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Multidrug resistance (MDR) resulting from different defensive mechanisms in cancer is

one of the major obstacles of clinical treatment. To circumvent MDR many reversal

agents have been developed, but most of them fail in clinical trials due to severely

adverse effects. Recently, certain natural products have been reported to overcome

MDR, including flavonoids which are abundant in plants, foods, and herbs. The structure

of flavonoids can be abbreviated as C6-C3-C6 (C for carbon), and further categorized into

flavonoids, iso-flavonoids and neo-flavonoids, according to their structural backbones.

Flavonoids possess multiple bioactivities, and a growing body of research has indicated

that both flavonoids and iso-flavonoids can either kill or re-sensitize conventional

chemotherapeutics to resistant cancer cells. Here, we summarize the research and

discuss the underlying mechanisms, concluding that these flavonoids do not function as

specific regulators of target proteins, but rather as multi-functional agents that negatively

regulate the key factors contributing to MDR.

Keywords: multidrug resistance, natural products, flavonoids, overcome, cancer, drug discovery

INTRODUCTION

Multidrug resistance (MDR) is one of the major challenges in cancer treatment (1), which
occurs in a short period of time during/after treatment, and may result in cross resistance to
many other structurally and mechanically different chemotherapeutics (2). MDR may be due
to different mechanisms, including (1) ATP-binding cassette (ABC) transporters that pump out
chemotherapeutics (3), (2) the mutation of oncogenes that become resistant to former treatments
(4, 5), (3) an evolving adaptation of cancer cells to the microenvironment (6, 7), (4) survived cancer
stem cells (CSCs) that escape from conventional therapies (8, 9), and (5) activated cell growth
factors as well as cell defense systems, etc.

As membrane-bound proteins, ABC transporters refer to 49 transporter proteins that are
classified into seven subfamilies, ABCA to ABCG, that locate in the cell membrane and have diverse
functions (10). ABC transporters have two nucleotide-binding domains (NBDs) which bind and
hydrolyze ATP, and two trans-membrane binding domains (TMDs) which carry their substrates out
of the cell (11, 12). By using ATP, ABC transporters work to transport their substrates across the cell
membrane, and the substrates include building blocks/nutrition such as amino acids, sugars, lipids,
vitamins, peptides, and certain proteins etc. Importantly, they can protect cells against xenobiotics,
including some anti-cancer drugs (13). Higher expressions of these transporters, such as ABCB1
(also known as P-glycoprotein, P-gp), ABCG2 (also known as breast cancer resistant protein,
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BCRP), and ABCC1 (also known as multidrug resistance-
associated protein 1, MRP1), have closely participated in MDR
as confirmed by studies from both the laboratory and the clinic
(14, 15). The overexpression of ABC transporters may lead
to the resistance of conventional chemotherapeutics, such as
doxorubicin (Dox), paclitaxel, colchicine, etc., radiotherapy, and
targeted therapies, such as imatinib (14).

Cancer cells may also adapt to the changed
microenvironment, e.g., the increased oxidative stress, leading
to MDR. Oxidative stress is defined as the phenomenon of
imbalance between the production of reactive oxygen species
(ROS) and antioxidant defenses, which plays a key role in the
initialization of many diseases for their impacts on tissue damage
(16). Oxidative stress also contributes to tumor development
and responses to anticancer therapies (17). Generally, certain
level of ROS may benefit cancer cell proliferation and DNA
mutations, while high level ROS may be a lethal factor that
finally induces cell death (18). Research has shown that ROS
levels are higher in cancer cells and in resistant cancer cells
due to chemotherapy or radiotherapy (17, 19). Accordingly, the
corresponding antioxidant pathways that eliminate ROS are
up-regulated during tumor initiation and progression, rendering
themmore vulnerable to further oxidative stress assaults (18, 20).
Therefore, targeting oxidative stress is a promising strategy to
overcome MDR in cancer.

Cancer cells that grow rapidly need more oxygen supply for
their energy supply and signal transmission (21, 22). Tissue
hypoxia occurs due to an inadequate amount of oxygen delivery
or due to cancer cell metabolism re-programming, rendering
cancer cells to adapt to less oxygen by up-regulating several
key proteins, including hypoxia-inducible factor-1α (HIF-1α),
HIF-2α (23). More importantly, hypoxia can trigger MDR by
impacting the efficacy of anticancer drugs (24). Furthermore,
hypoxia may also induce the expression of ABCB1 and ABCG2
that pump out intracellular chemotherapeutic agents (25, 26), a
common MDR mechanism.

Cancer stem cells (CSCs), a subset of cells within the tumor,
that possess the potential of self-renewal, differentiation and
tumorigenicity, are thought to be the major cause of cancer
therapy failure due to their chemo- and radio-resistance (9, 27).
CSCs are situated in the niche, which are mainly composed
of fibroblasts and endothelial, mesenchymal and immune cells,
playing pivotal roles in drug resistance (28). Therefore, the
elimination of CSCs represents one promising strategy to
overcome MDR.

The cell cycle, the mechanism of cell division, is composed
by four phases: the G1 phase, during which a cell begins
to grow in size to be ready to DNA synthesis; the S phase
(synthesis), during which cell synthesizes DNA; the G2 phase,
during which a cell continues to grow to be ready for mitosis;
the M phase (mitosis), during which the cell stops growing and
divides into two cells (29, 30). The cell cycle is driven by cyclin-
dependent kinases (CDKs) which are regulated by cyclins (cyclin
A-Y). Studies have shown that certain phases of the cell cycle
exhibit resistance to chemotherapeutics (31, 32), and cancer cells
that over-express CDKs and cyclins demonstrate resistance to
conventional chemotherapeutics (33–35).

Autophagy, a self-degradative system in which cells undergo
degradation of intracellular components, is important for
the energy balance in response to nutrient stress (36, 37).
During chemotherapy, autophagy works as a prosurvival and
resistance mechanism; therefore, the inhibition of autophagy
can re-sensitize MDR cells and enhance the cytotoxicity of
chemotherapeutic agents (38).

Epithelial mesenchymal transition (EMT), a biologic process
that polarized epithelial cells undergoes multiple biochemical
changes to achieve mesenchymal cell phenotype including
enhanced metastasis, invasiveness, drug resistance (39, 40),
which play an important role in the morphogenesis of
multicellular organisms (41).

Other key enzymes in cancer cells are also overexpressed to
evade the cell death induction caused by chemotherapeutics.
Signal transducer and the activator of the transcription (STAT)
protein family (STAT 1-6) are intracellular transcription factors
thatmediate cellular differentiation, proliferation, hematopoiesis,
and apoptosis by transmitting signals from the cell surface
receptors to the nucleus (42). STAT3 plays a pivotal role in tumor
growth and metastasis and it is activated and up-regulated in
solid tumors and resistant cancers, suggesting it as a promising
target to overcome MDR (43–45).

p53 (also known as TP53) is a classic tumor suppressor gene
that induces cell cycle arrest and apoptosis (46). Usually, p53
is down-regulated or mutated in cancer cells, especially in the
cancer cells of MDR (47).

Another key player, the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), composed with five
transcription factors, can bind to DNA sequences at promoter
regions of responsive genes to regulate cellular processes such as
DNA transcription, cytokine production, and cell survival (48).
Activated NF-κB not only promotes tumor cell proliferation and
apoptosis suppression, but it also induces EMT which facilitates
distant metastasis and drug resistance (49, 50).

Various MDR reversal agents have been developed and some
of them have entered into clinical trials, however, most of them
failed due to severely adverse effects or because they suffered
resistance in a short time (51, 52). Effective novel agents that
surmount MDR remain an unmet clinical need.

Natural products are the major resource for new lead
compound identification and new drug discoveries, which
account for nearly 50% over the past three decades (53). Of all
the versatile chemical structures, flavonoids are one of the most
intensively studied. Flavonoids are abundant in plants, foods
such as fruits and vegetables, as well as in traditional herbs (54–
56). Importantly, many flavonoids have been applied in humans
for nutrition supply and for certain disease treatment (57, 58),
indicating their safety properties. Structurally, flavonoids are
classified into three categories: flavonoids; iso-flavonoids; neo-
flavonoids, as shown in Figure 1. Specifically, flavonoids have
a backbone of 2-phenyl-1,4-benzopyrone, iso-flavonoids have
a backbone of 3-phenyl-1,4-benzopyrone, and neo-flavonoids
have a backbone of 4-phenyl-1,2-benzopyrone. To date, ∼5,000
diverse flavonoids have been identified (59).

Flavonoids are usually termed as multi-targeting and multi-
functional molecules, as they possess multiple bioactivities, such
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FIGURE 1 | Structural backbones of flavonoid, iso-flavonoid, neo-flavonoid.

as cardiovascular protective effects (60), nerve system protective
effects (61), anti-aging (62), anti-inflammatory (63), anti-cancer
(64), so on and so forth. More importantly, flavonoids (as
summarized in Figure 2) have been found to kill resistant
cancer cells or to re-sensitize conventional anti-cancer drugs to
reverse MDR via the mechanisms discussed above, indicating
their appealing potential in resistant cancer treatment. Here,
we summarize these reports and discuss the analyzing of
underlying mechanisms.

MULTI-FUNCTIONAL FLAVONOIDS
OVERCOME MDR IN CANCER

Flavonoids That Regulate ABC
Transporters to Overcome MDR
Many flavonoids, such as Chrysin, Baicalein, Kaempferol,
Quercetin, Rutin, Icaritin, and iso-flavonoids, such as Genistein
and Biochanin A, have been found to regulate ABCB1, ABCG2,
ABCC1 and other transporters to reverse MDR.

Chrysin, 5,7-dihydroxyflavone, which presents in honey,
propolis, and the passion flower Passiflora caerulea (65), exhibits
various bioactivities, including anti-cancer effects as it is reported
to inhibit aggressive anaplastic thyroid cancer cells (66) and
drug resistant triple-negative breast cancer cells (TNBC) (67).
Chrysin can inhibit ABCB1mediated rhodamine 123 (an ABCB1
substrate) efflux on human breast cancer cells MDA-MB-231
(68). Chrysin may also regulate ABCG2 mediated nitrofurantoin
transport on ABCG2-overexpressing human MCF-7 breast
cancer cells by increasing the area under the curve (AUC) (69).
Moreover, Chrysin sensitizes the ABCG2-transfected cells to
mitoxantrone (an ABCG2 substrate) via stimulating ATPase (70).

Baicalein, 5,6,7-Trihydroxyflavone, isolated from Scutellaria
baicalensis and Scutellaria lateriflora (71), holds potential in
treating breast cancer (72), colorectal cancer (73), bladder cancer
(74), etc. Baicalein may reverse ABCB1 mediated MDR as shown
on ABCB1 gene transfected Madin-Darby canine kidney II
(MDCK II) cells (75). Baicalein induces apoptosis and autophagy
and decreases ABCB1 and anti-apoptotic Bcl-xl expression levels
on 5-fluorouracil (5-FU) and Epirubicin resistant hepatocellular
carcinoma cells (Bel7402/5-FU). By inhibiting an ABCB1-
mediated drug efflux, Baicalein (5 g/ml and 10 g/ml) increases the

intra-cellular concentrations of rhodamine 123 and Epirubicin
(76). Through this similar mechanism, Baicalein enhances the
cytotoxic effects of docetaxel in anaplastic thyroid cancer 8505c
cells (77), and paclitaxel in its resistant MCF-7/Tax cells and in
an animal model (78).

Apigenin, 4′,5,7-Trihydroxyflavone, isolated from Apium
graveolens (79), shows anti-cancer effects to human breast cancer
(80), prostate cancer (81), and imatinib-sensitive and resistant
chronic myeloid leukemia K562/IMA3 cells (82). One molecular
docking study indicates that Apigenin binds to the NDBs of
ABCB1 and ABCB5 (83). Apigenin inhibits ABCB1 expression
and re-sensitizes docetaxel-resistant prostate cancer DU145 cells
to docetaxel (84). Through down-regulating ABCB1, Apigenin
(2, 8µM) significantly enhances the efficacy of doxorubicin (Dox,
an ABCB1 substrates) in its resistant MES-SA/Dx5 cells (85) and
breast cancer cells (MCF7/ADR) (86).

Acacetin, O-methylated Apigenin, found in Robinia
pseudoacacia, Turnera diffusa, and Betula pendula (87), exhibits
anti-cancer effects in prostate cancer cells (88) and hepatocellular
carcinoma (89) etc. Acacetin inhibits the activities and functions
of both ABCB1 (90, 91) and ABCG2 (92). Through down-
regulating ABCB1 in non-small cell lung cancer (NSCLC)
cells, Acacetin decreases efflux of Dox by 59% and further
increases accumulation of Dox inside the cells up to 55%, leading
to synergistic cytotoxic effects (91). As an ABCG2 inhibitor,
Acacetin potentiates the cytotoxicity of SN-38 and mitoxantrone
(both are ABCG2 substrates) in ABCG2-transfected K562
(K562/BCRP) cells (92).

Wogonin, 5,7-dihydroxy-8-methoxyflavone, isolated from
Scutellaria baicalensis (93), exhibits multiple anti-cancer effects
to gastric cancer cells, lung cancer cells and glioma cancer cells
(94–96). Wogonin appears to be an inhibitor of ABCB1 (97), and
it suppresses the function of ABCB1 and increases the cellular
content of etoposide in HL-60 cells (98). In Dox-resistant human
myelogenous leukemia K562/A02 cells, Wogonin re-sensitizes
Dox by inhibiting functional activity and expression of ABCB1
at both protein and mRNA levels (99).

Kaempferol, 3,4′,5,7-tetrahydroxyflavone, a secondary
metabolite found in many plants, plant-derived foods, and
traditional medicines (100), possesses inhibitory activities to
gastric cancer cells, lung cancer cells (101, 102), and tyrosine
kinase inhibitor (TKI)-resistant lung cancer cell line H1993
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FIGURE 2 | Chemical structures of flavonoids and iso-flavonoids that have MDR reversal effects.

(103). Kaempferol can inhibit the efflux of ABCB1 via stimulating
ATPase activity (104, 105). It is also an ABCG2 substrate and it
suppresses ABCG2 up-regulation (106), indicating its potential
as a reversal agent. Indeed, Kaempferol (20µM) shows a
synergistic efficacy with cisplatin in surmounting ovarian cancer
OVCAR-3 cells, and the combination inhibits the mRNA levels
of ABCC6 and cMyc (107).

Naringenin, 4′,5,7-Trihydroxyflavanone, present in many
fruits, and herbs (108), exhibits inhibitory effects to prostate
cancer cells and glioblastoma cells (109, 110). Naringenin may
inhibit the efflux of ABCB1 (111) via interactions with the

hydrophobic pocket of the transporter as confirmed by a docking
study (111). Through this mechanism, Naringenin significantly
enhances the cytotoxicity of daunomycin to resistant human
breast cancer cell lines MCF-7/ADR cells (112).

Quercetin, found in many fruits, vegetables, leaves, and
grains, has been used as a nutrition supply for many years
(113). Quercetin has been reported to kill many types of cancer
cells, including human breast cancer MCF-7 cells (114), NSCLC
A549 cells (115), ovarian cancer cells (116), etc. Quercetin
is able to block the function and expression of ABCB1 and
ABCC1, ABCC2 (112, 117, 118). As tested in 5-FU resistant
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human hepatocellular carcinoma BEL/5-FU cells, Quercetin
inhibits the functions and down-regulates the expressions of
ABCB1, ABCC1, ABCC2 (118). Quercetin is found to inhibit
the pumping effects of these three transporters, evidenced by
more intracellular accumulation of rhodamine-123 and Dox
(118). On ABCB1 over-expressing and Dox resistant human
breast cancer MCF-7/dox cells, Quercetin significantly enhances
the antitumor activity of Dox, paclitaxel, and vincristine. The
combined treatment of Dox, paclitaxel, and vincristine with
Quercetin significantly down-regulates ABCB1 expression and
eliminates breast cancer stem cells (119). Further studies also
confirms the reversal effects of Quercetin (0.7 and 25–100µM,
respectively) in MCF-7/dox cells (120) and in gene-encoded
ABCB1 overexpressing oral cancer KB/VCR cells (121).

Other flavonoids that regulate ABC transporters include
Rutin, a quercetin glycoside that inhibits the pumping effects
of ABCB1 and ABCG2 (117, 122), Fisetin, found in many that
has been found to possess sensitizing effects to conventional
chemotherapeutics cabazitaxel (123) and paclitaxel or arsenic
trioxide in NSCLC (124), 3,3′,4′,7-Tetrahydroxyflavone, found in
many fruits and vegetables (125), inhibits the function of ABCB1
(85), as well as 8-Prenylnaringenin (126), a prenylflavonoid
phytoestrogen found in hops (Humulus lupulus) and beer (127),
and a clinical drug candidate Icaritin (under clinical trials in
China for treatment of hepatocellular carcinoma), both of which
inhibit the efflux of ABCB1 and ABCC1 (128, 129).

In addition, there are two iso-flavonoids that regulate ABC
transporters. Genistein, 4′,5,7-Trihydroxyisoflavone, found in a
number of plants including lupin, fava beans, soybeans, is an
angiogenesis inhibitor that exhibits anti-cancer activities (130).
Genistein is also reported to be an inhibitor of ABCB1, ABCG2
(131, 132). As tested in ABCG2-transduced MDCK-II cells,
Genistein can inhibit the transport of Danofloxacin, a substrate
of ABCG2 (133). Other further applications to reverse MDR
mediated by ABC transporters remain to be explored.

Biochanin A, 5,7-Dihydroxy-4′-methoxyisoflavone, found in
soy, exerts certain anti-cancer effects (134, 135). Biochanin A is
found to be an ABCG2 inhibitor, as it increases the accumulation
and cytotoxicity ofmitoxantrone inmitoxantrone resistantMCF-
7 MX100 cells which over-express ABCG2 (136).

Flavonoids That Regulate Oxidative Stress
to Overcome MDR
Many flavonoids are reported to either increase ROS or inhibit
the antioxidant enzymes, exhibiting MDR reversing potential.

Baicalein significantly induces ROS production on tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL)
resistant prostate cancer PC3 cells, leading to TRAIL re-
sensitization. The ROS scavenger catalase prevents TRAIL
sensitization, indicting it a ROS mediated mechanism (137).

Nrf2, a transcription factor, works with kelch-like ECH-
associated protein 1 (Keap1) and the antioxidant response
element (ARE) as a cytoprotective response to endogenous and
exogenous stresses caused by ROS via the up-regulation of
antioxidant proteins (138). A higher level of Nrf2 and its target
proteins contributes in Dox resistance in BEL-7402/ADM cells

(139). Chrysin suppresses Nrf2 at both protein and mRNA levels
to BEL-7402/ADM cells, sensitizing the cells to Dox. Moreover,
Chrysin also increases the intracellular concentration of Dox
(139). Glutathione (GSH) is a peptide that significantly reduces
the damage caused by toxic xenobiotics and ROS (140, 141). By
depleting 50 to 70% of intracellular GSH within 24 h, Chrysin
potentiates the cytotoxicity of curcumin (a natural occurring
compound that kills cancer cells) to PC-3 cells and human
leukemia cell line HL-60 cells (142). This effect is also found in
non-small cell epithelial cancer cell lines A549, H157, H460, and
H1975 (143). Co-treating with Chrysin (5–30µM) significantly
enhances the sensitivity of the cells to Dox as compared to
Dox alone. Mechanistically, Chrysin may facilitate GSH efflux as
demonstrated in Brechbuhl’s study (143).

Wogonin robustly induces ROS accumulation in A549 cells
and further sensitize A549 cells to TRAIL-induced apoptosis
in vitro and in vivo, which can be reversed by ROS scavenger
butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC)
(144). Moreover, Wogonin suppresses nuclear translocation of
Nrf2 by NF-κB inactivation and induces more intracellular
ROS as shown in K562/A02 cells and in HepG2 cells (145,
146), enhancing the effects of Dox in K562/A02 cells. Apigenin
also lowers the GSH level, which then increases ROS levels,
resulting in cell death of ABCC1 over-expressing H69AR-drug
selected and HeLa/ABCC1-transfectant cells (147). Through
similar mechanisms, Wogonin may enhance the efficacy of (1)
cisplatin in cisplatin resistant HNC cells (149), (2) Dox in its
resistant human myelogenous leukemia K562/A02 cells (99), and
MCF-7/DOX cells (148).

Luteolin, 3′,4′,5,7-Tetrahydroxyflavone, which is abundant in
leaves and aromatic flowering plants, possesses inhibitory effects
to pancreatic cancer cells (149), colorectal adenocarcinoma LoVo
cells and in drug-resistant LoVo/Dx cells (150), etc. Luteolin is
also able to inhibit Nrf2 markedly and enhance the cytotoxicity
of cisplatin in cholangiocarcinoma KKU-100cells (151). By
inhibiting Nrf2 (152), luteolin may enhance the efficacy of (1)
oxaliplatin in oxaliplatin-resistant colorectal cancer cell lines
HCT116-OX and SW620-OX cells (153), (2) bleomycin, Dox in
A549 cells (154), and Dox in MDA-MB 231 cells (155).

Other flavonoid that modulate ROS includes Galangin,
purified from the Alpinia galangal root, exhibits collateral
sensitivity (156), a phenomenon where one compound shows
better inhibitory effects to resistant cancer cells over sensitive
cells (157).

The iso-flavonoid Genistein and 7,3′,4′-

trihydroxyisoflavone, one of the major metabolites of daidzein
found in fruits, nuts, and soy-based food (158), also exhibits
bioactivity to Nrf2 and ROS. Genistein down-regulates the
level of methylation in the Keap1 promoter region, which
inhibits the transcription of Nrf2 to the nucleus, resulting
in the suppression of Nrf2-dependent antioxidant enzymes
and up-regulation of ROS in A549 cells (159). Through this
mechanism, Genistein significantly increases cell apoptosis in
A549 cells when combined with radiation (159). Through the
induction of ROS and by down-regulating ABC transporters
ABCB1, ABCC1 and ABCC2, 7,3′,4′-trihydroxyisoflavone

(25 µM), significantly increases the intracellular accumulation
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of epirubicin and attenuates epirubicin resistant in HeLa
cells (160).

Flavonoids That Regulate Hypoxia to
Overcome MDR
Many flavonoids are found to regulate hypoxia to reverse MDR.

Baicalein suppresses the HIF-1α expression in 5-FU resistant
gastric cancer AGS cells ny inhibiting the hypoxia-induced Akt
phosphorylation, which finally leads to re-sensitizing 5-FU (161).

Wogonin decreases the expression of HIF-1α in human colon
cancer cell lines HCT116 by inhibiting the PI3K/Akt signaling
pathway. Through this mechanism, Wogonin enhances the
cytotoxicity of Dox, cisplatin, paclitaxel to HCT116 cells (162).

Quercetin is another flavonoid that regulates HIF-1α, which
consequently re-sensitizes Dox to Dox resistant breast cancer
MCF-7/dox cells (120), and 4T1 cells (163), cisplatin and
etoposide to HCT116 cancer cells (164).

Flavonoids That Regulate CSCs to
Overcome MDR
Many flavonoids have been shown to suppress the growth
of CSCs.

Baicalein may selectively re-sensitize CD133+ tumor
initiating CSCs (isolated from human liver tumors which exhibit
drug resistance properties) to certain chemotherapeutics (36).
Baicalein inhibits the SAR1B GTPase which is necessary for
autophagy, a way cancer cells apply to avoid cytotoxic effects
induced by chemotherapeutics (36). Furthermore, Baicalein
works synergistically with the mTORC1 inhibitor in a patient-
derived xenograft model of hepatocellular carcinoma via
elimination of CSCs (165).

On human CD44+ prostate CSCs (isolated from human
PC3 cells) which confer MDR, Apigenin is able to significantly
enhance cisplatin’s efficacy by down-regulating the mRNA
expression of anti-apoptotic Bcl-2, sharpin and surviving,
and up-regulating pro-apoptotic caspase-8 and p53 (166). On
another two CSCs cells, glioblastoma multiforme U87MG and
U373MG cells, Apigenin significantly suppresses the cell growth,
clonogenicity, and invasiveness, three key factors that represent
the self-renewal property of CSCs. Mechanically, Apigenin
blocks the phosphorylation of c-Met and its down-stream
targets, such as the transducer and activator of transcription
3 (STAT3), Akt and protein kinase mitogen-activated protein
kinase (MAPK) (167).

Wogonin exhibits anti-CSCs effects, as shown on CD133
human osteosarcoma CSCs (168). Wogonin induces apoptosis,
inhibiting the mobility by down-regulating the expression of
metallopeptidase-9, leading to a halt in its renewal ability (168).

Other flavonoids that regulate CSCs are Luteonin and
Quercetin. Luteonin is able to eliminate the CD44+/CD49f+
CSCs isolated from TNBC via ribosomal S6 kinase inhibition
(169). Quercetin may suppress the self-renewal property of
pancreatic cancer stem-like cells which is gemcitabine resistant
via targeting β-catenin, restoring the sensitivity of gemcitabine in
vitro and in vivo (170). Quercetin also inhibits the breast CSCs
(171), colorectal CSCs and restores the sensitivity of Dox (172).

Flavonoids That Regulate the Cell Cycle to
Overcome MDR
Some flavonoids have been shown to regulate the cell cycle to
overcome MDR.

The cyclin E2 mRNA and protein expression was higher
in tamoxifen resistant MCF-7 cells compared with sensitive
cells. Luteolin specifically inhibits the Cyclin E2 protein
expression in resistant cells and exhibits a synergistic effect with
tamoxifen (173).

By down-regulating cyclin D1, Quercetin significantly
enhances the efficacy of Dox in TNBC cells (174), and cisplatin
in ovarian carcinoma SKOV3 cells and osteosarcoma U2OS
cells (175).

Scutellarin, an active flavone extracted from Erigeron
breviscapus Hand-Mazz, down-regulates Cdc2, cyclin B1, two
cell cycle related proteins, and induces G2/M arrest and apoptosis
to PC3 cells, and restores the sensitivity of cisplatin (176).

Flavonoids That Regulate Autophagy to
Overcome MDR
In Dox resistant BEL-7402/ADM cells, Apigenin significantly
enhances the sensitivity of Dox, induces miR-520b expression
and inhibits autophagy-related protein 7 (ATG7)-dependent
autophagy in vitro and in hepatocellar carcinoma xenografts
model (177).

Treatment of ovarian cancer cells with cisplatin may elevate
poly [ADP-ribose] polymerase 1 (PARP-1), which is important
for cell survival by regulating autophagy. Leteolin can inhibit
PARP-1 at both the mRNA and protein level, and suppress
autophagy, restoring the sensitivity to cisplatin (178).

Another flavonoid Icaritin can inhibit epirubicin-induced
autophagy which may cause epirubicin resistance, and acts
synergistically with epirubicin to suppress the proliferation of
BT5637 and T24 cells (179).

Flavonoids That Regulate EMT to
Overcome MDR
As shown in pemetrexed-resistant NSCLC A549-R, H358-
R, H460-R cells, EMT pathway promotes the MDR profile.
Kaempferol is able to inhibit EMT signaling, rendering the
resistant cancer cells susceptible to pemetrexed (180).

Another study indicates that EMT contributes in paclitaxel-
resistance in ovarian cancer X10 and X22 cells. Luteolin at non-
cytotoxic dose can reverse EMT, and re-sensitize the two cells to
paclitaxel (181).

Flavonoids That Regulate Critical Enzymes
to Overcome MDR
STAT3

Chrysin selectively decreases the STAT3 phosphorylation to
A549 cells, and re-sensitizes A549 cells to TRAIL (182).

On cisplatin-resistant lung cancer A549/DDP cells,
combination of Galangin and cisplatin suppresses the cell
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proliferation through inhibiting p-STAT3 and anti-apoptotic Bcl-
2 and increasing pro-apoptotic Bax and Bid. This combination
also exhibits potency in mice xenograft models (183).

Similar results are also found by pretreatment of Quercetin
which significantly enhances the cytotoxicity of cisplatin in an
ovarian cancer cell line by suppressing STAT3 phosphorylation
and Bcl-2. In a xenograft mouse model of ovarian cancer,
Quercetin enhances the antitumor effect of cisplatin (184).

p53

Li et al. reported that a combination of Chrysin and cisplatin
increases p53 phosphorylation and accumulation by activating
ERK1/2 in HepG2 cells, leading to significant apoptosis,
evidenced by the over-expression of pro-apoptotic proteins Bax,
death receptor 5 and the inhibition of the anti-apoptotic protein
Bcl-2 (185).

Apigenin is reported to elevate p53 and up-regulate certain
pro-apoptotic proteins, which may increase cisplatin-induced
DNA damage and apoptosis of A549 and H1299 cells (186).

Quercetinmay potentiate 5-FU in 5-FU resistant HCT15 cells
(which harbor a p53 mutation) by increasing p53 expression and
activating the apoptotic mitochondrial pathway (187).

Through activating the extracellular signal-regulated kinases
(ERK)-mediated p53 pathway, Scutellarin is capable of
sensitizing A549/DDP cells to cisplatin in vitro and in vivo (188).

NF-κB

By decreasing the activity and of NF-κB, Fisetin increases
the expression of death receptor TRAIL-R1, strengthening
the apoptosis induction effects of TRAIL to TRAIL-resistant
androgen-dependent LNCaP cells (50).

Genistein is able to suppress NF-κB, potentiate cisplatin,
docetaxel, Dox or gemcitabine in various cancer cells including

prostate, breast, lung, pancreatic and ovarian cancer cells
(189–191). Similarly, genistein also enhances oxaliplatin in
gemcitabine-resistant pancreatic cancer cells (192), gemcitabine
in osteosarcoma cells, cisplatin in medulloblastoma cells (193),
arabinoside in acute myeloid leukemia cells (194), and arsenic
trioxide in human hepatocellular carcinoma cells in vitro and in
vivo (195), suggesting it a promising reversal agent.

The activation of NF-κB contributes to TRAIL resistance
of prostate cancer LNCaP and DU145 cells. Biochanin A

significantly augments the cytotoxicity of TRAIL in these two
cell lines, and it sensitizes the TRAIL-resistant LNCaP cells
through NF-κB inhibition, leading to an up-regulated death
receptor TRAIL-R2, and the disrupted mitochondrial membrane
potential (196).

Tectorigenin, isolated from the flowers of Pueraria
thunbergiana (197), exhibits re-sensitizing effects on paclitaxel-
resistant ovarian cancer cells MPSC1(TR), A2780(TR) and
SKOV3(TR) (198). Tectorigenin inhibits NF-κB nuclear
translocation and its target genes, such as FLIP, XIAP, Bcl-2,
Bcl-xL, and COX-2, all of which are known to be associated with
MDR. Consequently, Tectorigenin enhances the inhibitory effect
of paclitaxel in these three paclitaxel-resistant ovarian cancer
cells (198).

Flavonoids That Regulate Other Key
Enzymes Regulated to Overcome MDR
It should be noted that apart from the aforementioned three
key players in MDR, flavonoids also regulate other enzymes,
e.g., Fisetin and Genistein regulate Akt to suppress Irinotecan
and Oxaliplatin resistant CPT11-LoVo cells in vitro and in
vivo (199), and enhance the cytotoxicity of cisplatin in A549
cells (200), respectively. Fisetin decreases the phosphorylated

FIGURE 3 | Multi-functional flavonoids in overcoming MDR.
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MAPK to increase the sensitivity of cisplatin-resistant A549-
CR cells to cisplatin (201) and erlotinib-resistant lung cancer
cells to erlotinib (202). Apigenin inhibits adenine nucleotide
translocase-2 (ANT2) to enhance the efficacy of TRAIL to
prostate cancer DU145 and LNCaP cells (203). Luteolin inhibits
vaccinia-related kinase 1 (VRK1) to enhance the efficacy
of cisplatin in esophageal squamous cell carcinoma (204).
Quercetin suppresses the proliferation of tamoxifen resistant

breast cancer TAMR-MCF-7 cells by inhibiting the expression
of Pin1, vascular endothelial growth factor (VEGF), HIF as
well as activator protein-1 (AP-1) (205). Quercetin also re-
sensitizes enzalutamide to enzalutamide-resistant prostate cancer
cells to in vitro and in vivo by inhibiting Androgen receptor
splice variant 7 (AR-V7) (206).Genistein abolishes the increased
cyclooxygenase-2 (COX-2) to 5-FU resistant HT-29 colon cancer
cells (207) and induces the cleavage of Bid to TRAIL resistant

TABLE 1 | Summary of the flavonoids with MDR reversal effects and their application.

Compound name Functions Application References

Chrysin ABC transporters regulation

ROS induction

STAT3 inhibition

p53 inhibition

Sensitizing mitoxantrone

Sensitizing Dox, curcumin

Sensitizing TRAIL

Sensitizing cisplatin

(70)

(139, 142)

(182)

(185)

Baicalein ABC transporters regulation

ROS induction

Hypoxia suppression

CSCs inhibition

Sensitizing docetaxel, paclitaxel

Sensitizing TRAIL

Sensitizing 5-FU

Sensitizing mTORC1 inhibitor

(77, 78)

(137)

(161)

(165)

Apigenin ABC transporters regulation

CSCs inhibition

Autophagy inhibition

p53 inhibition

Sensitizing docetaxel, doxorubicin

Killing resistant CSCs

Sensitizing Dox

Sensitizing cisplatin

(84–86)

(166, 167)

(177)

(186)

Acacetin ABC transporters regulation Sensitizing Dox, SN-38 (91, 92)

Wogonin ABC transporters regulation

ROS induction

Hypoxia suppression

CSCs inhibition

Sensitizing Dox

Sensitizing Dox, cisplatin

Sensitizing Dox, cisplatin, paclitaxel

Killing resistant CSCs

(99)

(147, 233)

(162)

(168)

Kaempferol ABC transporters regulation

EMT suppression

Sensitizing cisplatin

Sensitizing pemetrexed

(107)

(180)

Galangin ROS induction

STAT3 inhibition

Collateral sensitivity

Sensitizing cisplatin

(157)

(183)

Naringenin ABC transporters regulation Sensitizing daunomycin (112)

Luteolin ROS induction

CSCs inhibition

Cell cycle regulation

Autophagy inhibition

EMT suppression

Sensitizing oxaliplatin, Dox

Killing resistant CSCs

Sensitizing tamoxifen

Sensitizing cisplatin

Sensitizing paclitaxel

(151, 153–155)

(169)

(173)

(178)

(181)

Quercetin ABC transporters regulation

Hypoxia suppression

CSCs inhibition

Cell cycle regulation

p53 inhibition

Sensitizing Dox, paclitaxel

Sensitizing Dox, cisplatin, etoposide

Sensitizing gemcitabine, Dox

Sensitizing Dox, ciaplatin

Sensitizing 5-FU

(119–122)

(120, 163, 164)

(170, 172)

(175)

(187)

Rutin ABC transporters regulation Sensitizing paclitaxel (117)

Fisetin ABC transporters regulation

NF-κB inhibition

Sensitizing cabazitaxel, paclitaxel

Sensitizing TRAIL

(123, 124)

(50)

Scutellarin Cell cycle regulation

p53 inhibition

Sensitizing cisplatin

Sensitizing cisplatin

(176)

(188)

Icaritin ABC transporters regulation

Autophagy inhibition

Sensitizing Dox

Sensitizing epirubicin

(128)

(179)

Genistein ABC transporters regulation

ROS induction

NF-κB inhibition

To be explored

Sensitizing radiation

Sensitizing cisplatin, Dox, gemcitabine

(131–133)

(159)

(189–191)

Biochanin A ABC transporters regulation

NF-κB inhibition

Sensitizing mitoxantrone

Sensitizing TRAIL

(136)

(196)

7,3′,4′-Trihydroxyisoflavone ROS induction Sensitizing epirubicin (160)

Tectorigenin NF-κB inhibition Sensitizing paclitaxel (198)
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human hepatoma cells (208), exerting its sensitizing effects.
Chrysin, Apigenin, Luteolin, Quercetin and Genistein, also
regulates the ubiquitin-proteasome pathway to overcome MDR
in various chemotherapeutic drugs (209).

Furthermore, Chrysin may inhibit the pro-inflammatory
mediators including interleukin-6 (IL-6) and the aldo-keto
reductases superfamily (AKR1C1/1C2) expression, re-sensitizing
cisplatin and Dox in NSCLC (210).

Apigenin also targets Axl and Tyro3 receptor tyrosine
kinase (211), and impacts mitochondrial membrane potential
(212), antagonizes Mcl-1 upregulation (213), or acts as an
anti-estrogen and a protein kinase inhibitor (214) to sensitize
certain chemotherapeutics.

Kaempferolmay also enhance the efficacy of TRAIL in human
ovarian cancer cells OVCAR-3 and SKOV-3 cells (215), and U251
and U87 glioma cells (216) via JNK/ERK-CHOP pathway and
induction of proteasomal degradation of survivin, respectively.

Wogonin may also regulate AKR1C1/1C2 (210), and tumor
necrosis factor-α (217). Wogonin increases Dox sensitivity
through the down-regulation of the IGF-1R/AKT signaling
pathway in human breast cancer (218), and increases the
activity of sorafenib to human hepatocellular carcinoma cells by
potentiating apoptosis and inhibiting autophagy (219).

Quercetin may potentiate the effect of fludarabine and
ABT-737 against CLL via Mcl-1 inhibition (220), enhance the
efficacy of (1) Dox in the Dox resistant prostate cancer (PC)3
cell line (PC3/R) by down-regulating c-met (221) and Dox
resistant human leukemic MDR K562/ADR cells by regulating
JNK/MAPK (222), (2) TRAIL to pancreatic cancer cells through
JNK-mediated cFLIP turnover (223), (3) tamoxifen in tamoxifen-
resistant breast cancer cell line (MCF-7Ca/TAM-R) by up-
regulating ERα and down-regulating Her-2 (224), etc.

DISCUSSION AND FUTURE PERSPECTIVE

An increasing body of studies have suggested that through
single or combinational administration, flavonoids, and iso-
flavonoids may work as sensitizing agents. While the major
issue of mechanism study of flavonoids is the lack of specific
targets and their acting mechanisms in surmounting, resistant
cancer cells are still not understood properly (55). Currently,
studies like those discussed above indicate that these flavonoids
exert their anticancer efficacy through multiple mechanisms, and
multiple targets, and it’s quite clear that certain flavonoids may
overcome MDR by regulating various aspects that contribute
to MDR. Therefore, they could be characterized as multi-
functional natural compounds rather than multi-targeting
agents (54, 105, 225, 226).

Flavonoids tend to target lipid bilayers and modify the
membrane physicochemical properties to exert their bioactivities
(227–230). As demonstrated in Ingólfsson et al.’s study,
phytochemicals of different structures (polyphenols including
flavonoid) could alter lipid bilayer properties as they localized
on the bilayer/solution interface. Through a similar action,
they also regulated bio-functions of diverse membrane proteins,

suggesting that their actions may be due to the common,
membrane bilayer-mediated mechanism (231). Therefore, we
conclude that flavonoids do not function as specific regulators
of target proteins, but rather as multi-functional agents that
negatively regulate the key factors contributing to MDR as well
as to other diseases.

To reverse MDR, these flavonoids may regulate many
targets. First, the flavonoids may regulate ABC transporters,
such as ABCB1, ABCG2, ABCC1, etc. They not only inhibit
the efflux effects of these transporters to many conventional
chemotherapeutics, but also inhibit the expressions. Docking
studies indicate that they may bind to NBDs of ABCB1
(83). To date, no ABC transporter regulators have been
approved by the FDA because of severe adverse effects.
Natural products hold promise to be of lower toxic agents,
given that many of the flavonoid regulators already serve as
dietary supplements.

Second, as polyphenolic compounds, many flavonoids may
work as ROS modulators (18) as they affect the status of ROS
level in cancer cells (232). Under different dose, they may work
either as ROS scavengers or inducer. To overcome MDR, they
preferably work as inducers which induce more ROS production
that can reach to the toxic threshold to activate apoptosis (18).
Major players in maintaining balanced ROS in cells includeMrf2,
GSH, both of which can be inhibited by certain flavonoids to exert
their re-sensitizing effects.

Third, they may also regulate HIFs, cell cycle, CSCs,
autophagy, and critical enzymes such as STAT3, p53, and NF-
κB, confirming their multi-functional property as summarized in
Figure 3 and Table 1.

Furthermore, certain flavonoids exhibit collateral sensitivity,
a phenomenon where one compound shows selectivity to kill
resistant cancer cells over sensitive cells (157), such as Galangin
and Chrysin (156), apigenin dimer (234), and another flavonoid
desmosdumotin B (235), making the flavonoids more appealing
agents in treating resistant cancers.

In addition, some of these flavonoids are now under clinical
trials to treat certain cancers, such as Apigenin (NCT03139227),
Quercetin (NCT03476330, NCT02989129, NCT01912820,
NCT01538316), Icaritin (NCT01278810, NCT01972672,
NCT02496949). Further positive results will surely entice more
researchers to develop them as drug candidates, e.g., MDR
reversal agents.

One issue in this research is that most studies are conducted
in vitro, so further in vivo studies are warranted. Given that
many of the flavonoids are used as ingredients in dietary
supplements, their anticancer/sensitizing efficacy could be more
readily determined in humans (236–238). The natural products
in flavonoids represent novel treatment strategies to overcome
MDR in cancer, and structural modifications of these compounds
should be of interest for medicinal chemists. Indeed, many
flavonoids derivatives have been developed to suppress resistant
cancer cells, such as Chrysin acyl derivatives against drug-
resistant human cancer cells (MES-SA/DX5, LoVo/DX) (239),
nitro Genistein derivatives modified by nitro groups against
cisplatin-resistant human ovarian cancer A2780 cells (240),

Frontiers in Oncology | www.frontiersin.org 9 June 2019 | Volume 9 | Article 487

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ye et al. Flavonoids

Quercetin-glutamic acid conjugate (241), and apigenin-based
flavonoid dimers (242) against P-gp overexpressing cancer cells,
selenium-containing Chrysin and Quercetin derivatives against
cisplatin resistant cancer cells (243), Quercetin-3-methyl ether
against lapatinib-resistant breast cancer cells (244), etc. These
studies provide crucial information for new drug discoveries
based on flavonoids.

CONCLUSION

Dietary natural flavonoids possess multiple bioactivities
including anti-cancer and chemo-sensitizing effects. Studies
show that they inhibit certain ABC transporters, antioxidant
enzyme Nrf2 and its related enzymes and regulate HIFs, CSCs,
autophagy, EMT, etc., to exert their sensitizing effects, suggesting
that they are multi-functional molecules.
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