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DNA methylation is a major epigenetic process that regulates chromatin structure

which causes transcriptional activation or repression of genes in a context-dependent

manner. In general, DNA methylation takes place when methyl groups are added to

the appropriate bases on the genome by the action of “writer” molecules known as

DNA methyltransferases. How these methylation marks are read and interpreted into

different functionalities represents one of the main mechanisms through which the genes

are switched “ON” or “OFF” and typically involves different types of “reader” proteins

that can recognize and bind to the methylated regions. A tightly balanced regulation

exists between the “writers” and “readers” in order to mediate normal cellular functions.

However, alterations in normal methylation pattern is a typical hallmark of cancer which

alters the way methylation marks are written, read and interpreted in different disease

states. This unique characteristic of DNA methylation “readers” has identified them as

attractive therapeutic targets. In this review, we describe the current state of knowledge

on the different classes of DNA methylation “readers” identified thus far along with their

normal biological functions, describe how they are dysregulated in cancer, and discuss

the various anti-cancer therapies that are currently being developed and evaluated for

targeting these proteins.
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DNA METHYLATION AND CANCER: AN INTRODUCTION

The identity, behavior, and functionality of cells are dictated by the set of genes that are expressed
at a given time. These genes are under tight regulation by different regulatory factors which makes
sure that cells behave and function normally. However, in cancer, the cells lose their ability to
behave normally which can be seen and measured by the qualitative and quantitative changes
in the expression pattern of the active genes (1, 2). Historically, much attention has been given
to the qualitative changes of gene expression which mainly focuses on the gene sequence-based
alteration in the tumor cells (1). Therefore, cancer has been classically known as a predominantly
genetic disease (3). However, the realization that quantitative changes in gene expression, due
to different types of epigenetic modification, also plays an essential role in the development and
progression of cancer has been one of the most significant breakthroughs in cancer biology over
the last two decades (4).

Among the various types of epigeneticmodifications of the genome, DNAmethylation is the first
one to be identified where the 5th carbon of the cytosine residue at CpG dinucleotides is methylated
by the action of writer molecules known as DNA methyltransferases (5). Recent studies have
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revealed that methylation can take place beyond the CpG
context. For example, in the brain and embryonic stem cells
methylation can take place in non-CpG sites (CpH where
H = A/T/C) (6, 7). However, methylation at non-CpG sites
is not as frequent as CpG methylation. The distribution of
methylation across the genome is cell type-specific and dynamic
(8). Recent studies have demonstrated that DNA methylation-
mediated transcriptional regulation is context dependent where
methylation at the promoter region is typically related to
repression of gene expression and methylation at the gene bodies
is associated with activation of gene expression (9).

DNA methylation at the regulatory region of the gene
can either directly hinder transcription factor binding and
thereby cause transcriptional repression (10), or recruit “reader”
molecules known as methyl-binding proteins (MBPs) at the
methylated site which can then attract different members of
the chromatin remodeling complex to cause transcriptional
activation/repression depending on the cellular context (9, 11).
However, the mechanisms by which the DNA methylation
signatures are “read” and interpreted in different genomic
context is not fully elucidated and may provide valuable
information on how the gene expression programs are controlled
in normal biological processes as well as in pathological
conditions like cancer. The role of methyl-CpG-binding domain
(MBD) proteins, that belongs to one of the three main families
of MBPs (classification given in the next section), in the
pathophysiology of different diseases including cancer has most
recently been reviewed by Du et al. (12). On the other hand,
the role of all the three known families of MBPs in relation to
cancer was last reviewed by Parry and Clarke (13). However, since
then, the field has gained newer insights into the functions and
therapeutic targeting of different MBPs in cancer. In addition,
several new proteins have been discovered to have methyl
binding activities which warranted an update in the classification
of MBPs. This review focuses on the known families of DNA
methylation readers or MBPs and provides an updated summary
of their roles in the context of cancer.

CLASSIFICATION OF MBPS

Even though the existence of DNA methylation was first
described in the late 1940s (14), it was not until the next 30 years
when the importance of the process started to get appreciated
due to the findings that revealed its role in the regulation of
gene expression and cellular differentiation (15, 16). Several
years after that two proteins with methyl binding activities were
reported inmammals which were termed asmethyl-CpG binding
protein 1 (MeCP1) and MeCP2 (17, 18). However, later studies
have demonstrated that MeCP1 is, in fact, a complex containing
multiple proteins involved in chromatin remodeling (19–21).
Therefore, MeCP2 is regarded as the first ever single MBP to be
identified (17).

At the structural level, MeCP2 contains a MBD domain
comprising 70–85 amino acids that can recognize and bind to
methylated CpGs (22). The MBD domain was later used to
identify other proteins with methyl-binding potentials (23). At

present, there are 11 known proteins with MBD domains which
are classified as the family of “MBD-containing proteins.” More
than a decade after the discovery of MeCP2, a second family of
MBPs were identified that recognizes the methylated DNA using
the Zinc finger motifs. Hence, they are called the “Methyl-CpG
binding zinc fingers” (24). This particular family has seen the
most rapid expansion over the last few years and, at present, there
are at least 8 members in this family (25). The third family of
MBPs was identified based on their ability to bind methylated
DNA using the Set and RING-associated (SRA) domain and
hence called the “SRA domain-containing proteins”. A schematic
classification of the three main families of MBPs is shown in
Figure 1, and the general and pathophysiological functions (in
cancer) of each of the proteins is summarized in Table 1.

MBD-Containing Proteins
This is the first family of MBPs to be identified. All members of
this family have the conserved MBD domain (NCBI Conserved
Domain Database ID: cl00110 and cd00122). However, they
also have some additional domains which provide them with
specific features (Figure 2) and functions (Table 1). Based on
the presence of domains other than MBD, the members of this
family are further classified into three categories: (1) MeCP2-
MBD, (2) HMT-MBD, and (3) HAT-MBD. The three subfamilies
of MBD-containing proteins are phylogenetically distinct from
each other (102). In addition, not all the proteins can bind to
methylated DNA but are historically classified together based on
their structural features rather than methyl-binding abilities.

MeCP2

The MeCP2 is a 50-kD multidomain transcriptional repressor
protein encoded from an X chromosome gene containing four
exons that give rise to two isoforms MECP2_e1 and MeCP2_e2
depending on the presence or absence of the second exon
(103). These isoforms provide different functionalities to each of
these proteins.

The MBD domain of MeCP2 can bind to a single methylated
CpG. However, the binding of MBD requires an A/T-rich
sequence near the methylated CpG regions (104). Apart
from the MBD domain, MeCP2 also has the transcription
repression domain (TRD) involved in mediating gene silencing
through the recruitment of chromatin remodeling complex
comprising the Sin3A co-repressor and histone deacetylases
(HDAC1 and HDAC2) (11) (Figure 2). Some of the other
functions of the MeCP2 protein include nuclear organization,
chromatin compaction and fiber binding, chromatin looping,
rearrangement of heterochromatin, regulation of splicing, and
DNA methylation (105). Mutations of the MECP2 gene may
cause a severe neurodegenerative disease known as the Rett
syndrome that mainly affects females due to the presence of the
gene on the X chromosome (106).

MeCP2 is also involved in cancer through it’s binding to the
hypermethylated regions of promoters of tumor suppressor genes
and thereby cause their subsequent repression in breast cancer
(107), prostate cancer (108), lung cancer (109), liver cancer (110),
and colorectal cancer (111). Elevated expression of the MeCP2
gene has been reported in different cancers (28, 29, 112). In
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FIGURE 1 | Classification of methyl-binding proteins (MBPs). The proteins with methyl-CpG binding abilities are broadly classified into three families based on the

functional domains used for binding to methylated DNA. The “MBD-containing proteins” were the first group of MBPs to be identified and are further classified into

three subfamilies (MeCP2-MBD, HMT-MBD, and HAT-MBD) based on the presence of functional domains other than MBD. The members of the HMT-MBD and

HAT-MBD subfamilies have protein methyltransferase and acetylase activities respectively. The “Methyl-CpG binding Zinc finger proteins” have at least 8 members

(Kaiso, ZBTB4, ZBTB38, ZFP57, KLF4, EGR1, WT1, CTCF) that can bind to methylated region using the Zinc finger motifs while the third family of MBPs consisting of

UHRF1 and UHRF2 proteins uses their Set and RING-associated (SRA) domain to bind methylated DNA.

the case of liver cancer cells, MeCP2 promotes proliferation
via the activation of ERK1/2 with simultaneous inhibition of
p38 activity (30). Increased MeCP2 expression has shown an
association with shorter overall survival and disease-free survival
of gastric cancer patients (29). Loss of function of MeCP2 has
been reported to inhibit cell proliferation and increased apoptosis
of prostate cancer cells in vitro (26, 27). In addition, treatment
with several natural compounds has shown to downregulate
the elevated MeCP2 expression in prostate and breast cancer
cells in vitro (113, 114).

MBD1

MBD1 is a multidomain protein consisting of an N-terminal
MBD domain that can bind methylated DNA, a C-terminal TRD
domain that can mediate protein-protein interaction, and two
or three CXXC-type Zinc fingers in between MBD and TRD
domains (103). It is encoded from a multiexon gene located
on chromosome 18. MBD1 has 13 isoforms due to alternative
splicing of the gene (13). The major distinction between the
encoded proteins from the differentially spliced isoforms is the
retention of two or three CXXC-type Zinc finger motifs (115).
The isoforms having the first two CXXC-type Zinc finger motifs
can bind to methylated CpG to cause transcriptional repression,
whereas the isoforms having the third CXXC-type Zinc finger
motif has the ability to bind unmethylated DNA (115, 116). This
implies that the isoforms having all three CXXC-type Zinc finger
motifs can cause transcriptional repression regardless of the DNA
methylation status.

MBD1 interacts withMBD1-containing chromatin-associated
factor 1 (MCAF1) and histone methyltransferase SETDB1
to form MBD1:SETDB1:MCAF1 complex that methylates
lysine residue 9 of histone H3 to promote heterochromatin
formation (117–119). MBD1 can also interact with another
histone methyltransferase known as Suv39h and cause
H3K9 methylation. Mbd1 knockout mice (Mbd1−/−) are
viable and healthy but show some defects during neural
stem cell differentiation along with increased chromosome
instability (120).

MBD1 plays a role in tumorigenesis by repressing tumor
suppressor genes like CDH1, RASSF1A, TIMP3, P14ARF, and
Rb (121). In human pancreatic carcinomas, elevated expression
of MBD1 showed association with lymph node metastasis (32).
Furthermore, knockdown of MBD1 inhibited cell proliferation,
invasion, and increased apoptosis of pancreatic cancer cells
(122, 123). However, the oncogenic role of MBD1 is not
typical for all cancers. For example, MBD1 may also act as a
tumor suppressor in colorectal cancer (31). A hypermethylation-
mediated downregulation of the MBD1 gene is seen along with
the progression of metastatic colorectal cancer (31). Moreover,
polymorphisms in the MBD1 gene have shown an association
with the increased risk of developing lung cancer (33). In prostate
cancer cells, depletion of MBD1 increased cell invasion with
no change in apoptosis compared to control cells where MBD1
expression was intact (27). Moreover, analysis of patient biopsies
revealed that the MBD1 protein expression gradually decreased
with the increase of prostate cancer grade (34). Taken together,
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TABLE 1 | Summarized features and functions of different MBPs.

Name of

protein

General feature and function Type of cancer Role in cancer Reference

MeCP2 It is the founding member of MBPs and acts as a

transcriptional repressor. It is a 50-kDa protein encoded by a

gene on the X chromosome and functions in nuclear

organization, chromatin compaction and fiber binding,

chromatin looping, rearrangement of heterochromatin,

regulation of splicing

Prostate cancer Loss of function of the gene decreased

cell proliferation and increased apoptosis

(26, 27)

Breast cancer Its expression showed strong association

with estrogen receptor status

(28)

Gastric cancer Elevated expression showed association

with shorted patient survival

(29)

Liver cancer Promotes cell proliferation through the

activation of ERK1/2

(30)

MBD1 It is a multidomain protein encoded by a gene located on

chromosome 18. The main function of MBD1 is to cause

transcriptional repression through methylation of H3K9 and

heterochromatin formation.

Colorectal cancer Acts as a tumor suppressor gene and the

mRNA expression is downregulated with

disease progression

(31)

Pancreatic cancer Overexpression of MBD1 showed an

association with lymph node metastasis

(32)

Lung cancer Polymorphisms in MBD1 gene associated

with lung cancer development

(33)

Prostate cancer MBD1 depletion promotes cell invasion;

the protein expression gradually decreases

with the increase in cancer grade.

(27, 34)

MBD2 It is a multiexon gene located on chromosome 18. It can

function as a transcriptional repressor and activator

depending on the cellular context. It also plays role in

mediating immune response.

Colorectal cancer Mbd2-deficient mice are resistant to

intestinal cancer

(35)

Breast cancer Plays a role in tumor progression and

proliferation. Knockdown of MBD2

activation the expression of tumor

suppressors genes like DAPK1 and KLK10

(36)

Colon cancer Represses the expression of tumor

suppressor genes (p16/Ink4A, p14/ARF )

(37)

Liver cancer Mediates silencing of the tumor

suppressor glutathione S-transferase gene

(GSTP1)

(38)

Bladder cancer Higher expression of MBD2 shows

associations with reduced risk of

tumorigenesis

(39)

Prostate cancer Represses the expression of key tumor

suppressor gene

(40)

MBD3 It is an encoded multiexon gene located on chromosome 19

and interacts with NuRD complex to cause transcriptional

repression.

Liver cancer MBD3 inhibits formation of cancer stem

cells

(41)

Pancreatic cancer Decreased expression in patients

correlates with poor survival; MBD3

overexpression inhibits migration and

invasion

(42)

Malignant glioma Decreased expression in patients

correlates with reduced with decreased

overall survival and progression-free

survival

(43)

MBD4 The MBD4 gene is located on chromosome 3. The encoded

protein has DNA glycosylase activity and functions in DNA

repair.

Colorectal cancer Mutation in the MBD4 gene triggers

mismatch repair deficiency

(44)

Acute myeloid

leukemias (AMLs)

Germ line MBD4 deficiency predisposes to

AML

(45)

Gastric cancer Frameshift mutation of MBD4 triggers

DNA mismatch repair deficiency which

induce cancer progression

(46)

(Continued)
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TABLE 1 | Continued

Name of

protein

General feature and function Type of cancer Role in cancer Reference

MBD5 It is a 159-kD multidomain protein encoded by a gene located

on chromosome 2. The protein can bind to mammalian

polycomb repressive complex PR-DUB; but cannot bind to

methylated DNA even though it contains the MBD domain. It

plays a role in development.

- Not known yet -

MBD6 It is a 101-kD multidomain protein that binds to mammalian

polycomb repressive complex PR-DUB; but cannot bind to

methylated DNA even though it contains the MBD domain. It

has a role in maintaining cellular stemness.

Gastric and colorectal

cancer

Mutation and abnormal expression of

MBD6 was reported in patients

(47)

SETDB1

(Also

known

as

KMT1E

or ESET)

It is a 143-kD multidomain protein encoded from a gene

located on chromosome 1. Plays a role in transcriptional

repression by forming heterochromatin.

Colorectal cancer Higher SETDB1 expression showed

inverse correlation with patient survival rate

(48)

Sporadic cutaneous

melanoma

Higher expression showed association

with several prognostic parameters in

melanoma

(49)

Liver cancer Elevated expression showed association

with disease progression, increased

metastasis, and poor prognosis of patients

(50)

Breast cancer Knockdown of SETDB1 cell proliferation,

migration, and cell cycle

(51)

SETDB2

(also

known

as

CLLD8)

It is a 81-kD multidomain protein that has protein

methyltransferase activity, and plays role in transcriptional

repression by forming heterochromatin

Gastric cancer Elevated expression correlated with

disease progression

(52)

BAZ2A

(Also

known

as TIP5)

The BAZ2A gene is located on chromosome 12 and the

encoded protein plays role in chromatin remodeling and

subsequent regulation of gene expression.

Prostate cancer Overexpression is an individual biomarker

to predict disease recurrence

(53)

BAZ2B The BAZ2B gene is located on chromosome 2, and the

encoded protein can bind to histones and chromatin

remodeling complexes via the PHD and bromodomains.

- Not known yet -

Kaiso It is encoded by ZBTB33 gene located on X chromosome. It

plays role in cell adhesion and signaling in the cytoplasmic

compartment while it acts as a transcriptional repressor in

nucleus.

Prostate cancer Promotes cell migration and invasiveness

via regulating miR-31 expression

(54)

Colon cancer Kaiso depletion induced tumor suppressor

gene expression. In addition, the cancer

cells became susceptible to cell cycle

arrest and cell death

(55)

Intestinal cancer Deficiency decreases tumor size and

increases life span of Apc (Min/+) mice

(56)

Lung cancer Associated with poor prognosis (57)

Breast cancer Depletion of the protein reduced cancer

cell proliferation, invasion and metastasis

(58, 59)

ZBTB4 It is encoded by ZBTB4 gene located on chromosome 17. It

plays a role in cell cycle and acts as a transcriptional

repressor of several oncogenic genes.

Breast cancer Expression is positively correlated with

relapse-free survival

(60)

Neuroblastoma ZBTB4 depletion arrests cell cycle and

promotes cancer cell survival by

suppressing apoptosis

(61)

Prostate cancer Elevated expression may serve as a

prognostic factor for longer patient

survival.

(62)

Skin cancer ZBTB4-deficient mice are susceptible to

developing carcinogen-induced cancer.

(63)

(Continued)
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TABLE 1 | Continued

Name of

protein

General feature and function Type of cancer Role in cancer Reference

ZBTB38 It is encoded by ZBTB4 gene located on chromosome 3. It

plays a role in cell proliferation, differentiation, DNA replication

and transcription

Prostate cancer Polymorphisms in ZBTB38 increase

prostate cancer risk

(64)

Bladder cancer ZBTB increases cell invasion, migration,

and metastasis

(65)

ZFP57 It is encoded by ZFP57 gene located on chromosome 6. It

plays a role in genomic imprinting and regulation of gene

expression

Glioblastoma Elevated expression of the gene has been

found in patients with high-grade

glioblastoma

(66)

Lung cancer Has been identified as a disease

susceptibility locus for the development of

lung cancer

(67)

KLF4 It is encoded by KLF4 gene located on chromosome 9. It

plays a role in cell proliferation, differentiation, DNA damage

response, cell cycle, and apoptosis.

Gastric cancer Lower level of KLF4 showed association

with poor survival

(68)

Colorectal cancer Functions as a tumor suppressor (69)

Bladder cancer KLF4 expression is downregulated in both

cell lines and patient tissues; restoration of

KLF4 gene decreased cell proliferation and

increased apoptosis

(70)

Breast cancer Both RNA and protein expression are

increased during the progression of breast

tumor. KLF4 knockdown reduces cell

migration, invasion and colony formation

(71, 72)

Glioblastoma Promotes cell adhesion and migration (73)

Skin cancer Elevated expressed showed association

with cancer progression and metastasis

(74)

EGR1 It is encoded by EGR1 gene located on chromosome 5. It

plays a role in the maintenance of synaptic plasticity, cell

proliferation, differentiation, cell cycle, apoptosis, wound

healing, and regulation of gene expression.

Prostate cancer Overexpressed in prostate cancer (75, 76)

Wilms’ tumor Overexpression of the gene enhances

tumorigenicity in vivo

(77)

Breast cancer It is downregulated in breast tumors.

Moreover, overexpression of EGR1 inhibits

cell proliferation and blocks cell cycle at

G0/G1 phase

(78, 79)

Glioblastoma EGR1 expression is lower in glioma tissue

compared to normal brain tissues and

knockdown of the gene decreased cell

proliferation and tumorigenesis both

in vitro and in vivo

(80)

Fibrosarcoma It suppresses fibrosarcoma cell growth

in vitro through the induction of TGF-β1

(81)

Lung cancer Functions as a tumor suppressor by

enhancing the KRT18 expression

(82)

WT1 The WT1 gene, located in chromosome 11, encodes for the

protein that functions in cell growth, proliferation,

differentiation, cell cycle, maintenance of genomic stability,

and regulation of gene transcription.

Wilms’ cancer Expression is downregulated in this

pediatric cancer; mutations in the WT1

gene showed association with the

occurrence of the sporadic form of the

disease

(83, 84)

Breast cancer Higher expression of the WT1 gene

showed association with poor prognosis in

patients

(85)

Leukemia Elevated expression of the gene showed

association with poor patient outcome

(86)

Head and neck cancer Increased expression of the gene showed

correlation with higher tumor stage

(87)

Ovarian cancer Protein expression increased in patients

with cancer and showed indication of

unfavorable prognosis

(88, 89)

(Continued)
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TABLE 1 | Continued

Name of

protein

General feature and function Type of cancer Role in cancer Reference

UHRF1

(Also

known

as

ICBP90

in human

and

Np95 in

mouse)

It is encoded from a gene located on chromosome 19. Plays

a role in regulation of cell proliferation, cell cycle, apoptosis,

as well as in DNA repair. It also plays a crucial role in the

maintenance of DNA methylation in daughter strands; links

DNA methylation to histone modification.

Breast cancer Promotes cell proliferation and migration (90)

Pancreatic cancer Promotes the growth, migration, and

metastasis

(91)

Colorectal cancer Promotes CRC growth and metastasis

through the repression of p16 (ink4a)

(92)

Lung cancer Involved in the silencing of tumor

suppressor genes

(93)

Hepatocellular

carcinoma

Elevated UHRF1 is associated with poor

prognosis

(94)

Gastric cancer Promotes invasion and metastasis,

downregulates tumor suppressor genes

(95)

Ovarian cancer Depletion of UHRF1 decreased

proliferation and induce apoptosis

(96)

Prostate cancer Downregulates the expression of tumor

suppressor genes

(97)

UHRF2

(Also

known

as NIRF

or Np97)

It is encoded from a gene located on chromosome 9. Plays

role in regulation of cell proliferation, cell cycle, apoptosis. It

can read 5 hmC, 5 mC on DNA as well as H3K9 methylation.

Colon cancer Involved in invasion and metastasis (98)

Intrahepatic

Cholangiocarcinoma

Involved in cell proliferation, invasion,

migration, and decreases apoptosis

(99)

Breast cancer Involved in cell proliferation (100)

Osteosarcoma Interacts with E2F1 to induce apoptotic

cell death

(101)

these observations indicate a dual role of MBD1 both as a tumor
suppressor and oncogene depending on the type of cancer.

MBD2

The MBD2 is a multiexon gene located on chromosome 18
of both human and mouse genomes. The encoded protein
(MBD2) from this locus shows more than 70% amino acid
sequence similarity with another protein called MBD3 (23).
In addition, a high level of gene-sequence homology exists
between human and mouse MBD2 and MBD3 genes which
is suggestive a gene duplication event during the course of
evolution (102). Initial studies proposed that MBD2 functions
as a transcriptional repressor by recruiting co-repressors like the
NuRD (Nucleosome Remodeling Deacetylase) complex to the
methylated sites (19).

MBD2 protein has three main isoforms due to the use
of alternative translational start site and alternative splicing:
MBD2a, MBD2b, andMBD2c (also called MBD2t) (23, 124). The
presence of different domains which give the different MBD2
isoforms the ability to interact with different binding partners
and thereby carry out different functions (Figure 3). However,
all three isoforms have the MBD domain to bind to methylated

CpG. MBD2a is the canonical isoform and contains an N-
terminal glycine-arginine (GR) repeat that can undergo post-
translational modification, followed by the MBD domain, the
TRD domain, and lastly the coiled-coil (CC) domain at the c-
terminal region that has the ability to mediate protein-protein
interactions (12, 125). The MBD2b uses an alternative start
site during translation, and the only difference from MBD2a is
the absence of the N-terminal GR repeat. The presence of the
MBD and TRD domain in both of these isoforms helps them to
bind different corepressor complexes to mediate transcriptional
repression (126). The third isoform MBD2c is devoid of the
TRD and CC domains due to the inclusion of an alternative
exon 3 that produces a truncated protein (23). The MBD2c
may function differently than the other isoforms. For example,
in human pluripotent stem cells (hPSC), MBD2a interacts with
NuRD to promote cell differentiation while MBD2c mediates the
reprogramming to pluripotency (127).

It has been shown that MBD2 can also bind to unmethylated
DNA to cause changes in gene expression (128). However,
the TRD-domain deficient MBD2c isoform cannot bind to
unmethylated DNA which suggests that MBD2 binding to the
unmethylated regions of theDNA is dependent on the interaction
between TRD domain and NuRD complex (128). More recent
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FIGURE 2 | Schematic representation of the major domains present in different MBD-containing proteins. All members of this family of proteins have the MBD

domain. However, not all 11 members under this family can bind methylated DNA but were classically grouped under the same family because of having the MBD

domain. Each member of this family has domains other than MBD that gives them unique characteristics to carry out different cellular functionalities. The MeCP2,

MBD1, and MBD2 contain a TRD domain that helps them to recruit chromatin remodeling corepressors and thereby cause transcriptional silencing. In addition, the

MBD1 protein may have two or three CXXC-domains due to splicing of its gene. The first two CXXC domains of MBD1 bind to methylated DNA while the third CXXC

domain binds to unmethylated DNA. MBD2 has unique G/R rich domain that allows protein-protein interaction as well as post-translational modification. Due to a

mutation in the region of the gene encoding the MBD domain of MBD3, it cannot bind to methylated DNA. However, MBD3 can interact with other chromatin

remodeling complex and play a role in the regulation of gene expression. The glycosylase domain at the C-terminal end of MBD4 provides it with the unique function

of having DNA glycosylase activity while the N-terminal MBD helps it to bind methylated DNA. MBD5 and MBD6 cannot bind to methylated DNA but can interact with

the mammalian polycomb deubiquitinase complex PR-DUB. In addition, the PWWP (Pro-Try-Try-Pro) motif of MBD5 helps it bind to the methylated histones. The SET

domain provides SETDB1 and SETDB2 the ability to act as protein methyltransferase and the Tudor domains help SETDB1 to bind to methylated histones. In addition,

these proteins also have PreSET domain located N-terminus to the SET domain that functions in stabilizing the SET domain. Both BAZ2A and BAZ2B contains a PHD

domain to bind unmodified histone while bromodomain and DDT domains allow them to recognize the acetylated histones and DNA binding abilities respectively.

(Figure not drawn to the exact scale of the proteins).

FIGURE 3 | Characteristic domain architecture and function of different MBD2 isoforms. MBD2a is the canonical isoform containing four domains while MBD2b lacks

the N-terminal G/R-repeat due to the use of alternative start site during translation. On the other hand, the MBD2c isoform is formed due to the inclusion of an

alternative third exon which produces a premature stop codon, and as a result, the MBD2c lacks the TRD and CC domains (Figure not drawn to the exact scale of the

proteins).
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evidence suggests that the MBD2 protein can also mediate
the activation of gene expression (129–131). MBD2 has been
proposed to function as a demethylase enzyme that can remove
or “erase” the DNA methylation marks (132). However, this
finding has been contested by several others (126, 133). The
Mbd2 knockout mice (Mbd2−/−) are viable and do not show
any abnormalities during embryonic development even though
the female Mbd2−/− mice have been reported to show some
abnormalities related to maternal behavior (134).

MBD2 plays an important role in cancer by silencing key
tumor suppressor genes in prostate cancer (40), colon cancer
(37), and liver cancer (38). On the other hand, in several
cancer-types, MBD2 has been shown to mediate transcriptional
repression of human telomerase reverse transcriptase (hTERT)
which is suggestive of a tumor suppressive function of MBD2
(135). In breast cancer, Müller et al. could not detect any
discernable difference in MBD2 expression (28), while Billard
et al. detected a statistically significant upregulation of MBD2 in
the mammary tumor (136).

Stable knockdown of the MBD2 gene suppressed the
proliferation of several breast cancer cell lines in vitro and
decreased tumor volume in vivo (36). Furthermore, it was
demonstrated that tumor suppressor genes like DAPK1 and
KLK10 are de-repressed upon depletion of MBD2 in breast
cancer cells. Interestingly, MBD2 has been also shown to function
in the maintenance and spread of DNA methylation at specific
regulatory regions of prostate cancer cells (137). Moreover,
knockout of Mbd2 gene mice protected against tumorigenesis
when crossed with ApcMin/+ mice (a rodent model for colorectal
cancer) (35). The loss of MBD2 function causes downregulation
of the Wnt signaling pathway which plays a major role in
the development of colorectal cancer (35, 138). However, later
studies have found that depletion of several other epigenetic
and chromatin binding factors like Kaiso, DNMTs, and Brg1
also downregulated the Wnt signaling pathway and thereby
protected from tumorigenesis (56, 139, 140). This suggests that
the downregulation of Wnt signaling is not MBD2-specific, and
it is instead a result of a general perturbation of chromatin
remodeling complex (8).

Emerging evidence supports that MBD2 plays a role in
immunity partly because of its tissue localization pattern.
Among the various members of the MeCP2-MBD family,
MBD2 shows the highest expression in spleen which is a
major site for both adaptive and innate immune responses
(8, 141). Wang et al. demonstrated that MBD2 regulates
the expression of Foxp3 which is the master regulator of
regulatory T cells (Tregs) (129). They have shown that
MBD2 binds to the Treg-specific demethylation region
(TSDR) located upstream of the Foxp3 gene and thereby
facilitates TET2-mediated demethylation to induce Foxp3
expression. Furthermore, knockout of Mbd2 gene reduced
the number of Tregs and impaired the immunosuppressive
function meditated by the Tregs. Interestingly, the Mbd2−/−

mice did not develop autoimmunity which makes it an
attractive target in pathological conditions like cancer
where the Tregs have been suggested as potential targets for
immunotherapy (142).

Even though MBD2 is an attractive anti-cancer target, drugs
that can specifically target MBD2 have not been identified
to date. Our group has previously shown that the treatment
of cancer cells with the universal methyl group donor S-
adenosylmethionine (SAM) downregulates MBD2 expression
and shows anti-proliferative and anti-metastatic effects both in
vitro and in vivo (143, 144). Moreover, antisense oligonucleotides
againstMBD2 gene also showed promising anti-cancer effects in
xenograft models (145). However, caution must be taken while
targetingMBD2 to avoid any potential negative ramification (13).

MBD3

MBD3 is encoded from a multiexon gene located on
chromosome 19 that produces three isoforms: MBD3a,
MBD3b, and MBD3c (23, 146). As mentioned before, MBD3
has a high degree of protein sequence similarity with MBD2 but
lacks the GR-rich domain found in the full-length canonical
isoform of MBD2a. Due to the presence of a point mutation in
the region coding for the MBD domain, the selective binding
affinity for methylated CpG is abolished in case of MBD3 protein
(8, 147). However, MBD3 has been shown to preferentially
bind to 5-hydroxymethylated (5 hmC) CpGs in vitro (148).
Furthermore, MBD3 colocalizes with the DNA demethylase
TET1 in vivo and is required maintenance of 5 hmC (148).
MBD3 is a component of NuRD repressive complex and causes
a transcriptional repression of genes (149). The association of
MBD3 and MBD2 with NuRD complex is mutually exclusive
which is indicative of different functional properties (149).
The MBD3-NuRD complex plays a role in pluripotency and
differentiation of embryonic stem cells (146, 148). Moreover,
knockout ofMbd3 gene is embryonic lethal (134).

MBD3 has been shown to function as a tumor suppressor.
In clinical specimens obtained from pancreatic cancer patients,
decreased MBD3 gene expression showed an association with
poor patient survival (42). A similar observation was noted in
malignant glioma where patient samples with reduced MBD3
expression showed a correlation with decreased overall survival
and progression-free survival (43). Moreover, knockdown of
MBD3 gene promoted cancer cell migration and invasion while
overexpression inhibited those effects (42). In liver cancer, the
MBD3-NuRD complex inhibited the induction of cancer stem
cells (CSC) whereas knockdown of MBD3 upregulated the
expression of CSC-related genes (41). In addition, knockdown
ofMBD3 also increased the c-Jun protein expression (41). Other
studies have shown that N-terminal phosphorylation of c-Jun
inhibits the recruitment of MBD3-NuRD complex and thereby
causes the upregulation of tumorigenesis promoting genes (150).
While anti-cancer targeting of c-Jun may serve as a viable and
attractive strategy to induce MBD3 expression, further research
is needed in this regard.

MBD4

MBD4 is encoded from a gene located on chromosome 3 and
functions in DNA repair mechanism. The N-terminal MBD
domain allows it to bind to the methylated DNA. However, the
unique feature of the protein lies at the C-terminal glycosylase
domain that makes it the only MBP to have DNA glycosylase
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activity to repair mismatches of hypermutable CpG (151).
Spontaneous deamination of 5-methylcytosine (5 mC) is one
of the primary sources of somatic mutation that the body
accumulates with time (45), and MBD4 protects from such
mutations by interacting with mutL homolog 1 (MLH1) to
trigger the DNA repair mechanism (152).

The homozygousMbd4 gene knockout mice are viable and do
not show any defective phenotype (153). When these knockout
mice were crossed with the rodent model of colorectal cancer
(ApcMin/+ mice), there was an increase in tumorigenesis (153).
Mutations in the MBD4 gene has also been observed in human
colorectal and gastric cancer patients that triggermismatch repair
deficiency (44, 46). A recent study has shown that germline
mutation of MBD4 increases the susceptibility to develop acute
myeloid leukemia (AML) (45). Taken together these studies
support a tumor suppressive function of MBD4 in cancer even
though more research is needed to elucidate whether this effect is
common for all cancer or specific for certain types of cancer.

MBD5 and MBD6

TheMBD5 andMBD6 proteins are encoded from their respective
genes located on the chromosomes 2 and 6. They were initially
identified through protein homology search and classified as
MBD proteins due to the presence of the MBD domain (154).
They still remain the least functionally characterized members
of the MeCP2-MBD subfamily of proteins. It has been shown
that both MBD5 and MBD6 localize to the heterochromatin in
vitro and cannot bind to the methylated DNA (155). Both these
proteins contain a proline-rich domain that can mediate protein-
protein interactions during intracellular signaling. In addition,
MBD5 has a C-terminal PWWP (Pro-Try-Try-Pro) motif that
may bind to the methylated histones.

MBD5 and MBD6 can both interact with the mammalian
polycomb repressive complex PR-DUB that can cause
deubiquitination of different cellular targets (156). They are
highly expressed in the brain and testis, which is suggestive
of their possible role in development (155, 157, 158). Indeed,
abnormalities in the MBD5 gene has been reported in patients
with mental retardation (159, 160). Moreover, the Mbd5
knockout mice showed deficiencies in postnatal growth and
aberrations in glucose homeostasis (161). The MBD6 protein has
been reported to be involved in cellular stemness by regulating
the activity of Oct4 (octamer-binding transcription factor 4)
(162). Whether these proteins have any role in cancer, is still
not clear. Mutation and abnormal expression of the MBD6 gene
have been reported in gastric and colorectal cancers (47). Further
studies are needed to know whether these genes are implicated
in cancer.

HMT-MBD
This subgroup of MBD-containing proteins consists of two
members: SET domain bifurcated 1, SETDB1 (also known
as KMT1E or ESET) and SETDB2 (also known as CLLD8).
Apart from having the MBD domain, these proteins also have
the SET (SuVar3-9, enhancer of Zeste, Trithorax) domain for
interacting with other proteins (Figure 2). Both SETDB1 and
SETDB2 have the protein lysine methyltransferase activity which

enables them to cause transcriptional repression (163, 164). The
exact molecular mechanism on how SETDB2 mediates gene
repression is still not clear (52). However, the mechanism of
SETDB1 mediated transcriptional repression is known. Briefly,
the SETDB1 protein interacts with MBD1 which directs it
to the methylated CpG region. Then SETDB1, through its
methyltransferase activity, mediates trimethylation of histone H3
on lysine 9 (H3K9me3) to cause heterochromatin formation and
thereby repress transcription. Both SETDB1 and SETDB2 are
involved in embryonic development (165, 166).

Emerging evidence supports that SETDB1 functions as an
oncogene in many cancers that include sporadic cutaneous
melanoma (49), liver cancer (50), and colorectal cancer (48).
It has been shown that SETDB1 can directly interact with
the de novo DNA methyltransferase DNMT3A in order to
attach at the promoter region and mediate the transcriptional
silencing of well-known tumor suppressor genes RASSF1A (in
breast cancer cells) and P53BP2 (in cervical cancer cells) (167).
Moreover, knockdown of SETDB1 led to the suppression of breast
cancer proliferation and migration in vitro, and also inhibited
tumorigenesis in vivo (51).

The gene encoding for the SETDB2 protein was initially
identified as a potential candidate for leukemogenesis (168).
Elevated expression of SETDB2 has shown association with
gastric cancer progression (52). Further studies are warranted
to know whether the oncogenic characteristics of SETDB1 and
SETDB2 are universal for all cancers or just specific to particular
cancer type.

HAT-MBD
This subgroup also consists of two members: BAZ2A
(bromodomain adjacent to zinc finger domain 2A, also
known as TIP5) and BAZ2B. Apart from the MBD domain,
they also contain the DDT (DNA binding homeobox and
Different Transcription factors), PHD (Plant homeodomain),
and bromodomains (Figure 2). The PHD domain helps to bind
to the unmodified histone, and the bromodomain helps to
recognize the acetylated lysine residues of a protein (169–171).
These proteins have histone acetyltransferase activities and are
involved in chromatin remodeling (13). The MBD domain
of these proteins cannot bind to the oligonucleotides that are
methylated (13). However, the MBD domain of BAZ2A binds to
unmethylated DNA in vitro (172).

Not much is known about the involvement of these proteins
in cancer. The BAZ2A protein showed an association with
the epigenetic alteration in prostate cancer patients, and its
overexpression has been suggested to be an individual biomarker
to predict disease recurrence (53). Further studies are needed to
know the exact roles of these proteins in cancer.

Methyl-CpG Binding Zinc Finger Proteins
The members of this family of MBPs have Zinc finger motifs at
the C-terminal region which allow them to bind both methylated
and unmethylated DNA. The initially identified member of
the family is Kaiso whose methylated DNA-binding ability was
demonstrated by the labs of Egor Prokhortchouk andAdrian Bird
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in 2001 (24). Later on, two homologs of the Kaiso proteins, Zinc-
finger and BTB domain containing 4 (ZBTB4) and ZBTB38 were
discovered (173). Like Kaiso, ZBTB4 and ZBTB38 both have the
N-terminal broad-complex, tramtrack, and bric-a-brac/poxvirus
and zinc finger (BTB/POZ) domain (Figure 4). For several years,
this branch of MBPs only comprised of these three known
members. More recently, several other members (ZFP57, KLF4,
WT1, EGR1, and CTCF) of this branch have been identified (25).
These proteins have the Zinc finger motifs in the C-terminal
region for binding to the methylated DNA. However, the N-
terminal domain is not similar to Kaiso, ZBTB4, and ZBTB38
(Figure 4). So, according to the current literature, there are at
least 8 members in this family of MBPs (25).

Kaiso

Kaiso is a transcription factor that was initially identified as the
cytoplasmic binding partner of p120-catenin (174). It is encoded
by ZBTB33 gene located on the X chromosome of the human
genome (175). Its ability to bind a pair of methylated CpG
dinucleotides was demonstrated experimentally (24). Kaiso can
also bind to unmethylated DNA at Kaiso binding sites (KBS)
with a consensus sequence of TCCTGCNA, where N is any
nucleotide (175). The Kaiso binding affinity at KBS is higher than
that of methylated CpG dinucleotides. Qin et al. have further
demonstrated that Kaiso cannot bind the hydroxymethylated
CpG dinucleotides (176).

Kaiso plays roles both at the cell surface and the nucleus.
At the cell surface, it plays roles in cell adhesion as well as
signal transmission by regulating the stability of the cadherins
(177). On the other hand, in the nucleus, it directs the Nuclear
Receptor Corepressor Complex (N-CoR) to both methylated
and unmethylated regions on the DNA and thereby promotes a
repressive chromatin state (178). In general, Kaiso is considered
as a transcriptional repressor even though it can also bind to the
unmethylated regions of actively expressed genes (179). Kaiso
also localizes to the centrosomes and mitotic spindles during cell
cycle progression (180).

Kaiso expression and localization has shown association with
different types of cancer that include lung (57), prostate (54),
breast (58, 59), and colon (55). Kaiso causes transcriptional
repression of several well-known tumor suppressor genes like
Retinoblastoma (Rb), Hypermethylated In Cancer 1 (HIC1)
and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A) (55,
181). Depletion of Kaiso inhibited breast cell proliferation and
survival by increasing apoptotic cell death (58). Moreover, Kaiso-
deficient mice crossed with Apc(Min/+) mice have shown lower
susceptibility of developing intestinal tumors compared to the
control mice where the gene encoding for the Kaiso protein was
not knocked out (56).

Since Kaiso binds to bothmethylated and unmethylated DNA,
it is difficult to understand how crucial a role its methylated
CpG binding property plays in cancer. For example, Kaiso
can cause transcriptional repression of unmethylated Matrix
Metallopeptidase 7 (MMP7) and Cyclin D1 (CCND1) genes as
well as methylated Metastasis Associated 1 family member 2
(MTA2) gene in lung cancer (182). In this case, all three genes
have roles in cancer progression and, therefore, further research

is needed to pinpoint the precise role of Kaiso’s methylated CpG
binding property in cancer.

Even though Kaiso’s role as a potent repressor is now well-
established and Kaiso-deficient mice are viable, therapeutic
agents to inhibit Kaiso have not been developed so far. Through
computer-aided drug designing methods, it has been shown that
a natural compound (chem. ID 28127) can strongly inhibit Kaiso
(183). However, detailed experimental evidence is needed in
this regard.

ZBTB4

ZTBT4 can bind to a single methylated CpG which is different
from Kaiso that needs two methylated CpG dinucleotides.
Moreover, ZBTB4 can also bind to the unmethylated KBS
(173). This makes ZBTB4 a bimodal protein that can bind to
both methylated and unmethylated DNA. However, the ZBTB4
binding affinity for methylated CpG is higher than that of
KBS. ZBTB4 can function as a transcriptional repressor by
recruiting Sin3/histone deacetylases and thereby silence the
expression of the target gene (61). Furthermore, ZBTB4 has
been shown to localize at the highly methylated centromeric and
pericentromeric repeats (173, 184). This localization is abolished
in the cells that lack methylation of DNA.

Downregulation of ZBTB4 has been found in several common
malignancies that include neuroblastoma (61), breast (60) and
prostate cancer (62). Decreased levels of ZBTB4 in the tumor
correlated with higher genomic instability (63). In breast cancer
patients, ZBTB4 protein andmRNA are both downregulated, and
its expression showed an association with relapse-free survival
(60). Elevated levels of ZBTB4 also correlated with longer survival
of prostate cancer patients (62). ZBTB4 is involved in the
crosstalk between DNA methylation and histone modification.
It has been shown that ZBTB4 causes transcriptional silencing
of specificity protein (Sp) transcription factors (Sp1, Sp3, and
Sp4) that are required for histone methyltransferase EZH2
expression (185). EZH2 is currently considered a target for
anti-cancer therapy since it has a role in cell proliferation and
cell division. ZBTB4 also causes repression of key angiogenesis
factors, vascular endothelial growth factor (VEGF) and its
receptor (VEGFR) (60). The Zbtb4-deficient mice showed more
susceptibility to carcinogen-induced skin cancer as compared
to the wild-type counterpart (63). Taken together, these studies
indicate a tumor-suppressive role of ZBTB4 in cancer. However,
more studies are needed as enough literature is not available on
this protein.

ZBTB38

ZBTB38 can also bind to a single methylated CpG. It is
also a bimodal protein that can bind to both methylated and
unmethylated DNA. The ZBTB38 gene that encodes the protein is
located on chromosome 3. ZBTB38 plays roles in various cellular
processes that include cell proliferation (186) and differentiation
(187), control of DNA replication and genomic stability (188) as
well as regulation of gene expression (173).

Results from a genome-wide association study (GWAS)
done on prostate cancer patients revealed that polymorphisms
in ZBTB38 gene increase the risk of developing prostate
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FIGURE 4 | Schematic representation of the domains present in different Methyl-CpG Binding Zinc finger proteins. All members of this family contain C-terminal Zinc

finger motifs that allow them to bind to both methylated and unmethylated DNA. In addition, Kaiso, ZBTB4, and ZBTB38 contain the BTB/POZ domain while ZFP57,

WT1, EGR1 contain the Krüppel associated box (KRAB), Proline-Glutamine rich (Pro-Glu-rich), and repressor domains (RD) respectively. On the other hand, the KLF4

protein contains an activation domain (AD), repressor domain (RD), and an NLS (nuclear localization signal/sequence) apart from the Zinc fingers (Figure not drawn to

the exact scale of the proteins).

cancer in men (64). In bladder cancer cells, ZBTB38 increased
cell migration, invasion, and metastasis via regulating genes
belonging to the Wnt/β-catenin signaling pathway but decreased
bladder cancer cell proliferation (65). Depletion of ZBTB38
increases the cytotoxic ability of DNMT inhibitors in different
solid and hematological cancer cell lines by increasing the
expression of Cyclin-Dependent Kinase Inhibitor 1C (CDKN1C)
which opens up a new avenue to increase the therapeutic
response to DNMT inhibitors (189).

ZFP57

This protein is encoded from the ZFP57 gene located on
chromosome 6. In addition to the Zinc finger domain, this
protein also has an N-terminal Krueppel-associated box (KRAB)
domain. ZFP57 preferentially binds to methylated CpGs within
the TGCCGC hexanucleotide (190), and its primary functions
include genome imprinting (191), regulation of gene expression,
and cell signaling (192). Since it functions during early
embryogenesis and is downregulated upon differentiation (193),
it is also categorized as a stem cell transcription factor.

Ectopic expression of ZFP57 enhanced the anchorage-
independent growth properties of human fibrosarcoma HT1080
cells via the regulation of insulin-like growth factor 2 (IGF2)
expression (194). In addition, knockdown of ZFP57 gene caused
suppression of HT1080 tumor formation while overexpression
of the gene enhanced tumor formation in immunocompromised
mice (194). The ZFP57 gene expression has been shown to be
elevated in patients with high-grade glioblastoma (66). Moreover,
a recent GWAS revealed that ZFP57 is a potential disease
susceptibility gene for lung cancer development (67). Previous
studies have shown that elevated IGF2 level is associated with a

reduced survival rate in lung cancer (195). Since ZFP57 regulates
IGF2 expression, this axis may well be a potential target for lung
cancer treatment.

KLF4

The Krüppel-like factor 4 (KLF4) is a 55 kD protein that has
been demonstrated to function as one of the four factors needed
for the generation of iPS (induced pluripotent stem) cells (196).
The other functions of the protein include regulation of cell
cycle (197), cell proliferation (198), DNA damage response (199),
genomic stability (200), and apoptosis (201). KLF4 can recognize
methylated CpG as well as unmethylated CpG or TpG within
a specific DNA sequence (202, 203). It has been demonstrated
that KLF4 binding to certain methylated CpGs attracts the
recruitment of chromatin remodeling complex and thereby cause
transcriptional activation (73), which is a paradigm shift from the
common notion that DNA methylation readers mainly function
as transcriptional repressors.

Both tumor suppressive and oncogenic function of KLF4 has
been reported (69, 71, 72). KLF4 expression is downregulated in
several malignancies like gastric cancer (68), colorectal cancer
(69), and bladder cancer (70) where it mainly functions as a
tumor suppressor gene. It has been shown that transduction of
the KLF4 gene using adenoviral vectors decreased proliferation
and induced apoptosis of bladder cancer cells (70). As mentioned
above, KLF4 also functions as an oncogene in some cancers.
For example, both mRNA and protein levels of KLF4 are
elevated during breast cancer progression (71). Knockdown of
KLF4 gene suppressed breast cancer cell migration, invasion,
and colony formation in vitro and inhibited tumorigenesis in
immunocompromised mice (72). KLF4 promotes cell adhesion
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and migration in glioblastoma cells (73). In addition, increased
KLF4 has shown association with the progression and metastasis
of human skin squamous cell carcinoma (74). In oral squamous
cell carcinoma, KLF4 showed dual functionality as a tumor
suppressor as well as an oncogene (204). Taken together,
these observations indicate a context-dependent role of KLF4
in cancer.

EGR1

The Early growth response protein 1, EGR1 (also known as
ZIF268 or NGFI-A or KROX24) is a transcription factor that
is induced following exposure to different cellular and external
stimuli or stress signals (205, 206). The EGR1 gene, located
on chromosome 5, belongs to the category of immediate early
gene and the encoded protein from this locus function in
a plethora of cellular processes that include maintenance of
synaptic plasticity (207), wound healing (208), inflammation
(209), and differentiation (210). It recognizes and binds to the
GCC(T/G)GGGCG consensus sequence near the target gene
promoter regardless of the CpG methylation status (211, 212).
In addition, the EGR1 binding affinity for cytosine (C) or 5 mC
is much higher than that of 5-hydroxymethylcytosine (5 hmC)
or 5-formylcytosine (5fC) (212). This implies that EGR1 can
differentiate between oxidized and unoxidized C but not between
methylated and unmethylated C moiety.

EGR1 expression is altered in several cancers. It functions
both as a tumor suppressor and an oncogene depending on
the type of cancer. The tumor-promoting effect of EGR1
has been demonstrated in Wilms’ tumor (77) and prostate
cancer (75). In contrast, it acts as a tumor suppressor in
glioblastoma (80), fibrosarcoma (81), breast (78, 79), and lung
cancer (82). Moreover, both male and female homozygous
knockout (Egr1−/−) mouse cannot reproduce (213, 214). So
careful considerations should be taken before pharmacologically
targeting EGR1.

WT1

This protein is encoded by the Wilms’ tumor 1 (WT1) gene
located on chromosome 11. It was initially identified as a tumor
suppressor gene that was inhibited in the most common form
of pediatric kidney cancer called the Wilms’ tumor 1 (83).
Hence, it was named after that specific tumor even though later
studies have demonstrated its presence in several other tissues
and malignancies. It plays roles in the regulation of cell growth
(215), differentiation (216), cell cycle (217), cell division and
maintenance of genome stability (218). Like EGR1, WT1 also
recognizes the GCC(T/G)GGGCG consensus sequence near the
promoter of target genes (212). However, EGR1 and WT1 have
differential binding sensitivity to the oxidative derivatives of
5mC (212).

WT1 may function either as a tumor suppressor or an
oncogene depending on the type of cancer. Higher expression of
WT1 has shown association with the poor prognosis of breast
cancer (85), ovarian cancer (88, 89), leukemia (86), and head
and neck cancer (87). In contrast, knockdown of WT1 gene
increased apoptosis of different cancer cell lines (219, 220).
Moreover, WT1 has been ranked at the top position in the
National Cancer Institute’s (NCI) list of cancer antigens with the

highest prioritization for vaccine development (221). The use
of peptide vaccines against the WT1 antigen showed beneficial
therapeutic outcomes in several clinical trials (222, 223).

CTCF

The CCCTC-binding factor (CTCF) is a well-known
transcription factor that contains 11 highly conserved Zinc
finger domains which allow it to bind at different locations
on the genome (224) (Figure 4). One of the main functions of
the CTCF protein is to act as a barrier/insulator to inhibit the
interaction between the promoter and enhancer region (225).
Other functions of CTCF include cellular context-dependent
regulation of chromatin architecture, RNA splicing, and gene
expression (225, 226). The DNA binding consensus sequence
of CTCF contains CpG (227). It can bind to methylated DNA
even though the binding preference for unmethylated DNA
is much higher (228). For example, CTCF provides epigenetic
stability to the retinoblastoma (RB) gene by binding at a specific
region of the promoter sequence and thereby protecting the site
from undergoing epigenetic silencing (181). Interestingly, CpG
methylation at this particular region of the RB gene promoter
leads to the loss of CTCF binding and promotes the binding of
another methylation reader Kaiso (181). In this context, CTCF
can be defined as a reader protein that can read methylated CpG
but not necessarily binds to it.

CTCF can act as both tumor suppressor and oncogene
depending on the type of cancer (229, 230). In ovarian cancer,
CTCF expression is upregulated and shows association with
poor prognosis (231). Higher expression CTCF in breast cancer
cells has been shown to provide a survival advantage by
inhibiting apoptosis (232). Depletion of theCTCF gene decreased
proliferation and induced apoptosis of breast cancer cells (229).
However, given that it plays a crucial role in the maintenance
of chromatin architecture, targeting the downstream effectors of
CTCF may serve as a more feasible option than targeting the
protein itself.

SRA Domain-Containing Proteins
The SRA family of methylation readers is comprised of two
members: Ubiquitin-like with PHD and RING Finger domains
1 (UHRF1) and UHRF2. Both of these proteins contain at least
five distinct functional domains that include the Ubiquitin-like
Domain (UBL) (also known as the NIRF_N domain according
to the NCBI Conserved Domain Database), Tandem Tudor
Domain (TTD), Plant Homeodomain (PHD), SRA domain,
and Really Interesting New Gene (RING) domain all of which
confer tremendous functional complexities to these proteins
(Figure 5). The N-terminal UBL domain and C-terminal RING
domains are involved in the ubiquitin-proteasome system, the
TTD and PHD domains can bind to the methylated histone
proteins, and the SRA domain binds to the methylated CpG
(233). The SRA domain is distinct from MBD/MeCP2 in
their ability to recognize and localize to methylated sites on
DNA since they possess a higher binding affinity toward
the hemimethylated regions on the DNA (234, 235) while
the MBD/MeCP2 domains tend to bind at the symmetrically
methylated DNA (236).
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FIGURE 5 | Schematic representation of the domains present in different SRA-domain containing proteins. The SRA domain allows them to bind to hemi-methylated

DNA, the Ubl and RING domains are involved in ubiquitination, and the TTD and PHD domains allow to interact with the histones (Figure not drawn to the exact scale

of the proteins).

UHRF1

The UHRF1 [also known as ICBP90 (human) or Np95
(mouse)] protein recognizes the hemimethylated DNA and
subsequently recruits DNA methyltransferase 1 (DNMT1) to
ensure that the sequence becomes faithfully methylated following
replication (237, 238). It is a 793 amino acid containing
protein encoded by the UHRF1 gene located on chromosome
19 of the human genome. It was initially identified during the
screening of proteins that can bind to the inverted CCAAT
box (ICB2) region of topoisomerase Iiα promoter (239). During
the earlier studies, the human version of the protein was
called ICBP90, and the mouse homolog was called Np95.
Hence, there was some confusion in the nomenclature of the
protein (240). At present, it is most commonly referred to
as UHRF1.

The ability of the SRA domain of the UHRF1 protein to
bind the methylated DNA was first reported by Unoki et al.
in human breast cancer cells where an elevated expression of
the protein showed association with hypermethylation-mediated
downregulation of early growth response 2 (EGR2) gene (241).
More recent evidence showed that UHRF1 acts as a linker or
adaptor between DNA methylation and histone modification
(242). The interaction between UHFR1 and histone marks plays
a crucial role in recruiting DNMT1 to the daughter stands. The
other functions of the protein include regulation of cell cycle
(243), cell proliferation (244), DNA damage repair (245, 246),
apoptosis (as an anti-apoptotic protein) (247) as well as the
progression of tumors (248, 249). Aberrant expression of the
UHRF1 gene has been found in different types of cancer like
breast cancer (241), gastric cancer (95), hepatocellular carcinoma
(250), renal cell carcinoma (251), squamous cell carcinoma (252),
and osteosarcoma (253). Moreover, elevated levels of UHRF1 in
the blood of breast and gastric cancer patients has been shown
to provide diagnostic and prognostic value as an independent
biomarker (254, 255). Since UHRF1 is overexpressed in almost all
major types of cancer, its role as a universal biomarker for cancer
has also been proposed (256).

At the molecular level, UHRF1 acts as a transcriptional
repressor since it binds to and recruits HDAC1 to the methylated
CpG sites near the promoters of tumor suppressor genes
(257). For example, UHRF1 binding at the promoters of
CDKN2A, RASSF1 (93), KiSS1 (258), and PAX1 (259) genes

causes transcriptional repression of these genes. Loss of function
studies showed that UHRF1 depletion decreased cancer cell
proliferation and increased apoptotic cell death (260, 261).
Depletion of UHRF1 also enhanced radio sensitivity of highly
aggressive, triple negative MDA-MB-231 human breast cancer
cells (262). Moreover, inoculation of UHRF1 depleted MKN45
gastric cancer cells into immunocompromised mice showed a
marked reduction in tumor volume and weight compared to
the control tumors where UHRF1 gene was not depleted (95).
Polyphenols have shown promising effects in downregulating
the expression of UHRF1 and thereby reduce tumor cell
proliferation (263–265).

The UHRF1 protein also has some beneficial functions in
cancer. It has been shown that UHRF1 directly binds the
promoter region of the MDR1 gene (also known as ABCB1)
and thereby represses its expression (266). The MDR1 gene
encodes for P-glycoprotein (P-gp) which provides resistance
to the cancer cells against various cytotoxic agents. It has
been suggested that the UHRF1 mediated transcriptional
repression of MDR1 has the potential to overcome multidrug
resistance during the treatment of breast cancer (266). Therefore,
caution should be maintained while targeting UHRF1 for
cancer treatment.

UHRF2

The UHRF2 [also known as NIRF or Np97] was initially
identified as a protein implicated during the regulation of cell
cycle (267). It is an 802 amino acid containing protein encoded
by UHRF2 gene located on chromosome 9 of the human
genome. Even though it has a high degree of sequence similarity
with UHRF1 at the amino acid level, it cannot functionally
substitute UHRF1 in the maintenance of DNA methylation
(268). In addition, structural studies have revealed that the
SRA domain of UHRF2 protein but not UHRF1 preferentially
binds to 5-hydroxymethylated DNA (5 hmc) (269). Therefore,
UHRF2 has the unique ability to read and interpret at least
three types of epigenetic marks that includes 5 hmC, 5 mC,
and H3K9 methylation. It has been shown that UHRF2 can
also enhance the enzymatic activity of Ten-eleven translocation
methylcytosine dioxygenase 1 (TET1) (270). The expression of
UHRF2 is higher in proliferating cells where PEST-containing
nuclear protein (PCNP) acts as its substrate for ubiquitination
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(267, 271). Elevated expression of UHRF2 has been found in
intrahepatic cholangiocarcinoma (99), colon cancer (98), breast
cancer (100). Loss of function of UHRF2 decreased breast
cancer cell proliferation while forced overexpression of UHRF2
gene into non-tumorigenic MCF10A breast cells induced cell
proliferation (100). On the contrary, several groups have also
reported on the tumor suppressor role of UHRF2 (101, 272). So,
at present, it seems that UHRF2 plays roles as both oncogene
and tumor suppressor depending on the cancer cell type. More
detailed studies are warranted to establish its role in cancer
and develop appropriate therapeutic strategies to attain clinically
favorable outcomes.

EPI-THERAPIES TARGETING THE MBPs
IN CANCER

Epigenetic therapies (“Epi-therapies”) targeting the components
of the epigenome are emerging as potential therapeutic
modalities for many pathological conditions. In cancer,

several “Epi-therapies” are already being approved by the
Food and Drug Administration (FDA) for the treatment of
several hematological cancers. These drugs are mainly the
inhibitors of DNA methylation and histone deacetylation. In
the case of DNA methylation inhibitors, the two approved
drugs are Vidaza and Dacogen (Decitabine) (273). While
these two inhibitors can reverse the hypermethylated state
at the promoters of tumor suppressor genes, they also
induce the activation of several prometastatic genes (274).
Therefore, targeting the DNA methylation readers/MBPs
may serve a suitable alternative for the next generations of
precision Epi-therapies.

Even though the field is still at its infancy, several studies
have shown promising effects in terms of developing anti-
cancer therapeutic strategies against the MBPs. A summary of
the currently described anti-cancer strategies targeting different
known MBPs is shown in Figure 6.

It has been demonstrated that treatment of prostate cancer
cells with green tea polyphenols (GTPs) reversed the DNA

FIGURE 6 | Schematic representation of the currently described anti-cancer strategies against different MBPs. Polyphenols obtained from natural compounds can

downregulate the aberrantly expressed MeCP2, UHRF1 in cancer cells via differential regulation of cancer-related signaling pathways. The naturally occurring

physiologic compound S-adenosylmethionine as well as anti-sense oligonucleotides can downregulate the elevated expression of MBD2 gene and cause inhibition of

tumor growth, invasion, and metastasis. Immunotherapy against WT1 antigen has shown promising effects in clinical trials for several malignancies.
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hypermethylation-mediated silencing of the known tumor
suppressor gene glutathione-S-transferase pi (GSTP1) through
the downregulation of DNMT1, MeCP2, and several other MBD
proteins (113). The authors have shown that GTP treatment
causes demethylation at the promoter of GSTP1. Furthermore,
chromatin immunoprecipitation (ChIP) assays revealed that
GTP treatment also reduced the association of the transcriptional
repressor MBD2 with Sp1 binding site that leads to the increased
transcriptional activation of the GSTP1 gene. In other studies,
it has been shown that natural compounds like curcumin,
resveratrol, guggulsterone, EGCG, withaferin A, and genistein
can also cause the reversal of epigenetic state in cancer cells
through the reduction of DNMT1, HDAC1, and MeCP2 protein
expression (114).

Interestingly, polyphenols obtained from natural products
have also been shown to decrease cancer cell proliferation
through the downregulation of UHRF1 predominantly via
the p53 and p73-dependent signaling pathways (263–265).
Limoniastrum guyonianum aqueous gall extract (G extract),
as well as luteolin, independently inhibited proliferation of
cervical cancer HeLa cells by arresting the cells in G2/M phase
and induced apoptosis through the inhibition of UHRF1
along with the upregulation of p16 tumor suppressor (275).
In a mouse model of colon cancer, red wine polyphenols
(RWPs) inhibited tumor growth, metastasis, angiogenesis, and
increased apoptosis through the downregulation of UHRF1
and other proliferation markers like ki67, cyclin D1 (276). The
UHRF1 expression has also been shown to be downregulated in
mechanisms independent of the p53 and p73 signaling pathways.
For example, in chronic lymphocytic leukemia patients,
polyphenols from Bilberry extract (Antho 50) decreased UHRF1
expression and increased apoptosis via targeting the Bcl-2/Bad
pathway (277).

The expression of MBD2 gene was downregulated when
the cancer cells were treated with the naturally occurring
methyl group donor SAM that shows anti-proliferative and
anti-metastatic effects (143, 144). This approach is particularly
attractive because SAM is non-toxic to cancer cells and has
been shown to cause downregulation of several other oncogenes
and prometastatic genes without changing the expression of
the known tumor suppressor genes in vitro and in vivo
(278). Moreover, antisense oligonucleotides against MBD2 gene
decreased tumorigenesis in human lung and colorectal cancer
cells both in vitro and in vivo (145). In human promyelocytic
leukemia cells, an amonafide analog named B1 [chemical name:
N-(2-(dimethylamino)ethyl)-2-aminothiazonaphthalimide] has
been demonstrated to cause relief from the MBD2-mediated
repression of 14-3-3σ tumor suppressor gene (279). Moreover,
KCC07, a brain-permeable small molecule inhibitor of theMBD2

pathway, have been demonstrated to suppress medulloblastoma
in vivo through the activation of BAI1/p53 axis (280).

Cancer immunotherapies have shown great promise as
therapeutic strategies in patients. There are several forms of
immunotherapies that include the use of checkpoint inhibitors,
monoclonal antibody therapies, and vaccine immunotherapies
against the tumor-associated antigens (TAAs) (281). With the
advancements of cancer immunology, several TAAs have been
identified, and one of them is a WT1 product (282, 283). Indeed,
immunotherapies against the WT1 antigen showed promising
outcomes in clinical trials on patients with several solid and
hematological cancers (222, 223, 281, 284).

CONCLUSION

This review summarized the roles of different MBPs based on the
current literature with an aim to highlight their potential use as
therapeutic targets and disease biomarkers. With the advances
in the genome-wide binding studies, the specific functions of
many MBPs are now clear even though more research is needed
as some MBPs are still relatively less explored. In addition, the
human proteome contains a wide array of Zinc finger motif-
containing proteins, and recent evidence supports that many
of these proteins may potentially bind to methylated DNA
(5). However, in-depth experimental evidence is needed before
classifying them as MBPs.

For the known family of MBPs, loss-of-function studies
have aided to decipher their roles in different types of cancer.
Since many of MBPs are cancer-type dependent, it opens
a new avenue to develop targeted therapies against those
subtypes. This will overcome the non-specificity issues related
to currently approved epigenetic drugs like Decitabine and
Vidaza, and thereby allow for a more specific approach to reduce
cancer-associated morbidity and mortality. However, caution is
warranted before the use of such targeted agents to avoid any
potential negative ramification.
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