-coplanar arc setup
with the intent of delivering the most conformal plan while
minimizing low dose spillage into the surrounding normal brain
structures. With conventional VMAT optimization, the planner
is responsible for selecting andmanipulating all of these variables.

For every patient, a treatment plan was generated according
to each of the four SRS techniques: GammaKnife, Elements,
Manual-VMAT, and HyperArc-VMAT. Note, all patients were
treated clinically with Elements and all other modalities were
retrospectively planned for comparison in this study. A total of
three different planners were included in this study. A single
planner created all of the treatment plans across all patients per
specified SRS modality to remove planner variability within each
SRSmodality. A single SRS planner with 8–10 years of experience
generated all of the Elements plans used to treat the 16 patients
in this study. A second SRS planner with 1–3 years of experience
generated all GammaKnife plans and one set of Manual-VMATA

plans across all patients. Finally, a third SRS planner with 3–
5 years of experience generated all Manual-VMATB plans for
the 16 patients. All HyperArc-VMAT plans were generated by
the same planner for Manual-VMATB but after all manual
plans were done, i.e., Manual-VMATB plans were not influenced
by HyperArc plans. An additional Manual-VMAT plan was
created for every patient following another institution’s planning
standard, in order to also evaluate the potential differences that
may arise between two different treatment planner’s styles. The
difference in planning techniques between the two VMAT plans
are summarized as follows: for VMATA an upper and lower
constraint was used for all targets, and no aggressive objective
on low dose spread was applied, whereas VMATB only applied
lower constraints to target volumes but with additional objectives
to control low dose spread.

Beam arrangements for the Elements plans were selected from
a set of six predefined templates with a range of 5–6 couch angles
with 28, 32, 35, or 40 degrees of separation. The gantry angles are
initially set to default values ranging from 10

◦

to 170
◦

for couch
angles of 0

◦

-90
◦

and 190
◦

-350
◦

for couch angles of 270
◦

-360
◦

.
However, these are automatically adjusted during optimization.
The plan resulting in the highest conformity from these six
templates was selected for treatment and subsequent use in this
comparison study. Manual-VMATA plans consistently used 4
gantry arcs across all patients: 1 full 180

◦

arc without a couch
kick and 3 partial arcs ranging from 100

◦

to 160
◦

(depending
on isocenter location to avoid entering through the eyes) each
separated by 45

◦

couch kicks at 45
◦

, 90
◦

, and 315
◦

couch angles.
Manual VMATB plans also used 4 gantry arcs across all patients:
1 full 180

◦

arc without a couch kick and 3 partial arcs of 170
◦

(with no beamlets going through the eyes) also separated by 45
◦

couch kicks at 45
◦

, 90
◦

, and 315
◦

couch angles. HyperArc-VMAT
plan parameters were consistent for all 16 patients: 1 full 180

◦

arc
without a couch kick and 3 partial arcs of 180

◦

separated by 45
◦

couch kicks at 45
◦

, 270
◦

, and 315
◦

couch angles. All linac-based
SRS plans were planned withMLC leaf widths corresponding to a
Varian TrueBeam (Varian Medical Systems, Palo Alto, CA) fitted
with HD-120 MLC.

All linac plans were normalized such that the 100% isodose
line covered 99% of the target volume. The GammaKnife plans
were normalized with the same goal of covering 99% of the target
volume with the prescription dose. This resulted in a range of 49–
73% prescribed isodose lines with amedian of 54%. All of the plan
doses were imported into the same treatment planning system
platform and version of Varian Eclipse (Varian Medical Systems,
Palo Alto, CA) for dosimetric evaluation at a calculation grid size
of 1mm. Note, target normalization was entirely performed in
each plan’s native treatment planning system and no differences
in target coverage were discovered after importing into Eclipse
during dosimetric evaluation. The target volume metastasis for
all patients in this study was defined as the planning target
volume (PTV), already incorporating setup margins. All of the
extracted and calculated dosimetric parameters described below
are compared equivalently across all SRS techniques in terms of
PTV. Thus, there are no inherent biases in comparing conformity
indices for GTV vs. PTV when comparing GammaKnife vs.
linac-based SRS.

The following dosimetric parameters were extracted per
patient target volume across all SRS treatment plans: RTOG
conformity index (CI-RTOG) defined as the ratio of the 100%
isodose volume to the target volume; Paddick conformity index
(CI-Paddick) defined as the ratio of the square of the volume
of the target enclosed by the 100% isodose volume to the
multiplication of the target volume with the 100% isodose
volume; Gradient Index (GI) defined as the ratio of the 50%
isodose volume to the 100% isodose volume; and the volume
of 12Gy delivered to the surrounding brain tissue contributed
only from that individual target (V12Gy) and the volume of
12Gy delivered to the surrounding brain tissue per individual
target after subtracting that individual target volume (V12Gy-
TV). Additionally, the following dosimetric parameters were
extracted per patient across pertinent organs-at-risk (OARs): the
total volume of brain receiving 12Gy, 6Gy, and 3Gy (V12Gy,
V6Gy, V3Gy) the mean dose to the brain excluding the targets
(Brain mean dose), the maximum dose to the brainstem (Dmax

Brainstem), maximum dose to the left eye and optic nerve
(Dmax L Eye and Dmax L ON), maximum dose to the right
eye and optic nerve (Dmax R Eye and Dmax R ON), and
maximum dose to the optic chiasm (Dmax OC). Lastly, the total
treatment time for each plan was also extracted for comparison
(linac plans times were calculated assuming a dose rate of
1,400 MU/min).

Statistical evaluation of the extracted parameters was
performed with JMP Pro v14 (SAS, Cary, NC). The Wilcoxon
signed rank test was applied in the format of matched pairs
to compare each of the plans against each other per extracted
dosimetric parameter. Differences were found to be statistically
significant with p < 0.05.
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RESULTS

Figure 1 graphically compares both types of conformity indices
across all five SRS plans grouped according to target size. It is
evident that for very small target sizes (<1 cm), GammaKnife,

HyperArc-VMAT and both Manual-VMAT plans perform

similarly well across both conformity indices. All are superior
to the Elements conformity results. However, for target size

diameters above 1 cm, HyperArc-VMAT and both Manual-
VMAT plans result in superior conformity as compared to

GammaKnife and Elements. Figure 2 also graphically divides the

results per target bin size for GI and both V12Gy dose metrics.
The GI results show that GammaKnife is superior amongst small

target diameters (<1 cm), but above that GI is similar amongst
all techniques with the exception of VMATA with the largest
range. Amongst the two V12Gy parameters, it is apparent that
HyperArc-VMAT is slightly inferior compared to GammaKnife
for the small targets (<1 cm) and even outperforms GammaKnife
for large targets above 1 cm in diameter. When comparing total
V12Gy per patient, i.e., combining all per target V12Gy, HyperArc-
VMAT is slightly lower thanGammaKnife by amedian difference
of 1.3 cc, which is statistically significant but clinically equivalent.
Not surprisingly, the data in Figure 2 demonstrates an increase in
both V12Gy metrics as the target size increases. Also noteworthy
are the widely variable results between the two Manual-VMAT

planning techniques, where VMATB consistently provides lower
V12Gy and V12Gy-TV volumes of the brain than VMATA. Yet,
neither Manual-VMAT plan performed as well as the HyperArc-
VMAT amongst these parameters.

Displaying all of the data together, rather than dividing by
target bin size, Figure 3 displays the trends observed amongst
the remaining extracted parameters representative of low dose
spread: brain mean dose, V12Gy, V6Gy, and V3Gy. Here it is again
evident that HyperArc-VMAT is comparable with GammaKnife
in terms of low dose spillage into the brain, when looking at
the entire dataset of target sizes. Elements performs similarly
to the Manual-VMAT plans, but inferior to GammaKnife and
HyperArc-VMAT in this aspect. The visually evident differences
amongst the plans in Figures 1, 3 are further detailed in Table 2,
which lists the median difference as well as the Wilcoxon signed
rank results per extracted parameter for every potential matched
pair of plan comparisons amongst the five options. The median
differences are displayed as a result of the row plan subtracted
from the column-listed plan. Because a majority of the table
displays statistically significant differences with p< 0.05, the only
6 (of a total of 70) non-significant p-values were instead bolded
and underlined in the table to stand out. The purpose of this table
was to serve as a more detailed reference of the magnitude of the
differences when looking at two specific SRS plans per extracted
dosimetric parameter.

FIGURE 1 | Conformity index results for both RTOG and Paddick definitions displayed as box plots per SRS plan type, divided into five separate target size

diameter bins.
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FIGURE 2 | Gradient Index (GI), V12Gy per target (defined as the volume of 12Gy delivered to the surrounding brain tissue contributed only from that individual target),

and V12Gy-TV(defined as the total volume of brain receiving 12Gy per target excluding the target volume) results displayed as box plots per SRS plan type, divided

into five separate target size diameter bins.

FIGURE 3 | Box plot results per SRS plan type for the following dosimetric parameters across all patients: the total volume of brain receiving 12Gy, 6Gy, and 3Gy

(V12Gy, V6Gy, V3Gy ) and the mean dose to the brain excluding the targets (Brain mean dose).
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TABLE 2 | Median differences and Wilcoxon signed rank statistics for matched

pair plan comparisons for conformity indices, gradient index, mean brain dose,

and volume of the brain receiving 12Gy, 6Gy, and 3Gy.

Paired Median Differences and Statistical Significance

Gamma

Knife

HyperArc-

VMAT

Manual-

VMATA

Manual-

VMATB

Elements CI-RTOG −0.35 −0.46 −0.46 −0.50

CI-Paddick 0.15 0.22 0.20 0.25

Gradient

index

−0.75 −0.33 3.58 0.73

Brain mean

dose (cGy)

−82 −73 74 19

(p = 0.14)

V12Gy (cc) −5.5 −7.8 6.4 −7.0

V6Gy (cc) −45 −52 98 5.8

(p = 0.4)

V3Gy (cc) −210 −210 160 100

GammaKnife CI-RTOG −0.11 −0.077 −0.15

CI-Paddick 0.085 0.058 0.11

Gradient

index

0.70 4.14 1.36

Brain mean

dose (cGy)

18 140 100

V12Gy (cc) −1.3 13.0 −0.12

(p = 0.98)

V6Gy (cc) −3.7 150 56

V3Gy (cc) 36

(p= 0.07)

370 270

HyperArc-

VMAT

CI-RTOG 0.0

(p = 0.9)

−0.048

CI-Paddick 0.0

(p = 0.3)

0.026

Gradient

index

4.0 0.95

Brain mean

dose (cGy)

140 90.0

V12Gy (cc) 17 1.9

V6Gy (cc) 160 65

V3Gy (cc) 390 310

Manual-

VMATA

CI-RTOG −0.041

CI-Paddick 0.030

Gradient

index

−3.0

Brain mean

dose (cGy)

−55

V12Gy (cc) −15

V6Gy (cc) −92

V3Gy (cc) −67

Median differences are a result of column plan—row plan. All non-bolded cells have

statistically significant difference (p < 0.05). P-values that were not statistically significant

are bolded and underlined. Blank areas of the table indicate repeat or non-sensical

plan combinations.

Figure 4 compares the plan results for all of the studied OARs:
maximum dose to the brainstem, optic chiasm left and right
eyes, left and right optic nerves. It is important to note that each
of the plans satisfied normal tissue constraints amongst all of
the patients. Overall, not many patterns nor striking differences

between the SRS techniques were observed when it came to
sparing OARs and in general they all performed similarly well.
The large range observed in Dmax Brainstem for GammaKnife
planning is a result of target location coupled with source
geometry and an inability to optimize the beam’s trajectory as is
possible with Elements and VMAT treatment planning software.

As a visual comparison of the dosimetric results, Figure 5
displays axial, coronal, and sagittal views of the five different
SRS plans per patient case #15 with a total of 10 metastases.
This patient was selected due to the presence of multiple small
metastases as well as a larger, more irregularly shaped target
volume, all treated within the same plan. The slice locations were
selected so as to show case as many of the treated metastases
as possible.

Lastly, treatment delivery times listed in Table 3 were
extracted from the GammaKnife treatment plans and
approximately calculated for the Elements and Manual-
VMAT plans based on the total MUs required (since the dose
rate and gantry rotation speed can vary), assuming a dose
rate of 1,400 MU/min with 6X flattening-filter-free energy.
Unsurprisingly, GammaKnife plans took hours longer to deliver
than any linac-based radiosurgery plan. Elements and Manual-
VMATA had similar beam-on times, but HyperArc-VMAT and
Manual-VMATB were longer for almost every single case. The
higher MU is a result of the increased modulation, which often
happens when more stringent constraints are applied during the
optimization process. This is consistent with the brain V12Gy

results exhibited in Figure 2 and the mean differences listed in
Table 2, where HyperArc-VMAT and Manual-VMATB result in
the least low dose spillage across all target size groups.

DISCUSSIONS

The overall findings of this comparison study have demonstrated
that as would be expected, all of the commercially available
options for SRS are able to achieve acceptable conformality and
OAR dose sparing limits. However, looking more closely at
each dosimetric parameter has revealed interesting information.
While it was not surprising to find the improved conformity
results of the linac-based SRS techniques over GammaKnife for
larger and more irregular volumes (due to the more advanced
inverse optimization features as well as the ability of MLC
shaping), it was certainly unexpected to see HyperArc-VMAT
be able to compete with GammaKnife in terms of V12Gy. Also
expected was GammaKnife’s outperformance amongst GI for
small targets. However, for the larger target sizes, GammaKnife
resulted in similar GIs to HyperArc-VMAT and Manual-
VMATB. This information coupled with the results from Table 3

of total beam-on times of minutes vs. hours, suggests that linac-
VMAT radiosurgery is a valuable contender to GammaKnife
for patients seeking treatment of multiple brain metastases,
particularly for large and irregularly-shaped target volumes.

Another rather interesting find was the large deviation seen
in the results between the Manual-VMATA and VMATB plans,
where the optimization objective setting was the main difference
between the two techniques, with one having applied upper
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FIGURE 4 | Box plot results per SRS plan type for the following dosimetric parameters across all patients: the maximum dose to the brainstem (Dmax Brainstem),

maximum dose to the left eye and optic nerve (Dmax L Eye and Dmax L ON), maximum dose to the right eye and optic nerve (Dmax R Eye and Dmax R ON), and

maximum dose to the optic chiasm (Dmax OC).

FIGURE 5 | Axial, coronal, and sagittal cuts of patient #15 selected to visually demonstrate differences in dose distribution among the five different SRS plans.
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TABLE 3 | Comparison of total beam-on time in minutes per patient SRS plan,

assuming a dose rate of 1,400 MU/min for the linac-based options.

Beam-On Time (min)

Gamma

Knife

Elements HyperArc-

VMAT

Manual-

VMATA

Manual-

VMATB

158 4.09 5.95 3.80 9.99

149 5.27 7.08 3.14 7.28

97.7 5.63 4.49 4.71 9.13

182 5.77 6.53 7.32 9.61

128 5.96 6.41 4.85 7.47

156 5.39 5.87 4.13 7.24

143 4.61 5.35 4.95 8.41

162 5.24 6.86 4.74 8.29

160 4.75 6.73 4.29 7.96

166 6.08 6.53 6.08 7.60

111 3.17 4.34 3.55 6.52

116 3.88 6.84 3.43 7.48

146 3.96 5.16 3.05 6.36

111 4.22 6.07 4.04 7.83

113 4.27 7.39 4.85 10.1

141 4.52 5.60 4.82 7.06

140.0 ± 24.4 4.80 ± 0.849 6.08 ± 0.897 4.48 ± 1.09 8.02 ± 1.16

The last row lists the mean ± standard deviation across all 16 patients, per SRS

treatment technique.

constraints (VMATA) and the other avoiding upper constraints
entirely (VMATB) but with a more stringent control on low dose
spread. VMATB outperformed VMATA across basically all of the
studied parameters: CI, GI, V12Gy, V6Gy, OAR doses, etc., but
all essentially at the cost of longer beam-on times. This large
variation in plan quality indicated that the quality of care using
VMAT for the treatment of multiple brain metastases is largely
dependent on planner experience and institutional standards.
Thus, in order to improve the standardization of quality of care,
planning procedures and optimization objective settings need to
be carefully standardized across our community even at this level
of detail.

Furthermore, it can be seen from the results that even though
Manual-VMATB had in general the longest beam-on time, i.e.,
highest modulation complexity, its plan quality was still mostly
inferior compared to HyperArc-VMAT. This indicates that the
objective settings used in VMATB are suboptimal and do not
provide as good of a balance (relative to HyperArc-VMAT)
between modulation complexity and plan quality. To this end,
HyperArc-VMAT could help improve both the optimization
efficiency and plan quality standardization for SRS treatment of
multiple brain metastases using a VMAT delivery technique.

As a quick and straightforward summary of our findings, a
spider plot was generated in Figure 6 to serve as a qualitative
description of the data. The categories spanned not only
dosimetric results, but also considered efficiency and skill
in terms of staff and time resources required: conformity,
low dose fall-off, inter-planner variability and skill, delivery
efficiency, and patient-specific QA effort. Each of the SRS

techniques (GammaKnife, Elements, HyperArc-VMAT, and
Manual-VMAT) was ranked relative to each other according
to the specific category item. Across the different target size
bins, Figure 1 demonstrated that HyperArc-VMAT resulted in
comparable or superior CI amongst the SRS techniques, thus
earning a ranking of 1. GammaKnife had excellent conformity at
the smaller target size bins, but that deteriorated with increasing
size (compared to VMAT), thus earning it a ranking of 3, after
VMAT with a rank of 2. Elements was consistently inferior to
the other SRS modalities in terms of CI and thus was ranked
last at 4. Regarding the category of dose fall-off, GammaKnife
was consistently superior according to Figures 2, 3, thus it
was ranked the highest (1), followed by HyperArc-VMAT (2),
Elements (3) and thenManual-VMAT (4), due to the dependence
on planning strategy and skill. In terms of required planning
skill and inter-planner variability, Elements and HyperArc-
VMAT are less dependent on this aspect, in that all of the
programmed presets only require minimal planner interaction,
thus earning both a ranking of 1. GammaKnife would then
rank lower (at 3), given that each target is typically forward-
planned by the user. (Note however that the forward-planning
of multiple metastases in GammaKnife allows the user to fine-
tune the coverage of each target, whereas in VMAT planning
the software only allows normalization to a single target at the
highest dose level when prescribing different doses to different
size metastases.) Manual-VMAT ranked the lowest at 4, due to
the potential for greatest variability amongst different planners
with the large degree of customizable plan settings (compared
to GammaKnife), which can result in varying plan quality as
seen in plans A vs. B. Table 3 displays the beam-on time and
thus the delivery efficiency are straightforward in this respect:
Elements had the lowest average beam-on time (rank = 1),
followed by comparable beam-on times of HyperArc-VMAT and
Manual-VMAT (both ranked at 2), and GammaKnife coming
in last (rank 4) with the longest beam-on times. Furthermore,
GammaKnife treatment requires the presence of an authorized
medical physicist as well as a physician trained in emergency
procedures for the entirety of the treatment, which may pose
an additional burden on staff resources (as compared with
linac-based radiosurgery). Lastly, when it comes to required
patient-specific QA, GammaKnife does not require any and thus
would be ranked the highest at 1, followed by Elements ranking
at 2 (whether to perform dose verification for 3D-DCA SRS
plans varies according to institutional policies) and then both
VMAT techniques (all ranked at 3) which require additional
resources i.e., physics staff to perform the time-consuming QA,
involving plan preparation, device setup, beam delivery and plan
analysis. The overall purpose of Figure 6 is to allow the reader to
qualitatively evaluate the differences in focus amongst the SRS
techniques per category of interest, in the context of multiple
metastases treatment.

Another practical aspect to consider when interpreting the
differences seen in the results is the accuracy and precision of
these treatment machines and how truly capable they are to
deliver exactly what is displayed to the user in the treatment
planning software. Inevitably, uncertainties exist throughout the
entire treatment process, from simulation to on-board imaging
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FIGURE 6 | Spider plot graphically comparing the studied SRS techniques across the different categories of dosimetry and efficiency. SRS treatment modalities were

ranked relative to each other per specified category on a scale of 1 through 4.

and patient setup, all the way through to radiation delivery.
Although it is beyond the scope of this paper, it is important
to be aware of the potential geometric uncertainties present
not only from the hardware (imaging and radiation isocenter
coincidence, gantry rotation and sag, couch positional accuracy,
MLC positional accuracy, etc.), but in the patient immobilization
(frameless mask treatments for linac and GammaKnife) aspect
as well, which can alter the expected conformity indices as
calculated by the planning software. This type of data analysis will
be the goal of our future studies.

Upon evaluation of the dosimetric and logistical differences of
these currently available SRS treatment techniques, the question
arises whether any of these differences actually have a clinically
tangible impact. The clinical implications of the disparities in
the low dose spillage or the conformity indices, in terms of local
control or quality of life, is a much more vast and complicated
discussion that ultimately is very difficult to determine. It would
require multi-institutional prospective clinical trials with long
term follow-up, which sadly may be rather difficult to obtain,
given the average length of survival of patients with multiple
brain metastases. However, for the purposes of this comparison
study, we have analyzed and presented the data in such a manner
as to provide the community with a tool for selecting an SRS
modality for a specific patient scenario when more than one
option is available, or even for the case of selecting which type
of SRS modality fits best within one’s clinical needs based on their
specific patient population.

CONCLUSIONS

HyperArc-VMAT and Manual-VMAT plans resulted in superior
CI when compared with GammaKnife and Elements for target
diameters > 1 cm in size, albeit at the expense of more
MUs (relative to Elements). For targets < 1 cm, GammaKnife,
HyperArc-VMAT and both Manual-VMAT plans achieved
similar CI, but still all superior to Elements. In the smaller
target size bins, GammaKnife resulted in superior GI. In terms
of low dose spread into the brain, HyperArc-VMAT achieved
comparable (target size < 1 cm) or slightly better V12Gy values
as GammaKnife (target size > 1 cm). All five SRS plans were
able to meet the surrounding normal tissue limits, and overall
resulted in similar doses to the pertinent OARs. Beam-on times
were hours longer for GammaKnife vs. each of the linac-based
SRS plans, with VMATA and Elements resulting in shorter times
relative to VMATB and HyperArc-VMAT. Manual-VMAT plan
quality varied greatly between the two institutional planning
strategies employed.

In summary, this study demonstrated that HyperArc-VMAT

is capable of achieving similar or slightly better low dose spread
into the brain as GammaKnife, while maintaining excellent

conformity as well as minimizing inter-planner variability
and beam-on time for patients seeking treatment of multiple
metastases. GammaKnife remains superior in terms of gradient
index and eliminates the need for patient-specific QA. Elements
strengths include delivery/QA efficiency and inter-planner
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consistency due to automated optimization of pre-defined
templates. Manual-VMAT is subject to larger inter-planner
variability as compared to HyperArc-VMAT.
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