
REVIEW
published: 26 June 2019

doi: 10.3389/fonc.2019.00498

Frontiers in Oncology | www.frontiersin.org 1 June 2019 | Volume 9 | Article 498

Edited by:

Brian J. Czerniecki,

Moffitt Cancer Center, United States

Reviewed by:

Amanda Maree Clark,

University of Pittsburgh, United States

Angel Miguel Garcia Lora,

Hospital Universitario Virgen de las

Nieves, Spain

*Correspondence:

Xin-hua Liang

lxh88866@scu.edu.cn

Ya-Jie Tang

yajietang@qq.com

Ya-ling Tang

tangyaling@scu.edu.cn

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Oncology

Received: 05 March 2019

Accepted: 24 May 2019

Published: 26 June 2019

Citation:

Wang H, Wang S, Huang M, Liang X,

Tang Y-J and Tang Y (2019) Targeting

Immune-Mediated Dormancy: A

Promising Treatment of Cancer.

Front. Oncol. 9:498.

doi: 10.3389/fonc.2019.00498

Targeting Immune-Mediated
Dormancy: A Promising Treatment of
Cancer
Hao-fan Wang 1, Sha-sha Wang 1, Mei-chang Huang 1, Xin-hua Liang 1*, Ya-Jie Tang 2,3* and

Ya-ling Tang 1*

1 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and

Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China, 2 State Key Laboratory of

Microbial Technology, Shandong University, Qingdao, China, 3Hubei Key Laboratory of Industrial Microbiology, Hubei

Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of

Education), Hubei University of Technology, Wuhan, China

Immune-mediated dormancy is when the immune system keeps proliferating tumor cells

unchanged, mostly via cytotoxic activity of immune cells. Cancer dormancy, especially

immune-mediated dormancy, may be the explanation for tumor refractory and may

be responsible for resistance to conventional chemo- and radiotherapies. Here, we

will describe different scenarios as to how the immune cells and cytokines involved in

cancer progression are connected with the initiation of dormancy and cancer treatment.

Two distinct treatment methods, such as maintaining metastatic tumor cells dormant

and awakening them, are also discussed. A better understanding of immune-mediated

dormancy will help to design novel and effective immunotherapies and will likely increase

the efficiency of tumor treatment inhibiting metastasis.
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INTRODUCTION

In cancer progression, there is a phase for tumor cells to impair non-primary organs due to
the formation of overt metastases, which is the major cause of cancer-related deaths (1). Cancer
recurrence and metastases have been confirmed to be associated with cancer dormancy (2),
which refers to the clinically asymptomatic period after treatment of the primary tumor. Cancer
dormancy may be one of the explanations for tumor refractory and may be responsible for the
phenomenon that malignancies cannot be cured by the initial treatment of primary tumor (3).
Thus, a comprehensive understanding of cancer dormancy will be urgently needed to help the
development of cancer immunotherapies, which might represent a promising approach against
cancer metastases.

As early as 1934 and 1954, Willis (4) first proposed the dormancy of tumors and then Hadfield
(5) defined cancer dormancy as a state of temporary mitotic arrest. Decades later, cancer dormancy
has been further explored and has been divided into three types: cellular dormancy, angiogenic
dormancy, and immune-mediated dormancy (2). Cellular dormancy is generally considered to
precede the angiogenic dormancy or the immune-mediated dormancy phase, and these three
models are not mutually exclusive (2). Quiescence from a G0-G1 arrest (6) could be a more
plausible mechanism to define cancer dormancy. Quiescence is reversible, a property similar to
that of dormant tumor cells (2, 7). Dormant disseminated tumor cells (DTCs) have tumorigenic
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and metastatic potency, which could be the origin of future
metastases (8). Dormant DTCs in bone marrow of breast cancer
patients were associated with a poor prognosis and increased
recurrent risk (9, 10). The treatment aiming at dormant DTCs
has been raised as a means of metastasis prevention.

One of the essential properties of dormant DTCs is their
resistance to chemotherapy (2, 11). There are two main
hypotheses to explain this resistance. The first assumption is that
dormant DTCs could be resistant to cytotoxic therapies targeting
rapidly dividing cells, since dormant DTCs are not dividing
(2). The second is that dormant DTCs are further evolved than
the primary tumor cells and have accumulated mutations to be
more refractory to treatment (11). P38 signaling in dormant
cells could activate the endoplasmic reticulum (ER) chaperone,
BiP, and RNA-dependent protein kinase–like ER kinase (PERK),
which protect dormant tumor cells from chemotherapy (12).
Presently, distant strategies targeting dormant DTCs are killing
them with the potential risk of waking them up or keeping them
“asleep” forever. However, cancer dormancy clinically appears
as a persistent disease without symptoms or signs, unless the
balance is disturbed, just like the complete control of a chronic
disease (13). Keeping dormant DTCs “asleep” continues to
appear to be a more promising strategy (7).

Since the dual role of the immune system in cancer
progression has been well-established, immunoediting was
proposed to describe host-protective and tumor-promoting roles
of immune system (14). Immunoediting could be explained by
three mechanisms: elimination, where developing cancers are
eradicated by the interaction of innate and adaptive immunity
long before they become clinically apparent; equilibrium, where
tumor cells maintain in a state of functional dormancy, due to
the balance of anti-tumor and tumor promoting factors; escape,
where the outgrowth of tumor cells is no longer attenuated
by immunity, resulting in the induction of immunosuppressive
tumor microenvironment and clinically apparent diseases (15).
Immune-mediated dormancy could be regarded as the state
of equilibrium, because both result from the balance of pro-
tumor and anti-tumor functions of the immune system. Two
recipients without primary melanoma received a kidney from
the same donor who had previously had primary melanoma but
was thought to have no residual tumor and to be apparently
tumor free 15 years after surgical removal; however, both
of these recipients were diagnosed with secondary melanoma
in the donated kidney after immunosuppressive therapy (16),
implying that the immune system could keep tumor cells
dormant in non-primary organs. In a mouse model of 3′-
methylcholanthrene (MCA) induced sarcomas, the equilibrium
or dormant state of tumor, which was characterized by a
combination of decreased proliferation and increased apoptosis
of tumor cells, was maintained by adaptive immune components,
including CD4/CD8T cells, interferon (IFN)-γ and interleukin
(IL)-12 (17). In addition to those mentioned above, some
other immune factors, including myeloid-derived suppressor
cells (MDSCs), Treg cells, natural killer (NK) cells, MHC class
I surface expression and several cytokines also have played
important roles in controlling dormant DTCs. Besides, some
non-immune mechanisms may be used by the immune system

to promote dormancy (18) (Figure 1). Thus, we will focus on the
cells and cytokines involved in immune-mediated dormancy and
propose several immunotherapies targeting cancer dormancy. A
better understanding of immune-mediated dormancy would help
to design novel and effective cancer immunotherapies.

EFFECTOR T CELLS

Effector T cells, especially CD8+ and CD4+ T cells, get the most
attention in cancer dormancy. CD8+ T cells are the preferred
lymphocytes to suppress tumors due to their incomparable ability
of recognizing intracellular antigens expressed by all tumor cell
types. CD4+ T cells could destroy tumor cells through cytolytic
mechanisms or modulate tumor microenvironment to exert their
anti-cancer role. Besides, CD4+ T cells are known for their
capacity to help CD8+ T cells to overcome negative regulation
and enhance their antitumor responses (19). In a spontaneous
mouse model of melanoma, while tumor cell dissemination was
an early event in progression of primary tumor, the development
of overt metastases in the lung was postponed due to dormant
DTCs, and metastases in lung were more rapid in CD8-depleted
mice, which indicated that reduced proliferation or dormant
maintenance of DTCs needed the involvement of cytostatic
CD8+ T cells (20). Consistent with this finding, in a mouse
model of tumor dormancy, the depletion of the CD8+ T cells
was significantly associated with decreased duration of dormancy
and shortened mean time for B cell lymphoma recurrence on the
spleen, showing that CD8+ T cells contributed to the induction
and maintenance of the state of dormancy via production
of IFN-γ (21). In both vitro and vivo, IFN-γ produced by
cytotoxic T lymphocytes (CTLs) could induce G0/G1 arrest and
the dormancy of tumor-repopulating cells (TRCs), which refer
to a subpopulation of cancer cells with the capacity of self-
renewing and highly tumorigenic in several types of murine
and human tumors, such as melanoma and liver cancer. IFN-
γ mediates TRCs dormancy via an indolamine 2,3-dioxygenase
1 (IDO1)-kynurenine (Kyn)-aryl hydrocarbon receptor (AhR)-
p27 pathway. In particular, p27 binding could inactivate JAK-
STAT1 pathway, a signaling that may induce apoptosis and
disrupt the dormancy program. Besides, the induction of TRCs
dormancy was only found at high concentrations of IFN-γ (>50
ngml−1), while low dose (20 ngml−1) couldmaintain dormancy,
suggesting that different mechanisms appeared to be involved in
dormancy induction and maintenance (22). In a mouse model
of acute myeloid leukemia, expression of B7-H1 (also known as
PD-L1, the ligand for PD-1) or B7-1 (also regarded as CD80, the
ligand for CTLA-4) could contribute to the prolonged persistence
of tumor cells via inhibiting CD8+ T cells-mediated killing (23),
which pointed out another possible mechanism in which CD8+
T cells are involved in cancer dormancy.

In breast cancer patients (24) and a mouse lymphoma model
(25), dormant DTCs have been observed to persist in the
bone marrow along with a rise in CD4+ and CD8+ T cells,
indicating that in addition to CD8+ T cells, CD4+ T cells
also played a role in cancer dormancy. CD4+ T cells (Th1
cells) combined with IFN-γ signaling and tumor necrosis factor
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FIGURE 1 | Immune-mediated dormancy. The maintenance of functional dormancy in tumor cells requires the combined action of many immune factors. IFN-γ and

TNF derived from T cells could directly regulate cell cycle progression of tumor cells and establish the dormant state. CD4+ T cells released antiangiogenic

chemokines CXCL9 and CXCL10 leading to reduced angiogenesis and antitumor effects. Perforin-mediated cytotoxicity of NK cells also keeps tumor cells in dormant

state and prevents the outgrowth of metastasis. MHC I surface expression on tumor cells could be also involved in this process. Furthermore, immunosuppressive

cytokines such as TGF-β or IL-10 produced by Tregs could lead to decreased activity of T cells. MDSCs act as potent suppressors of T cells via the production of

Arginase, iNOS, ROS, and Peroxynitrite. MDSCs could secret MMP9 to promote tumor angiogenesis and facilitate tumor development. Thus, blocking the

immunosuppressive checkpoints PD-1, PD-L1, and CTLA-4 to activate CD8+ and CD4+ T cells, applying PSK or CAR-NK cells to augment the infiltration of NK

cells, using IFN-γ treatment to upregulate or recovery MHC I surface expression, suppressing ROS and CTLA-4 to deplete MDSCs and Tregs, interfering with cytokine

production to modify tumor microenvironment could be promising immunotherapeutic strategies for cancer metastasis.

p55 receptor (TNFR1) signaling could arrest tumor growth and
establish a state of tumor dormancy in an analyzing T antigen
(Tag)-induced pancreatic cancer mouse model. Furthermore, the
release of antiangiogenic chemokines, CXCL9 and CXCL10, and
aberrant expression of αvβ3 integrin caused by CD4+ T cells,
which resulted in decreased formation of tumor vessel, also
contributed to the induction of cancer dormancy, suggesting
that the immune system could be involved in cancer dormancy,
not only through immune mechanisms but also through non-
immunemechanisms such as regulating tumor angiogenesis (26).
Furthermore, a higher ratio of CD8+/CD4+T cells was observed
in mice with dormant sarcomas compared with mice with
progressing sarcomas, suggesting that increased CD8+/CD4+
T cells ratio may contribute to maintain an equilibrium
state and cancer dormancy (27). Using a fibrosarcoma mouse
model, which was characterized by maintaining the capacity of
metastases in a state of permanent immuno-mediated dormancy
without additional antitumor therapies, spontaneous pulmonary
metastases were developed in 100% of mice depleted of CD8+
T cells, and in 23% of those depleted of CD4+ T cells (28).
This study may draw a conclusion that, in terms of restraining
spontaneous metastases in permanent dormancy, CD8+ T cells
seem to be more important than CD4+ T cells. However,

Braumüller et al. (29) proposed that the combination of IFN-
γ and TNF, derived from Th1 cells, drove cancer cells into
senescence by arresting cells in G1/G0 which was irreversible,
unlike quiescence. And this cytokine-mediated senescence
required the stabilization of the p16INK4a–Rb pathway and
the combined action of STAT1 and TNFR1 signaling. Much on
the relationship between quiescence and senescence induced by
CD4+ T cells should be done.

As noted above, CD8+ and CD4+ T cells, albeit the
effects are different, involve in cancer dormancy and metastases
prevention via both immune and non-immune mechanisms.
Thus, activation of these cells could be an effective anti-
tumor immunotherapy, which has been proven by clinical
observation showing that high levels of CD8+ and CD4+ T
cells are associated with improved survival in breast (30), head
and neck (31), colon (32), and lung cancer (33). One of the
immunotherapies aiming at activating these cells is to block the
immunosuppressive checkpoints expressed on cancer cells or on
T cells, such as PD-1, PD-L1, and CTLA-4 (18). Specifically, PD-
L1 expressed by tumor cells interacted with PD-1 on T cells
leading to increased apoptosis of T cells and T cell exhaustion.
And expression of CTLA-4, which is highly homologous to
CD28, could be induced by T cell activation. CTLA-4 could
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bind to B7 molecules on antigen-presenting cells (APCs) with
much higher affinity than CD28, resulting in the accumulation
of CTLA-4 in the T cell at the T cell-APC interface and the
eventual abrogation of activated T cell response (34). In fact,
nivolumab and pembrolizumab, PD-1 inhibitors, have received
licensure for the treatment of patients with recurrent and/or
metastatic HNSCC from the U.S. Food and Drug Administration
(FDA) (35). In a randomized phase 3 trial, 361 patients with
recurrent HNSCC were divided into two groups: the nivolumab
group and the standard-therapy group (methotrexate, docetaxel,
or cetuximab). The median overall survivals of the two groups
were 7.5 and 5.1 months, respectively, and the response rates
were 13.3 and 5.8%, respectively (36). The FDA granted approval
for nivolumab in combination with ipilimumab, a CTLA-4
inhibitor, for the treatment of patients with BRAF V600 wild-
type unresectable or metastatic melanoma in 2014 (37). In a
clinical study, the confirmed objective response rate of BRAF
V600 wild-type metastatic melanoma patients, who received
the combination therapy of nivolumab and ipilimumab, was
61.1% (44/72) compared with 10.8% (4/37) in the ipilimumab
monotherapy group. Besides, the complete response rate was
22.2% (16/72) of patients in the combination group, whereas in
the ipilimumab group, none were reported to receive complete
responses (38).

Another promising cancer immunotherapy is adoptive cell
transfer (ACT), which refers to the infusion of lymphocytes
into a tumor host after their stimulation and expansion in
vitro to exert an anti-tumor effect (39). Adoptive cell therapy
using autologous TILs has been regarded as the most effective
treatment for patients with metastatic melanoma to receive
complete lasting regression (40). In a phase 2 study, which
enrolled 21 metastatic melanoma patients, 20 evaluable patients
received TIL therapy. Seven of them (35%) were found to have
received objective tumor regression, where six patients achieved
partial response and one patient achieved complete response at
21 months post therapy (41). Chimeric antigen receptors (CAR)
are composed of a tumor associated antigen binding region
[usually derived from the single-chain variable fragment (scFv)
segment of the monoclonal antibody], an extracellular hinged
region, a transmembrane region, and an intracellular region.
CAR T cells have an incomparable antitumor advantage, in
as much as the independence of CAR recognition from MHC
restriction. FDA has approved autologous T cells engineered to
express a CAR targeting CD19 for the treatment of refractory
pre-B cell acute lymphoblastic leukemia and diffuse large B cell
lymphoma (42). In a phase 1 trial involving 53 patients with
relapsed B-cell acute lymphoblastic leukemia received CD19-
specific CAR T cells, and 44 patients (83%) had a complete
remission (43). However, CAR-based therapy in solid tumors has
made limited progress (42).

NATURAL KILLER(NK) CELLS

NK cells as pivotal component of innate immunity could
induce the death of tumor cells mainly via cytotoxicity and the
production of cytokines. Whereas, Koebel et al. (17) proposed

that the maintenance of equilibrium was solely associated with
adaptive immunity, Nair et al. (44) found that latency competent
cancer (LCC) cells could enter a quiescent state and remain
latent in primary and metastatic organs for extended periods
by evading innate immune surveillance, especially NK cell-
mediated clearance. Quiescent LCC cells expressed dickkopf-
related protein 1 (DKK1), a WNT inhibitor, leading to board
downregulation of NK cell activating ligands UL16-binding
proteins (ULBP) and decreased cytotoxicity of NK cells (45).
Compared with the percentages in mice with progressing
sarcomas, mice with dormant sarcomas had significantly higher
percentages of NK cells (27). Brodbeck et al. (46) used a mouse
model of colon cancer, finding the vital role of NK cells in
both the growth of a primary tumor and formation of distant
metastases. Then they utilized a computer modeling for further
analysis, suggesting that perforin-mediated cytotoxicity of NK
cells could force DTCs to maintain in dormant state for at least
30 days through restraining their proliferation. Saudemont et al.
(47) proposed that CXCL10 could not only induce an efficient
immune response, but could also clear DTCs resistant to CTL-
mediated killing in order to cure acute myeloid leukemia, which
was completely dependent on NK cells, and partially dependent
on CD4+ and CD8+T cells. This may be due to the expression of
PD-L1 on NK cells, which could stimulate the proliferation and
the production of IFN-γ and TNF-α by CD4+ and CD8+ T cells.
However, they also suggested that this effect of PD-L1+ NK cells
was not caused by binding to PD-1.

NK cells play a significant role in cancer dormancy, where
their activator function triggering T lymphocytes response seems
to be more important than the direct cytotoxic capacity. NK
cells could not only maintain dormant state, but also destroy
dormant DTCs, thus the activation of NK cells could be another
potential immunotherapy targeting cancer dormancy (18). The
treatment of protein-bound polysaccharide K (PSK), although
it had no cytotoxic effect on murine fibrosarcoma tumor cells,
could markedly augment the infiltration of NK cells leading to
all injected mice becoming metastasis-free and demonstrating
a favorable therapeutic effect of eradication of metastases (48).
Cancer therapies targeting activating NKG2D, a major activating
receptor for NK cells, has been shown to improve NK cell
responses leading to the suppression of tumor growth and the
reduced formation of metastases in various tumor types, such
as melanoma, osteosarcoma and hepatocellular carcinoma (49).
CAR-NK cells could be an alternative approach to receive more
potent antitumor activity and less side effects (50). A study used
CAR-NK cells to treat three patients with metastatic colorectal
cancer. Two of them demonstrated reduced ascites generation
and a markedly decreased number of tumor cells in ascites
samples, and the third patient with hepatic metastases was
observed to have rapid tumor regression in the liver (51).

REGULATORY T CELLS (TREGS)

Tregs in tumor microenvironment have been shown to be
associated with immune suppression and tumor progression in
several types of human cancer, such as colorectal (52), head and
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neck cancer (53), ovarian (54) and gastric cancer (55). Tregs were
also found to play a role in inhibiting the proliferation of tumor-
specific effector T cells (especially CD8+ and CD4+ T cells) and
suppressing the secretion of IFN-γ and IL-2 by effector T cells
via expressing intracellular CTLA-4, glucocorticoid—induced
tumor necrosis factor receptor (GITR) and FOXP3(54). In
addition, the production of immunosuppressive cytokines, such
as transforming growth factor (TGF)-β or IL-10 by Tregs, and
the direct interaction between Tregs and effector T cells, could
damage the activity of effector T cells (56). However, different
dormant tumors were found to have different infiltrations of
Tregs. Compared with progressing sarcomas, the level of Tregs
was significantly lower in dormant sarcomas (27). In contrast,
the organ harboring dormant tumor cells had higher number of
Tregs than the organ with actively growing tumor cells in the
mouse B cell lymphomamodel (BCL1), whereas, Tregs from both
tumor microenvironments had similar capacities in suppressing
the proliferation of CD4+ and CD8+ T cells suggesting the
function of Tregs was not impaired by the induction of dormancy
(57). Due to the role of Tregs in suppressing the activity of
CD8+ and CD4+ T cells, the maintenance of an equilibrium
state was influenced by higher CD8+/Treg cell ratio, which was
also associated with improved survival of sarcomas mice (27).

Although the infiltration and the function of Tregs in tumor
microenvironment are still obscure, cancer treatments targeting
Tregs have made some progress. Anti-CTLA4 therapy could
decrease the population and activity of Tregs, contributing
partially to antitumor efficacy (58), which has been supported
in murine colon adenocarcinoma tumor models and bladder
cancer patients (59, 60). In a randomized, double-blind, phase
3 study, 273 patients with unresectable metastatic melanoma
were randomly distributed to receive ipilimumab alone or
glycoprotein 100 (gp100) peptide vaccine alone. The median
overall survivals of ipilimumab alone group and gp100-alone
group were 10.1 and 6.4 months, respectively. The rate of overall
survival in ipilimumab-alone group was significantly higher than
that in gp100-alone group (45.6, and 25.3% at 12 months,
respectively) (61).

MYELOID-DERIVED SUPPRESSOR
CELLS (MDSCS)

MDSCs have been shown to play a prominent role in the
establishment of pre-metastatic niches which contribute to
the re-activation of dormant DTCs and support subsequent
metastatic outgrowth (62–64). MDSCs represent a population of
special cells of the immune system, which consist of immature
macrophages, immature granulocytes and immature dendritic
cells. Their remarkable ability is to act as potent suppressors of
T cell responses via direct cell–cell contact or the production of
Arginase, iNOS, ROS, and Peroxynitrite. Furthermore, another
possible capacity of MDSCs is to promote Tregs expansion
through the production of cytokines, such as IFNγ and IL-10
(65). MDSCs could directly contact with NK cells to suppress
IL-2–mediated NK cell cytotoxicity (66). These are the indirect
evidences to show the association of MDSCs with cancer
dormancy, and at present, there are only a few reports to show

the direct relation between them. MDSCs could oppose the
tumor suppressor gene (Pten) via the release of interleukin-1
receptor antagonist (IL-1RA) with the capacity of interfering with
IL-1α signaling and impairing oncogene-induced senescence,
thereby leading to senescence evasion and tumor development
(67). In addition to their immunosuppressive ability, MDSCs
could contribute to tumor angiogenesis primarily via the
secretion of MMP9, which increased the bioavailability of VEGF,
thereby destroying angiogenic dormancy and facilitating tumor
metastasis (68, 69).

The immunotherapies targeting MDSCs could be divided into
three major strategies: inactivating MDSCs, depleting MDSCs, or
converting MDSCs into mature myeloid cells and APCs without
suppressive abilities (65, 70). There are many ways to achieve the
elimination and inactivation of MDSCs, such as ROS inhibitors
and gemcitabine (65). In addition, all-trans-retinoic acid (ATRA)
has been proven to promote MDSCs to differentiate into mature
myeloid cells (71, 72). ATRA could cause the induction of
dormant DTCs in HNSCC via p38 MAPK-dependent pathway
(73). In addition, the combination of ATRA and natural killer T
(NKT) cells activation was shown to convert immunosuppressive
MDSCs into immunogenic APCs via the secretion of IFNγ by
NKT cells and the upregulation of ATRA-mediated glutathione
synthase (GSS) (74).

MHC CLASS I EXPRESSION

MHC I molecules, which are famous for their ability to
present tumor antigens to T lymphocytes and regulate NK cell
function, have been proved to be involved in immune escape
of cancer cells (75) and act as tumor suppressors (76). Using
a tumor dormancy-derived cell line, MHC I expression was
found to be upregulated on the surface of dormant tumor cells,
compared with the parental cell lines (25). Consistent with
this finding, in a fibrosarcoma mouse model, the interaction
between MHC I molecules and immune cells, especially CD8+
T cells, could promote metastatic cells into dormant state, due
to the immunoregulation and tumor suppression of MHC I
(28). However, Pantel and his colleagues draw an opposing
conclusion about the expression of MHC I on DTCs. They
measured MHC class I expression on DTCs from bone marrow
aspirates of patients with different adenocarcinomas (including
breast, stomach, and colon) and concluded that quiescent
micrometastasis cells in the bone marrow had reduced MHC
class I expression, which may be in favor of their survival
and subsequent outgrowth (77). In terms of these different
observations, there was a possible explanation that a dynamic
and interchangeable equilibrium state between MHC-I–positive
and MHC-I–negative cells may exist to accommodate complex
signals changes in tumor microenvironment (28). Although the
expression of MHC I on DTCs is controversial, all of these
authors regarded upregulating or recovering MHC I surface
expression as an effective antitumor treatment.

The alterations in MHC I expression in cancers could be
divided into two types: reversible defects (regulatory or “soft”)
and irreversible defects (structural or “hard”). “Soft” MHC I
defects could be recovered after the treatment of cytokines, such
as IFN-α and -γ, or immunotherapies to increase the production
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of these cytokines, whereas “hard” MHC I defects could not
be recovered. Because irreversible structural abnormalities of
MHC I were caused by loss of heterozygosity (LOH) of MHC-
associated genes, correction of this defect can only be achieved
by the transference of a wild type MHC I heavy chain or by β2-
microglobulin (β2m) genes (78). To the best of my knowledge,
there are no clinical reports on targeting MHC I in immune-
mediated dormancy.

CYTOKINES

Cytokines, including IL, IFN and TGF, are proteins, peptides
or glycoproteins secreted by immune cells, which could
aid cell to cell communication in immune responses.
Several cytokines have also been shown to be involved in
immune-mediated dormancy.

IFN-γ not only has antitumor function mediated by immune
cells, but also has tumor promotion ability determined by chronic
inflammation (79). As mentioned above, IFN-γ mainly produced
by effector T cells and NK cells could be involved in cancer
dormancy via STAT1 signaling (79). IFN-γ induced melanoma
cells into G0/G1 growth arrest and the state of dormancy, which
was associated with decreased cyclin A, cyclin E and certain
cyclin-dependent kinases (CDK2 and CDK4). STAT1, which
could interact directly with the cyclin D1/CDK4 complex (80),
was an essential mediator of this process (81). Besides, IFN-
γ could upregulate the expression of MHC I with the help of
STAT1 signaling (82), pointing out another possible mechanism
of IFN-γ to mediate cancer dormancy.

Cell-cycle analysis for mouse melanomas indicated that IFN-
β treatment could induce 72.4% tumor cells into the state
of G0/G1 arrest, compared with 20.5% quiescent tumor cells
from the control group, suggesting that IFN-β could induce
melanoma cells into dormancy. Further research showed that
IFN-β mobilized the IDO1/Kyn/AhR/p27-dependent pathway
to mediate tumor cells dormancy. Furthermore, a combination
of IDO1 or AhR inhibitors to block this pathway and IFN-β
treatment significantly decreased colony size and colony number
of tumor cells, due to dormant tumor cells that were abrogated,
which provided a novel and ideal treatment against cancer
dormancy (83).

In an MCA-induced mouse sarcoma model, both IL-23 and
IL-12 were found to contribute to maintain cancer cells in the
state of dormancy, whereas their roles were completely opposite.
IL-23, with the capacity of promoting cancer persistence, played
a critical role in opposing the effects of IL-12 with the ability
of preventing cancer outgrowth. A combined treatment of
anti-IL23p19 and anti-CD40, which could stimulate APC to
produce IL-12p70, may help to eliminate persistent cancer cells
in equilibrium lesions (84).

In a HNSCC model, TGFβ2 signaling in the bone marrow
was found to decrease ERK/p38 activity ratio, which predicted
whether tumor cells would enter a state of dormancy (85),
thereby inducing the expression of DEC2, which was related
with dormancy and quiescence. DEC2 overexpression in tumor
cells resulted in the expression of p27, which eventually led to
dormancy of DTCs (86). However, in a mouse breast cancer
model, increased level of TGFβ1 was associated with extensive

deposition of type I collagen (Col-I) and pulmonary fibrosis, and
then with activation of β1-integrin signaling and induction of
the dormant-to-proliferative switch of DTCs (87), suggesting that
TGFβ1 may play an opposite role in cancer dormancy, compared
with TGFβ2.

EPILOGUE

All of the evidences and experiment researches mentioned
above indicate that the immune system may play a central
role in cancer dormancy. These clinical trials mentioned have
shown that immunotherapies have achieved partial success in
patients with overt metastatic diseases or recurrent diseases.
Especially, immunotherapies aiming at activating CD8+
and CD4+ T cells or reversing their immunosuppression
may be effective to restrain tumor metastasis. However,
when it comes to transplanted patients or those with
autoimmune disease, the immunosuppressive treatments
must be prudent to administer for avoiding awakening dormant
metastases (18).

In addition, the combined therapies are also one of the
most promising treatments. For example, chemotherapy could
increase the susceptibility of tumor cells to cytotoxic T
lymphocytes, and the administration of chemotherapy and
immunotherapy could help to improve the immunosuppressive
trait of cancers (88). A mouse model suggested that the
combination of chemotherapy or immunotherapy and adoptive
T cell therapy could lead to the eradication of established tumors
via destroying cancer stroma (89). Lower-dose antiangiogenic
treatment (anti-VEGF therapy) could normalize breast tumor
vasculature and change the tumor microenvironment from being
immunosuppressive to immunosupportive, thereby improving
the efficacy of immunotherapies (90). Therefore, in addition
to the development of new drugs or novel treatments, the
optimal doses, sequences and timing of combined therapies
should also be the focus of future researches. Rational clinical
researches to measure dormancy therapies are extremely urgent.
Treatments mentioned above mainly aim at cancer patients
with overt metastatic diseases or recurrent diseases; however,
little progress seems to have been made in effective therapies
targeting individuals with suspected latent disseminated diseases.
Another issue that needs to be considered in the development
of treatments targeting dormancy is over-treatment, which
may lead to cancer recurrence. A greater understanding
of immune-mediated dormancy is fundamental for solving
these difficulties.
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