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Second Harmonic Generation (SHG) microscopy has gained much interest in the

histopathology field since it allows label-free imaging of tissues simultaneously providing

information on their morphology and on the collagen microarchitecture, thereby

highlighting the onset of pathologies and diseases. A wide request of image analysis

tools is growing, with the aim to increase the reliability of the analysis of the huge

amount of acquired data and to assist pathologists in a user-independent way during

their diagnosis. In this light, we exploit here a set of phasor-parameters that, coupled

to a 2-dimensional phasor-based approach (µMAPPS, Microscopic Multiparametric

Analysis by Phasor projection of Polarization-dependent SHG signal) and a clustering

algorithm, allow to automatically recover different collagen microarchitectures in the

tissues extracellular matrix. The collagen fibrils microscopic parameters (orientation

and anisotropy) are analyzed at a mesoscopic level by quantifying their local spatial

heterogeneity in histopathology sections (few mm in size) from two cancer xenografts

in mice, in order to maximally discriminate different collagen organizations, allowing

in this case to identify the tumor area with respect to the surrounding skin tissue.

We show that the “fibril entropy” parameter, which describes the tissue order on a

selected spatial scale, is the most effective in enlightening the tumor edges, opening

the possibility of their automatic segmentation. Our method, therefore, combined with

tissue morphology information, has the potential to become a support to standard

histopathology in diseases diagnosis.

Keywords: second harmonic generation, phasor approach, collagen, cancer, two-photon microscopy, label-free
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INTRODUCTION

Histopathology based on excisional biopsy and tissue staining
by Hematoxylin/Eosin and ImmunoHistoChemistry (HE and
IHC) (1, 2) is the golden standard in clinical diagnostics for
accurate and timely diagnosis of cancers. Fluorescence-based
techniques have also been exploited to characterize the cellular
and subcellular structures, both in healthy and pathological
tissues. However, these techniques are characterized by some
severe drawbacks: extensive tissue manipulation that can lead to
artifacts, expensive and time consuming labeling protocols, lack
of 3D sectioning, and, most important, delay in obtaining the
diagnosis and interpretative variability (3–5).

In this landscape, label-free microscopy has gained increasing
success due to its capability to overcome the above-mentioned
issues and to aid pathologists in fast and reliable tumor diagnosis,
with potentially great impact on the health of the population
and the sustainability of the healthcare systems (6–8). Recently,
the intrinsic fluorescence signal coming from intracellular
molecules (e.g., NADH, FAD, flavoproteins, lipofuscins, or
aminoacids) or tissue constituents, has been exploited to
provide diagnostic information on different pathologies (9–
11). Moreover, hyperspectral imaging which analyzes the
(auto)-fluorescence or reflectance spectral profiles peculiar of
each tissue, has become a promising method in diseases
evaluation (12–15). Also Coherent Anti-Stokes Raman Scattering
(CARS) microscopy, that provides information on the molecular
composition of the sample through the Raman spectrum,
has been used to identify and characterize the properties of
tumors (16–18).

Furthermore, apart from the fluorescence intensity and its
spectral features, fluorescence excited state lifetime (19–21)
and non-linear scattering properties of the tissues, such as
Polarization-resolved SecondHarmonic Generation, P-SHG (22–
31), have been exploited. These features have been also combined
with a phasor-based analysis to extract information on healthy
and pathological tissue conditions (32–40) and to identify
diseases such as tumor types and their development stages.

Despite the high resolution, the molecular contrast achieved
and the reduced scattering, non-linear optical based techniques
still suffer the disadvantage of limited penetration depth
(typically < 1mm) into tissues and reduced field of view (∼500
µm2). These limitations are at least partially overcome by optical
coherence tomography (OCT) (41, 42) and Photo-Acustic (PA)
imaging (43). OCT is a minimally invasive technique, that
can be performed in real time and in situ, and that offers a
high structural sensitivity, with a resolution of 1–10µm and a
penetration depth of 2–3mm, although it provides unspecific
contrast. On the other hand, PA imaging offers a higher
penetration depth with respect to OCT, while it suffers from low
resolution and low structural contrast.

In parallel to the efforts devoted to improve the image
acquisition modes, image analysis tools that can assist
pathologists in the characterization of the tissue properties
are gathering increasing interest, with the aim to reach real-
time automated in-vivo cancer diagnosis. User independent
algorithms for the automatic extraction of disease features

are attracting more and more attention due to their deep
implications for resolving pathological cues and increasing the
reliability of the results at reduced costs (44–49). Moreover, due
to the large amount of acquired data, a dimensionality reduction
for the extraction of significant and valuable features describing
diseased tissues has to be faced.

By working along the above research lines, we recently
developed µMAPPS (Microscopic Multiparametric Analysis
by Phasor projection of Polarization-dependent SHG signal),
a 2D phasor analysis of the polarization dependent SHG
signal collected on images (39) to provide micro-structural
information (at pixel level) of the collagen architecture in the
tissue extra-cellular matrix (ECM). In fact, collagen molecules
suffer remodeling during pathological development that could
be exploited for diagnostic purposes (23, 50, 51). Our 2D phasor
algorithm provides both the mean orientation angle of the fibrils
(θF) and the susceptibility anisotropy parameter (γ, the ratio
of off-diagonal to diagonal elements of the susceptibility tensor
χ
=

(2)), converting huge optical dataset in dispersion plots in

the Fourier space. In such derived space, the application of a
clustering algorithm (52) allows to further reduce the dimension
of the data and to recognize automatically tissutal regions sharing
similar microscopic behavior without the need to resort to direct
feature segmentation.

Our main aim here is to show that the µMAPPS phasor
approach can be applied to large tissue sections (few mm in size,
comparable with histo-pathology sections) by analyzing them
as separate tiles sequentially acquired on an optical microscope.
In order to test the possibility to automatically discriminate
tissue regions with different collagen organization in large
histopathology sections, we develop a set of parameters defined in
the phasor space (called hereafter p-parameters) that work on the
θ and γ distributions at a mesoscopic level (75–150µm regions
of interests instead of single pixels).

We report a proof-of-concept of the application of this
method to the automatic segmentation of tumor tissues
surrounded by a skin layer in histopathology sections. We
performed a two levels analysis: at a first level, the tumor and
skin area were manually separated by an expert and analyzed
on a global scale, while in the second one our algorithm was
recursively applied on sequential regions of interest (ROI) of
increasing size encompassing the entire section, in order to
automatically quantify the local heterogeneity of the tissues
organization. As a proof of principle of the applicability of
µMAPPS to histo-pathological analysis, we investigated two
cancer models, obtained from colon carcinoma CT26 cells and
breast cancer 4T1 cells implanted in mice.

The p-parameters whose efficacy in highlighting the tumor
edges was tested here are: the mean Cluster Elements Ratio (ratio
between the number of elements in each retrieved cluster and
in the most populated cluster, CER), the number of clusters
(NC), and the “fibril entropy” (S). This latter parameter, which
describes the tissue order on a selected spatial scale, shows to
be, at least at this proof-of concept stage, the most effective
and significant one to automatically discriminate different
collagen microarchitectures and enlighten the tumor edges
(skin-tumor boundaries).
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MATERIALS AND METHODS

Two-Photon Microscopy Set-Up
The optical setup is built around a confocal scanning head
(FV-300, Olympus, Japan) mounted on an upright optical
microscope (BX51, Olympus, Japan) and coupled to a fs-pulsed
Ti:Sa laser (690–1,040 nm, 80 MHz repetition rate, Mai Tai HP,
Spectra Physics, CA) (53). For the SHG signal detection, an
excitation wavelength of 800 nm was used. The backscattered
SHG signal has been acquired by a photomultiplier tube (HC125–
02, Hamamatsu, Japan), after being collected through a high
working-distance objective (NA = 0.95, WD = 2mm, 20X,
water immersion, XLUMPlan FI, Olympus, Japan) and filtered
by a 400/20 nm band-pass filter (Chroma Inc., Brattelboro, VT,
HQ400/20). The laser polarization has been controlled by a
half-wavelength waveplate placed along the optical path.

Image Acquisition
Sequential images of entire tumor sections have been acquired by
rotating the half-wavelength waveplate from 0 to 180◦ in steps of
5◦. An excitation laser power of Pexc = 50 mW, measured before
the scanning-head, has been exploited for image acquisition of
the histology samples. Each image is the result of 3 Kalman
average scans and has been acquired in 3.4 s, with a field of view
(FOV) dimension of 377× 377µm2 (512× 512 pixels). Different
FOVs have been stitched by means of the Stitching plugin of
the ImageJ software (U.S. National Institute of Health, Bethesda,
Maryland, USA) to obtain the mosaic of the entire section.

Both the total tumor sections or ROIs of different sizes (from
75 × 75 to 150 × 150 µm2) have been analyzed by means of the
µMAPPS software coupled to the cluster algorithm.

Mouse Models
All mice, inoculated with the tumor cell lines CT26 or 4T1, were
BALB/c females of 7–12 weeks of age. The mice were kept in a
pathogen-free conventional animal house facility.

The animal house is run by professional employees fully
equipped with state-of-the-art instrumentation in order to
maintain the standard of animal welfare at the maximum levels.
All mice were housed in individual, ventilated cages with 12 h
light/dark cycles with food and water ad libitum. Experiments
were performed using protocols approved by the Institutional
Animal Care and Use Committee of the University of Milano-
Bicocca and by the Italian Ministry of Health.

Cells
The BALB/c mouse colon carcinoma CT26 (ATCC, CRL2638) or
the triple negative breast cancer 4T1 cell lines were cultured in
IMDM-10 complete medium: IMDM, 10% heat-inactivated FBS
(EuroClone), 2mM l-glutamine, 100 U/ml penicillin, 100µg/ml
streptomycin. Cells were collected when the confluence reached
the 70%.

Tumor Injection and Analysis
For the CT26 and 4T1 tumor analysis, BALB/c mice were
inoculated in the deep derma in the left flank with the minimal
tumorigenic dose of CT26 or 4T1 tumor cells (5 × 104) at Day
0. Explanted tumors at Day 5 were embedded in OCT freezing

media (Biooptica). Sections (5µm) were cut on a Cryostat,
adhered to Superfrost Plus slide (Thermo Scientific), and then
imaged under the two-photon excitation microscope.

Mice subjected to tumor injection were monitored on a
daily basis for signs of discomfort, including hunched posture,
ruffled fur and lack of movement within the cage. The body
condition score index (a qualitative assessment of an animal
overall appearance based on its weight, muscle mass, and bone
prominence) was used to evaluate the welfare of the mice. Mice
did not present signs of distress given the short period of time
between tumor injection and killing.

Three entire tumor sections from three different animals
(from 100 to 300 fields of view for each section) have been
analyzed for both tumor models. The method has been also
applied to five different tumor sections that were acquired as
a set of 6 fields of view per sample, encompassing the skin-
tumor boundaries.

IMAGE PROCESSING

µMAPPS Analysis Method
The µMAPPS method has been reported in Radaelli et al. (39),
while a further description of its extension to the analysis of
whole histopathology sections can be found in Appendix A.

Here we considered the following microscopic theoretical
model for the SHG response I(θnL ) (31, 54–56):

I(θnL ) = k
{

sin2
[

2
(

θnL − θF
)]

+
[

sin2(θnL − θF)

+γ cos2(θnL − θF)
]2

}

(1)

where θnL–θF is the relative angle between the laser polarization
and the mean collagen fibrils orientations in the image plane
(see Appendix A). γ = χzzz

(2)/χzxx
(2) is the ratio between the

entries of the susceptibility tensor χ
=

(2), and the scale factor k

includes the absolute intensity of the SHG signal as affected by
the setup parameters.

The same clustering procedure implemented in Rodriguez
et al. (52) has been exploited to obtain clusters of pixels sharing
similar microscopic parameters in the entire images or in regions
of interest of the tumor sections. This algorithm is based on
the maximum density approach and it is applied in the (θF,
γ) space. Only clusters characterized by a number of elements
higher than a set threshold (ET), computed as a percentage of the
total number of analyzed pixels, have been considered. Moreover,
the distance between each element belonging to a cluster and its
center must be lower than arbitrary chosen cut-off values, named
θC and γC.

We defined the “fibril” entropy in a region of interest as:

S =

−
N
∑

i=1
pi log pi

− log 1
EC

=

−
N
∑

i=1

xi
EC

log xi
EC

− log 1
EC

(2)

where pi is the probability of occurrence of the i-th cluster
measured as the ratio between the number of elements in the
i-th cluster and the total number of clustered elements EC,
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and N is the total number of clusters. For a perfectly ordered
microstructure, we expect a single cluster, N = 1, and pi =
1, therefore S = 0. For a maximally disorder microstructure,
instead, we expect N = EC, and pi = 1/N. In this case, we
retrieve S= 1.

Software
All the polarization-dependent analysis based on the phasor
approach, the θ and γ p-plots, and the θF, γ, clusters, CER, NC,

and entropy maps have been performed by means of a custom
designed C++ based software. The θ and γ histograms have been
obtained by means of the software Origin (Origin 8.5, OriginLab
Corporation). All the acquired images have been visualized and
linearly contrast-adjusted using ImageJ (U.S. National Institute
of Health, Bethesda, Maryland, USA) or the Photoshop software.

Statistical Method
Results are expressed as mean ± SEM. All statistical analyses
were performed by GraphPad Prism Software. Means between
two groups were compared with a paired two-tailed Student’s t-
test. The degree of significance was assigned as: ∗p ≤ 0.05 and
∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001, and ∗∗∗∗p ≤ 0.0001. It is noteworthy
that, while p = 0.01 already accounts for a significant difference
between the analysis results, some of the parameters computed
on tissues of different morphologies corresponds to even larger
significance, up to p ≤ 0.0001.

RESULTS

The efficacy of µMAPPS in characterizing the microscopic
properties of the collagen organization and their spatial
heterogeneity in extended tumor sections has been tested.

The microscopic θF and γ parameters, extracted pixel-by-
pixel by means of µMAPPS, are here analyzed at a mesoscopic
level by characterizing and quantifying their local heterogeneity
on a tunable spatial scale (the ROIs dimension) with three p-
parameters, whose aim is to maximally discriminate different
collagen organization within tissues. In order to select the
heterogeneity level we exploit a clustering algorithm (52), defined
in the 2D phasor space. The parameters describing the clusters
properties (NC, CER, and fibril entropy) can be taken as
meta-features that could then be combined to conventional
morphological features to support the histopathology analysis in
a user-independent way.

We report in the following an example of our analysis applied
to a simple, but in our opinion meaningful, model in which a
tumor tissue is surrounded by a skin layer. The aim of this study
is to provide a proof-of-concept of the ability of our method
to distinguish among tissue areas characterized by different
local properties.

The analysis of the histology section is reported at two levels:
at a first level, the tumor and skin areas have been separated
and globally analyzed, while the second approach relies on
the sequential analysis of regions of interest encompassing the
entire section.

Figure 1A shows a tumor section (5µm thickness, 3.8 × 2.5
mm2, CT26 derived colon carcinoma from mice, explanted 5

days after cells inoculation), obtained as a tilescan of sequential
superimposing images (377 × 377 µm2, 512 × 512 pixels each),
acquired as a function of the laser polarization.

The collagen composing the skin and the tumor fibers,
revealed by the SHG signal, shows two distinct morphologies
(Figure 1A). The skin is constituted by high dense basket
weaves oriented collagen fibers (57, 58), while the tumor is
characterized by wavy, thinner, longer and more sparse fibers.
Each pixel has been Fourier transformed (Discrete Fourier
Transform, DFT) into a point in two connected phasor plots,
as described in Appendix A and in Radaelli et al. (39). The
θF and γ maps related to each single acquired image have
been extracted, by exploiting Equations (A3, A4), from the
relative θ and γ p-plots, and combined to obtain the resulting
color-coded mosaic θF and γ maps of the entire sample (see
Figures 1B,C). Figures 1D,E show the histograms of the θF and
γ values (related to the tumor section in panel A), recovered
from the global phasor plots in Figures 1F,G. The anisotropy
parameter γ retrieved on the entire tumor section spans a wide
range [0.8–4.5] with a monomodal distribution, while the fibrils
angle is characterized by a large doubly peaked distribution. An
example of the results obtained for the 4T1 tumors is reported
in Supplementary Figure 1.

Separate Analysis of Tumor and Skin Areas
In order to highlight the global microscopic behavior of tumor
and skin regions, their boundaries were manually selected by
an expert, based on tissue morphology shown in H&E and
PicroSirius Red stained sequential sections. The θF and γ maps
are reported in Figures 2A–D for the skin and the tumor areas,
respectively, while the corresponding θF and γ p-plots are shown
in Figures 2E–H.

Moreover, while the angles show wide distributions in both
cases, the γ values lie in the range [0.8–3.5] for the tumor, and
the skin shows a tail up to γ ∼= 4.5. Correspondingly, the peak
value obtained by a gaussian fit of the skin distribution is slightly
larger, < γ > = 1.83 ± 0.02, than that of the tumor, < γ > =

1.77± 0.01, with a full width at half maximum of the distribution
of <FWHM>skin = 0.95± 0.05 and <FWHM>tumor = 0.90±
0.03, respectively.

Clustering Algorithm and p-Parameters
The microstructure in-homogeneity of the tumor and skin
regions has been characterized by means of the number and
size of the clusters, and how they scale with the choice of the
cutoff conditions.

To study how the heterogeneity of the tissue microscopic
properties (obtained with tight cutoff values: θC = 5◦; γC =

0.2; ET = 1%) is reflected at large spatial scale, the number of
clusters (NC) and the Cluster Elements Ratio (CER) distribution
have been computed on the two entire regions. At this spatial
scale, the skin shows a higher (microscopic) order level with
respect to the tumor. In fact, by separately analyzing the skin and
the tumor area, 14 and 21 clusters were retrieved, respectively
(Figures 3A,B). The ratio NC(tumor)/NC(skin) spans the range
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FIGURE 1 | µMAPPS analysis of an entire tumor (CT26) section. (A) Maximum intensity projection of the mosaic reconstruction of the entire tumor section. Image

size: 3.8 × 2.5 mm2. Scale bar: 1mm. The dashed red line indicates the tumor-skin boundary. (B,C) Show the global θ- and γ- maps, color-coded as in the legend.

The four colored boxes show the 150 × 150 µm2 ROIs reported in the following Figure 4. (D,E) Report the corresponding global θ- and γ- counts histograms, while

(F,G) show the θ- and γ- phasor plots of the entire tumor section, respectively. These results refer to the tumor section shown in A–C. The color scale encodes for the

counts per phasor plot pixel. The θ reference curve in (F) has been obtained by simulating equation (1) within the [0, π] angular range and γ –> ∞, while the γ

reference curve in (G) has been obtained by simulating equation (1) within the [θF, (θF +π/2)] angular range while varying γ from 0 to 10.

[1.2–1.5] for the CT26 samples, and the range [1.25–1.35] for the
4T1 tumors, and it lowers by reducing the ET value.

The CER cumulative distribution (Figures 3C,D) provides
a better visualization of the sample in-homogeneity and of its
dependence on the ET value. A higher number of clusters with
few elements (small CER) has been retrieved for the tumor with
respect to the surrounding skin, characterized instead by clusters
with a more uniform population.

The tumor is characterized by a higher number of clusters with
small CER with respect to the skin, although this value is strongly
dependent on the selected ET. In fact, for the section reported in
Figure 1A, ∼60% of tumor clusters have a CER value below 0.6,
while this percentage is reduced to ∼12% for the skin (for θC =

5◦, γC = 0.2, and ET = 1%, Figure 3C). However, the absolute
values of the clusters number and the CER distribution values
change substantially for ET = 0.5% (Figure 3D), preventing the
development of a robust algorithm based on this parameter and
able to discriminate between different tissue regions.

The results related to other analyzed samples are reported in
Supplementary Figure 2.

In an effort to quantitatively discriminate between the two
tissue regions, we moved to evaluate the “fibril” entropy (S, see
Equation 2), which, by its definition, should provide an estimate
of the local disorder degreemore robust with respect to the choice
of the cutoff parameters. When we assume tight clustering cutoff
values, θC = 5◦, γC = 0.2, and ET= 1%, in the two tissue regions,
we retrieve in this sample ∼16% higher values of S in the tumor
collagen (Stumor = 0.25) with respect to the skin (Sskin = 0.21).

Still, even if this difference is reduced to ∼11% for ET = 0.5%
(Stumor = 0.36 and Sskin = 0.32), among all the analyzed tumor
sections, we retrieved a well-defined mean ratio Stumor/Sskin =

1.21 ± 0.03 for the CT26 samples (ET = 1%). For 4T1 tumor
model, the value Stumor/Sskin = 1.19± 0.05 has been obtained.

Dependence of the Phasor Parameters on the

Clustering Conditions
A systematic investigation of the effect of the choice of
the cutoff conditions (θC = 5◦ ± 1◦, γC = 0.20 ± 0.02
for ET = 1, 0.7, 0.5%) on the evaluation of the three p-
parameters on the two tissue regions is reported in the
Supplementary Materials for the tumor in Figure 1A. As
shown in Supplementary Figure 3, all the three parameters
can discriminate the separate collagen organization in the two
macroscopic areas, with more significative results (p < 0.001)
for NC and S. Similar results have been obtained for all the
analyzed samples.

Sequential Analysis on Regions of Interest
With Different Sizes
Since the boundaries between the two regions are not always
sharp and the different collagen organizations can be intertwined,
making difficult and user dependent an a-priori area selection,
a more refined data analysis has been performed by analyzing
sequential non-overlapping ROIs with a size of 75 × 75 and 150
× 150 µm2, encompassing the entire tumor section, in order
to automatically highlight different local collagen organizations
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FIGURE 2 | µMAPPS analysis of the skin and tumor regions. (A,B) show the θ- and γ- maps, color-coded as in the legend, of the skin region, while (C,D) report

those of the tumor area. Image size: 3.8 × 2.5 mm2. Scale bar: 1mm. (E,F) show the θp-plot and γp-plot of the skin region, while (G,H) report those of the tumor

area. The plots were exploited to derive the θ- and γ-maps according to Equations (A3,A4). The color scale encodes for the counts per phasor plot pixel.

by means of the p-parameters. Figure 4 reports, as an example,
the θF (A) and γ (C) maps for two ROIs, related to the skin
and tumor regions indicated in Figure 1A, together with their
distribution histograms (B,D). By taking into account all the
ROIs, wider peaks for the fibrils angular distributions are mainly
obtained in skin regions, while the tumor presents more variable
γ distributions with a peak in the range [1.5–2.1].

The clustering procedure has been applied to the θF and γ

values retrieved in each ROI byµMAPPS in order to compute the
three p-parameters. Only ROIs where the main cluster contains
at least 15 elements for the 75 × 75µm2 size, and 30 for the 150
× 150 µm2 size, have been considered in the analysis.

CER Evaluation
The color-coded 150 × 150 and 75 × 75 µm2 local maps have
been computed while varying the cumulative CER and the ET
values, by assuming the cutoff conditions θC = 5◦, γC = 0.2.
Although the number of clusters with a specific value of CER is
the highest for ROIs belonging mainly to the skin area (coded in
white color for ET= 1% and CER= 0.4 for Figures 5A,B, and for
CER = 0.5 in Figures 5C,D), this result is highly dependent on
the ET and the selected CER values (as shown in Figures 5E,F for

CER= 0.6 and ET= 1%), preventing a reliable discrimination of
the tumor and skin regions (see also Supplementary Figure 4).

Number of Clusters Evaluation
A more reliable result can be obtained by exploiting the number
of clusters. The spatial distribution of the number of clusters is
summarized in Figure 6 for low (150 × 150 µm2 A) and high
(75 × 75 µm2 B) spatial sampling, assuming tight clustering
conditions (θC = 5◦, γC = 0.2, ET = 1%). A higher number
of clusters is retrieved in the tumor ROIs, also when decreasing
the ET (see Supplementary Figure 5). In this case, although the
difference between the tumor and the skin areas is smoothed in
the NC maps, it is still possible to discriminate between the two
regions. Similar results have been obtained in all the analyzed
tumor samples (see Supplementary Figure 6 for an example in
a 4T1 tumor model sample).

Fibril Entropy Evaluation
Finally, the color-coded entropy maps, obtained with tight
clustering conditions (θC = 5◦, γC = 0.2) are reported for
both the CT26 and 4T1 cells derived tumors in Figures 7A,B,
respectively, (150 × 150 µm2 ROI dimension with ET =
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FIGURE 3 | Clustering procedure of the skin and tumor regions. (A,B) show the result of the clustering procedure applied separately to the skin (A) and the tumor (B)

area by assuming θC = 5◦, γC = 0.2, and ET = 1%. Image size: 3.8 × 2.5 mm2. Scale bar: 1mm. Each monochromatic LUT encodes for a cluster. (C,D) show the

cumulative distribution of the number of clusters (reported as percentage) as a function of the CER for the tumor (magenta) and the skin (green), related to the tumor

section in Figure 1A.

1%). In particular, from Figures 7A,B, it can be observed
that S is higher (S = [0.4–0.7]) within the tumor region
with respect to the skin area and the skin/tumor edges
(S = [0.1–0.45]). This result is maintained also at high
spatial sampling. The 75 × 75 µm2 color-maps in fact
show a similar behavior: the tumor entropy is higher
with respect to the skin, with values comprised in the
range [0.55–0.75] and [0.3–0.5], respectively, for ET = 1%
(see Supplementary Figures 7A,B). Other investigated ET
conditions are reported in Supplementary Figure 8.

It is noteworthy that, in all the analyzed CT26 and 4T1 derived
tumor samples, the skin and tumor areas always correspond
to compact patches with a uniform value of the entropy,
which is systematically 0.2–0.3 units lower in the skin than in
the tumor.

Therefore, we test the possibility to exploit the entropy
parameter, fully defined in a phasor space not directly related
to the sample morphology, to automatically segment regions
characterized by different collagen arrangements, such as in
tumor and skin. Figures 7C,D report the back-projection of
the entropy information obtained for ET = 1% into the image
plane for both tumor models. In the acquired intensity images
we discriminated the pixels related to elements in the ROIs
characterized by a “fibril entropy” above or below a selected
threshold, chosen as the mean value computed in the entire

section (with the clustering condition θC = 5◦, γC = 0.2, ET =

1%). We then assigned them to a monochromatic green or gray
LUT in which the intensity codes for the average P-SHG signal
in the pixel, and the color was assigned depending on whether
the pixel entropy was below or above a selected threshold value
Sth (Sth = 0.4 for Figure 7C; Sth = 0.42 for Figure 7D). As
shown in the image, the gray color highlights predominantly the
skin region, with few ROIs retrieved in the tumor (mainly in the
capsule region). Viceversa, the tumor is mainly enlightened by
the green LUT, with some exception of the skin area at the section
edge, probably due to a reduced number of clusters retrieved in
ROIs encompassing the tissue-glass slide boundary. Overall, an
accuracy (percentage of correctly retrieved pixels in the tumor
or skin areas, obtained by comparing the number of pixels in
the entropy-based segmented images with those extracted by
an expert operator selection) of (83.0 ± 4.5)% was obtained
for the skin area, while the (91.8 ± 4.4)% of the tumor area
was correctly retrieved for the CT26 tumor model. For the 4T1
samples we obtained and accuracy of (87.5 ± 3.9)% for the skin
region and (91 ± 6)% for the tumor area. Similar results can be
achieved by exploiting higher spatial sampling ROIs, as shown
in Supplementary Figures 7C,D. For a direct comparison of the
obtained segmentation with the H&E and PicroSirius Red stained
images (exploited for the tumor-skin separation), the reader can
refer to Supplementary Figure 9 (for the CT26 tumor sample
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FIGURE 4 | Regions of Interest. (A) shows the θF maps of 150 × 150 µm2 ROIs obtained from two skin (above) and two tumor (below) areas, while (B) reports the

related θF distribution histograms. The corresponding γ maps are reported in (C) for the skin (above) and the tumor (below). The ROIs frames are color coded as the

corresponding boxes shown in Figures 1B,C. (D) Shows the obtained γ distribution histograms. Scale bar: 50µm.

reported in Figure 1A) and Supplementary Figure 10 (for the
4T1 tumor sample shown in Supplementary Figure 1).

DISCUSSION AND CONCLUSIONS

Recently, image analysis algorithms and processing techniques
attracted much attention in the histopathology field, where a
rapid and precise disease diagnosis represents an increasing
demand (44–49). In parallel, label-free microscopy has recently
gained large interest in this field, due to its capability to image
cells and tissues by exploiting the intrinsic signal of proteins and
molecules, without the need of expensive and time consuming
labeling protocols (6–8). However, the application of high
resolution optical microscopy methods has been largely limited

to demonstrative projects on small fields of view, scarcely relevant
for a pathological analysis.

In this framework, we applied our phasor approach,µMAPPS
(39), to the analysis of entire fixed tumor sections, commonly
exploited in histopathology, to extract the microstructural
collagen fibrils angle (θF) and the anisotropy (γ) parameters.
This strategy converts huge amount of optical data in dispersion
plots on which clustering algorithms can be directly applied to
automatically group regions that share similar properties, with
the aim to highlight microstructural changes in the tissue leading
to pathologies for an early tumor diagnosis and to evaluate the
efficacy of a tumor treatment or rescission after surgery (59).

Here, we coupled our 2D phasor algorithm µMAPPS to
the computation of novel p-parameters in the phasor space, in
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FIGURE 5 | CER analysis in Regions of Interest. (A–F) The entire tumor section

has been separated in sequential non-overlapping 150 × 150 µm2 (A,C,E)

and 75 × 75 µm2 (B,D,F) ROIs, encompassing the entire tumor section.

Image size: 3.8 × 2.5 mm2. Scale bar: 1mm. Each 150 × 150 µm2 and 75 ×

75µm2 pixels ROI has been color-coded as in the legend to represent the

percentage of clusters with a CER = 0.4 (A,B), CER = 0.5 (C,D), and CER =

0.6 (E,F) in each ROI. All panels share the clustering cutoff conditions θC =

5◦, γC = 0.2, ET=1%. The dashed red lines indicate the tumor-skin boundary.

order to automatically recover different collagen organizations
and their heterogeneity at a mesoscopic spatial scale (the
ROI dimension). As a proof of concept, the method has
been applied to separate the contribution of tumor collagen
from skin by exploiting only microscopic structural properties
retrieved in the phasor space. Among the computed parameters,
the ’fibrils entropy’ has been translated for the first time
to the histopathology section analysis field to quantify the
microscopic disorder state of clusters characterized by similar
fibrils microscopic θF and γ parameters, and describe the local
heterogeneity of the tissues organization.

Fixed sections in which the tumor was surrounded by a
skin layer have been selected and analyzed with two parallel
approaches. In the first analysis, the tumor has been manually
separated from the surrounding skin edges, based on H&E
and PicroSirius Red stained sections, to highlight their different
microscopic behavior. By applying µMAPPS and the clustering
algorithm on the two areas, we retrieved (for ET = 1%) a higher
number of clusters in the tumor with respect to the skin, with
NC(tumor)/NC(skin)=1.34 ± 0.10 for the CT26 tumor models
andNC(tumor)/NC(skin)= 1.30± 0.03 in the case of 4T1 derived
samples. Moreover, a higher entropy value has been retrieved
in the tumor regions, where Stumor(CT26) = 0.26 ± 0.03 and
Stumor(4T1) = 0.30 ± 0.02 with respect to Sskin(CT26) = 0.22
± 0.03 and Sskin(4T1) = 0.26 ± 0.02, obtained in the skin (for
θC = 5◦, γC = 0.2, ET = 1%). The same behavior is observed

FIGURE 6 | Analysis of Regions of Interest: Number of Clusters (NC).

(A,B) Image size: 3.8 × 2.5 mm2. Scale bar: 1mm. Each 150 × 150 µm2 (A)

and 75 × 75 µm2 (B) ROI has been color-coded as in the legends to

represent the number of clusters retrieved in the ROIs by applying the

clustering cutoff conditions θC = 5◦, γC = 0.2, for ET = 1%. The dashed

white lines indicate the tumor-skin boundary.

also for decreasing values of ET, supporting our hypothesis that
this parameter can help in separating the two regions in a
user independent approach, at least for the two tumor models
exploited here.

A more refined and operator-independent analysis has
been then performed by automatically separating the entire
tumor section in 150 × 150 µm2 (and 75 × 75 µm2, see
Supplementary Materials) non-overlapping windows. In this
analysis, µMAPPS and the clustering algorithm have been
applied on each ROI to compute the three p-parameters: the
percentage of clusters with a selected CER, the number of clusters
and the “fibril entropy.” We have tested the dependence of the
results on the clustering procedure, the selected thresholds and
the ROI dimension, and assessed to what extent we can use the p-
parameters to automatically highlight the different local behavior
of tumor and skin collagen and which is the most effective one.

The percentage of clusters with a CER ≤ 0.6 is an effective
parameter in distinguishing the tumor from the skin when an ET
= 1% is assumed. However, this difference decreases when the
ET is reduced. Furthermore, tumor ROIs are characterized by a
higher number of clusters with respect to the skin, with NC values
comprised in the range [15–25] for the CT26 tumors and [20–25]
for the 4T1 samples (when θC = 5◦, γC = 0.2, ET=1%), compared
to the range of NC of [15-20] in the skin. We also noticed that
the entropy is 0.2–0.3 units higher in the tumor ROIs than in
the skin. Also NC and the entropy are somehow affected by the
choice of the threshold ET. However, the difference of these two
parameters on the two morphological area remains significative,
irrespective of the ET value, and can be used to discriminate
the two regions and to highlight the tumor edges. In this regard
we showed (Figure 7) that the segmentation of the two regions
obtained by exploiting the entropy information (ET= 1%) agrees
with the manual segmentation with an accuracy (computed by
considering both tumor and skin areas) of 87.4 ± 3.8% for the
CT26 and 89.8± 5.3% for the 4T1 tumor models.

We believe that these results are particularly encouraging
in the direction of an automated algorithm that, by exploiting
non-morphological features, will assist pathologists for a fast
and reliable diagnosis. However, a number of additional tests
and benchmarks are in order and some limitations need to
be discussed.
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FIGURE 7 | Analysis of Regions of Interest: Fibrils Entropy S. (A,B) Each 150

× 150 µm2 (A,B) ROI has been color-coded as in the legend to represent the

retrieved entropy values in a CT26 tumor (A) and a 4T1 sample (B), by

applying the clustering cutoff conditions θC = 5◦, γC = 0.2, for ET = 1%.

Scale bar: 1mm. (C,D) Results of the segmentation procedure retrieved by

backprojecting the entropy information into the image plane for the CT26 (C)

and the 4T1 (D) tumor models. The pixels in the acquired image connected to

elements in the ROIs with an-entropy above a selected threshold are shown in

green, while those below this threshold are colored in gray. The threshold has

been chosen as the mean entropy value computed on the entire section: Sth
= 0.4 in (C) and Sth = 0.42 in (D). The dashed white and red lines indicate the

tumor-skin boundary.

First of all, the computation of the θF and γ parameters was
based on a specific, though widely adopted (31, 54, 55) molecular
model. Under the assumption of cylindrical and Kleinmans
symmetry conditions, from the point of view of the retrieving
algorithm, both the 2D and the 3Dmodels (i.e., in plane or out of
plane molecular arrangements) reduce to Equation (1) (60).

Depending on the theoretical model a-priori assumed for the
specific tissue investigated, the parameter γ assumes a different
interpretation (31) since it can be related to specific molecules
and fibrils arrangements (fibrils with uniform alignment, bundles
of aligned or tilted fibrils). Since our aim is to discriminate
between two different collagen arrangements in two different
tissues in an operator-independent way, in this manuscript
we did not derive microscopic geometrical parameters of the
fibrils and collagen molecules inside a pixel (61–63). Instead, we
introduce a statistical parameter, the “fibrils entropy,” to explore
the relation between both the θ and γ values on a mesoscopic
spatial scale (the ROI dimension) to automatically quantify the
local heterogeneity of the tissues organization, based on the
simplest model available in the literature.

However, by exploiting the a-priori knowledge of the
theoretical model describing a particular tissue (31), we
could further evaluate NC, CER, and S on the fibrils and
molecules microscopic arrangements, retrieved from the γ

values. Moreover, refined models which take into account
multiple components of the susceptibility tensor [see for example
models in references (27, 28, 60, 61, 64–67)] could reveal different
behavior in terms of NC, CER, and S.

For a fully exploitation in the pathology field, we need to
validate our method on additional tumor models and alternative
tissue sections preparations. To this aim, formalin fixed paraffin

embedded sections of human tumors, already tested in P-SHG
imaging (68), will be extensively investigated in our lab in order to
understand if the entropy based discrimination algorithm could
be advantageously applied to differentiate between tumorous and
healthy regions within the same tissue type.

Regarding extension of our SHG phasor algorithm, we notice
that other methods devoted to pure intensity-based image
analysis, showing different collagen fibers organization among
healthy and pathological tissues have been proposed. These
methods quantify collagen organization from the SHG images by
means of 2D Fast Fourier Transform (69, 70), wavelet transform
(71), quantification of fiber structure and alignment (72–75),
fractal analysis (76), texture analysis of SHG images using first-
order and second-order statistics (e.g., gray-level co-occurrence
matrix (GLCM) (77–79), or a combination of them (80). We
think that the method proposed in this manuscript could be
coupled both to intensity-based image analysis algorithms and
to other p-parameters, defined also in other phasor spaces, such
as those based on the autofluorescence spectral and lifetime
decomposition (32, 33), in order to expand the dictionary
of features available for pathologic tissue characterization and
therefore help physicians during diagnosis, especially for diseases
characterized by a large heterogeneity not only between patients,
but even within the same tissue specimen.

Furthermore, for an application of our 2D phasor method
to thick biopsies, a fact that will dramatically simplify the
tissue preparation procedure, the “fibril entropy” based threshold
segmentation should be extended to a 3D analysis. This is
particularly relevant because collagen fibers create different 3D
ECM organization in tumors, depending on the tumor model
and on the stage of development. Therefore, the extensive
characterization of the collagen 3D structure, also from the
microscopic point of view, is of fundamental importance to
extract features that can be exploited for diagnosis.

As for the present application to the CT26 and 4T1
tumors inoculated in mice, we have demonstrated that our
approach offers multiple advantages: it is able to perform fast
microstructural analyses in entire tumor sections that could assist
pathologists for a timely and precise disease diagnosis. It is cost-
effective since it is based on label free microscopy: exogenous
fluorescent dyes are not necessary to elicit second harmonic
generation signal, which instead is a non-linear coherent
optical process where two incident photons of frequency ω are
converted into a single photon of exactly twice the frequency
and it is related to the intrinsic symmetric properties of
molecules (e.g., collagen).

Our approach is based on non-linear optics scanning
microscopy, which has superb capabilities to exploit endogenous
optical properties of tissues (emitted intensity but also excited
state lifetime or non-linear scattering polarization) and to
provide optical sections (virtual non-invasive biopsies in-vivo)
of the tissular architecture that can be coupled to traditional
histopathology approaches with deep implications for resolving
pathological cues.

In summary, the proposed 2D phasor approach to the label-
free second harmonic generation microscopy of collagen ECM,
coupled to the definition of the “fibril entropy” parameter, is
promising for the long-term goal of this project. We believe
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that automated analysis algorithms, coupled to label-free non-
linear microscopy and Fourier image processing, could represent
a viable solution to assist the pathologists’ interpretation of data,
speeding up the analysis at reduced costs, meeting directly one of
the urgent needs of our society.
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APPENDIX A

Image Processing
µMAPPS Analysis Method
The P-SHG signal of each pixel of a stack of images acquired as a
function of the laser polarization θL (Figure A1) is projected onto
a first complex plane (θp-plot) via the first harmonic normalized
Discrete Fourier Transform (DFT) applied to the 0 ≤ θL < π

range. In the θp-plot, each pixel is transposed into a point, whose
(gθ, sθ) coordinates are:

gθ =

∑N−1
n=0 I(θnL ) cos(θ

n
LKθ )

∑N−1
n=0 I(θnL )

; sθ =

∑N−1
n=0 I(θnL ) sin(θ

n
LKθ )

∑N−1
n=0 I(θnL )

(A1)

where {I(θnL )}n=0...N−1 is the SHG intensity acquired as a function
of θL (0≤ θL < 3π/2) with resolution1θ;Kθ= 2π (N)1θ)−1and
N = π/1θ. The angular position of the points in the θp-plot
depends only on the collagen fibrils angle θF.

To extract the microscopic order parameter γ, a second
interconnected phasor plot (γp-plot) is computed by DFT of the
P-SHG in the domain θF ≤θL < θF + π/2. The coordinates (gγ,
sγ) of the points in the γp-plot are:

gγ =

∑N/2−1
n=0 I(θnL + θF) cos((θnL + θF)Kγ )

∑N−1
n=0 I(θnL + θF)

;

sγ =

∑N/2−1
n=0 I(θnL + θF) sin((θnL + θF)Kγ )

∑N−1
n=0 I(θnL + θF)

(A2)

where Kγ= 2π[N(1θ + θF)]−1 .
To extract the θF and γ values we took advantage of

two reference curves obtained for the θp-plot and γp-plot by
considering the microscopic theoretical model for the SHG
response described by Equation (1).

The fibril angle θF is half the value of the angle that the vector
pointing from the center of the θp-plot to the point (gθ , sθ ) makes
with the phasor plot real axis and it is obtained according to the
following expression:

cos(2θF) =
gθ

√

g2θ + s2θ

(A3)

The parameter γ can been retrieved from the minimum
Euclidean distance projection onto the Reference Curve (RC):

de−RC =

√

(ge − gRC)
2
+ (se − sRC)

2

γe = γRC|min(de−RC) (A4)

where the minimum is obtained over the value of the γ

p-plot reference curve points, computed by exploiting the
experimental sampling angle 1θ and θF measured on the first
phasor plot.

FIGURE A1 | Reference system. Coordinate system scheme: the laser is

incident along the y-direction, while the tissue section is positioned in the xz

plane. The bundle of fibrils (in blue) lies out of the xz plane with an angle δ. θF

represents the mean angle between the fibrils projection (in gray) into the xz

plane and the x-axis, while θL is the angle between the laser polarization (in

red) and the x-axis.

The original µMAPPS software has been modified here in
order to sequentially analyze the set of images related to the entire
tumor sections. The θ p-plot and γ p-plot are computed by DFT
of the P-SHG signal of each pixel in the images constituting the
mosaic. The color-coded θF and γ maps are then retrieved from
the phasor plots for each image by exploiting Equations (A3,
A4). Finally, the θF and γ maps of the entire tumor section are
obtained by mosaic combining the data related to each single
image. For features of the tumor represented in two adjacent
images, the mean of the θF and γ values has been computed.
The software computes also the global θ p-plot and γ p-plot of
the entire tumor section, from which it is also possible to infer
differences in the geometrical features related to the microscopic
tissue behavior. Only P-SHG spectra above a threshold (TNL,
reported in the figure captions) are analyzed in order to discard
the background contribution. To further reduce the noise, a
gaussian filter of the image stack acquired as function of θL has
been implemented beforeµMAPPS analysis. Moreover, a custom
implemented median filter with a 3 × 3 pixels mask was directly
and independently applied once to the s and g coordinates, to
reduce the dispersion of the points in the θp-plot and γp-plot.

By means of a nearest neighbor clustering algorithm (52),
applied to the two coupled phasor spaces, we could automatically
group pixels characterized by θF and γ values comprised within
selected cutoffs (θC and γC). The total number of clustered pixels
and of clusters was limited by the element threshold, ET, that is
the minimum number of elements in a cluster with respect to the
total number of analyzed pixels.

The software provides also the clusters, CER, NC and entropy
maps of the entire tumor sections or related to the different
ROI sizes.
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