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Ewing sarcoma (ES) family of tumors includes bone and soft tissue tumors that are often

characterized by a specific translocation between chromosome 11 and 22, resulting

in the EWS-FLI1 fusion gene. With the advent of multi-modality treatment including

cytotoxic chemotherapy, surgery, and radiation therapy, the prognosis for patients with

ES has substantially improved. However, a therapeutic plateau is now reached for both

localized and metastatic disease over the last two decades. Burdened by the toxicity

limits associated with the current frontline systemic therapy, there is an urgent need for

novel targeted therapeutic strategies. In this review, we discuss the current treatment

paradigm of ES, and explore preclinical evidence and emerging treatments directed at

tumor signaling pathways and immune targets.
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INTRODUCTION

Ewing sarcoma (ES) family of tumors is a family of small round blue cell tumors that arise from
bone or soft tissue. It represents the second most common malignant bone tumor in children and
young adults, with an incidence of more than 200 cases per year in the United States (1). ES is
characterized by a specific translocation involving EWS (Ewing sarcoma gene) on chromosome
22 with one of the E26 transformation-specific transcription factory family genes. The EWS-FLI1
(Friend Leukemia Integration 1 transcription factor) fusion gene, t(11;22)(q24;q12) is found in
∼85% of ES tumors. The fusion protein plays a key role in the pathogenesis and proliferation of
ES (2, 3), with EWS-FLI1 knockdown cells showing decreased proliferation in vitro and tumor
regression in vivo (4, 5). Although the fusion protein has multiple functions, one of its primary roles
is as a transcription factor, increasing the expression ofmany downstream targets involved in tumor
survival and growth [for example, IGF1 (6),GLI1 (7),Myc (8), ID2 (9)], while decreasing expression
of cell cycle regulators and pro-apoptotic genes [for example, TGFB2 (10), p21 (11), IGFBP3
(12)]. In addition, the fusion protein plays an important role in promoting cell differentiation
by upregulating such genes as EZH2 (13) and SOX2 (14). Although ES cells were originally
thought to arise from primitive neuroectodermal cells, there is now growing evidence (although
not conclusive) that ES cells arise instead from mesenchymal stem cells (15, 16), and that the
neuroectodermal phenotype of ES is secondary to EWS-FLI1 expression (17).

With the introduction of multi-disciplinary management and specifically cytotoxic
chemotherapy, survival for localized ES has improved from <20 to 70–80% by the 1990’s.
However, over the last two decades, there has been no further advancement in survival, witnessing
the limit of further intensification of cytotoxic chemotherapy to cure children and young adults
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with localized disease. Additionally, the current frontline
systemic therapy is aggressive and carries with it significant
morbidity. For patients with metastatic disease, prognosis has
remained poor, with survival rates of<30% in those with isolated
lung metastases and<20% for those with bone and bone marrow
involvement (18, 19). Outcomes for patients with relapsed disease
is even poorer, with a 5-year survival rate of only 13%. Given
these considerations of toxicity and suboptimal survival from
metastatic disease, there is an urgent unmet need to develop novel
therapies for ES (20).

Molecularly targeted therapy and immunotherapy are
promising approaches for attacking these tumors without a
significant increase in overlapping toxicity with chemoradiation
(21, 22). A good example of the potential for immunotherapy in
children is the use of anti-GD2 antibody in metastatic high risk
neuroblastoma where cures beyond 10 years are now possible
in the majority of patients without appreciable late effects from
the anti-GD2 antibody (23, 24). Although the EWS-FLI1 fusion
protein is present only in ES tumor cells and not in normal tissue
(providing an ideal target for drug development), EWS-FLI1
targeted therapy has so far been unsuccessful in the clinic. In this
review, we summarize the current treatment paradigm of ES,
and emerging therapies for ES, including molecularly targeted
therapy and immunotherapy.

FRONTLINE THERAPY

Localized Disease
Although<25% of patients present with gross metastatic disease,
ES is considered a systemic disease with subclinical spread
(25). In fact, patients with ES who undergo local therapy
alone experience relapse rates approaching 90% (26). Thus, the
current treatment paradigm for ES consists of multimodality
therapy with chemotherapy, surgery, and/or radiation therapy
(RT). Chemotherapy is considered the backbone of therapy for
ES, and is typically given both neoadjuvantly and adjuvantly.
Induction therapy is specifically recommended for ES to address
micrometastatic disease as well as to reduce the size of the tumor,
potentially allowing for a less extensive or less morbid surgery
(and/or smaller radiation volumes).

The first two Intergroup Ewing sarcoma studies
(IESS) established the use of vincristine, doxorubicin,
cyclophosphamide, and actinomycin A (VDCA) with dose-
intensive doxorubicin as the standard of care (27, 28). IESS-III
was a phase III randomized clinical trial that showed a relapse-
free survival benefit with the addition of ifosfamide and etoposide
to VDCA (18). Subsequent trials omitted actinomycin D with no
deleterious effect on outcomes. Given these findings, standard
chemotherapy for ES now consists of vincristine, doxorubicin,
and cyclophosphamide, with the addition of ifosfamide and
etoposide (VDC/IE). Although dose intensification of the
alkylating agents did not improve outcomes for patients with
localized ES in a large Children’s Oncology Group (COG) study
(29), interval compressed-therapy (cycles given every 14 days
rather than every 21 days) did result in improved outcomes (30).
As such, interval-compressed chemotherapy with alternating

cycles of VDC/IE is recommended as first-line systemic therapy
for localized disease.

Surgical resection and/or RT are done for local control of
the primary tumor, with considerations given to the location of
the tumor, the response to induction therapy, and the degree of
morbidity associated with resection vs. RT. Typically, for patients
with ES arising from dispensable bones (i.e., fibula, ribs) or from
the axial skeleton in which a margin-negative resection can be
performed without excessive morbidity, surgical resection is the
preferred choice of local control, sparing children the risk of
second malignant neoplasms after RT. However, for patients
with tumors arising from the pelvis, spine, or other locations
in which function-preserving (or limb-sparing), margin-negative
surgery cannot be performed, definitive radiation is the preferred
modality of treatment. There are no randomized trials directly
comparing the efficacy of surgery vs. RT for local control, but
some retrospective studies and a systematic review have shown
that local controlmay be superior with surgery (31–33). However,
retrospective studies can be flawed because of selection bias,
as tumors that are easily surgically resectable are often smaller
tumors in more favorable locations.

Metastatic Disease
For patients with metastatic disease, outcomes remain poor and
are dependent on the site of metastatic disease as described above,
with the worst prognosis for those that spread to bone and bone
marrow. Systemic chemotherapy used for patients who present
with metastatic disease is similar to that used for patients with
localized disease. However, unlike patients with localized disease
in which the addition of ifosfamide and etoposide to vincristine,
doxorubicin, and cyclophosphamide has been shown to improve
survival, the addition of ifosfamide and etoposide has not
shown benefit for those with metastatic disease (18, 34). Despite
these concerns, front-line treatment for patients with metastatic
disease still employs VDC/IE. While dose-intensified VDC/IE
with augmented alkylator dose does not seem to improve
outcomes for patients with metastatic disease (35), the role of
interval-compressed chemotherapy remains under investigation
on COG AEWS1221 (NCT02306161). The role of high-dose
chemotherapy with hematopoietic cell support for patients with
metastatic disease has also been explored. Some studies have
shown excellent event-free survival rates in patients who received
high-dose chemotherapy followed by autologous transplant (36),
while others have shown no benefit (37, 38). The role of
autologous stem cell rescue was further explored on the EURO-
EWING 99 trial, with interim results showing no improvement in
survival with stem cell rescue for patients with metastatic disease
to the lung compared to conventional chemotherapy with whole
lung irradiation (39). Of note, stem cell rescue on this trial did
improve survival for patients with localized disease at high risk
of relapse, though (40). Given different inclusion criteria and
stratification approaches, it is difficult to compare these results
to those from the COG showing a benefit of interval-compressed
chemotherapy in the localized setting. However, the outcomes
appear similar after either dose-intensification approach (stem-
cell transplant vs. intensively timed chemotherapy), and there is
no consensus across continents regarding front-line approach.
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Treatment of metastatic sites of disease with radiation
and sometimes even surgery has been considered as part
of consolidation. For example, for patients with pulmonary
metastases, non-randomized studies supported the delivery
of whole lung irradiation after completion of chemotherapy;
(41) and for patients with residual lung metastases after
completion of chemotherapy, further surgical resection has been
advocated (42). Consideration has also been given to irradiating
bone and soft tissue metastases, especially in the setting of
oligometastatic disease. On the ongoing COG metastatic ES
protocol, AEWS1221, patients can be treated with stereotactic
body RT to up to five sites of metastatic disease. Local control
of the primary site is also important for patients with metastatic
disease, with RT often preferred over surgical resection unless
there has been a significant response to chemotherapy.

Relapsed Disease
As is true for patients with metastatic disease, the prognosis
of patients with local relapse remains poor. Phase II clinical
trials have shown activity of camptothecin-based approaches
with either topotecan or irinotecan for recurrent disease (43–45).
Other agents utilized in the recurrent setting such as gemcitabine,
docetaxel, bortezomib, and ecteinascidin-743 have not improved
survival (46–49). Given the dose-limiting toxicities of cytotoxic
chemotherapy and the overall poor outcomes, patients with
recurrent ES should be considered for clinical trials using novel
molecularly targeted therapies or immune-based approaches as
discussed in more detail below.

MOLECULARLY TARGETED THERAPY
(FIGURE 1)

EWS-FLI1 Pathway (Clinical Data)
The EWS-FLI1 fusion protein results in the production of a
unique tumor driver only found in tumor cells. Given this
specificity, targeted therapy directed at the EWS-FLI1 protein
should avoid non-specific toxicities. Additionally, tumorigenesis
in ES is dependent on EWS-FLI1 fusion protein expression,
with deletion resulting in ES cell death in pre-clinical studies
(5, 50, 51). This mechanistic dependency on the fusion protein
further supports EWS-FL11 as an obvious therapeutic target.
Despite these considerations, there is no available drug that can
directly inhibit the fusion protein. Studies in the 1960’s and 1970’s
utilizing various peptides and natural products to target the EWS-
FL1I fusion protein showed activity in the preclinical setting
(Table 1), although their translation into the clinical setting
was limited by toxicity. For example, mithramycin is a natural
product known to repress the EWS-FLI1 protein in vitro. A phase
I/II study including eight patients with refractory ES treated with
mithramycin showed no clinical responses with an inability to
safely achieved the desired dose secondary to hepatotoxicity (63).

Strategies to inactivate or decrease the expression or function
of the EWS-FLI1 protein have shown some promise, including
inhibitory oligonucleotides and small-molecule inhibitors that
are able to disrupt its transcriptional complex. Inhibitory
oligonucleotides are short nucleotide sequences that can be
designed to hybridize to single-stranded mRNA molecules and

subsequently inhibit protein translation (64). Both antisense
oligonucleotides and inhibitory RNA can be utilized for this
purpose. For ES, inhibitory oligonucleotides have been designed
that can bind to selected sequences coding for the EWS-
FLI1 fusion protein, consequently decreasing expression of the
fusion protein and resulting in decreased tumor growth in
preclinical models (65, 66). Although inhibitory oligonucleotides
have been successfully used to treat ES in vitro, translation to
humans has proven difficult partly because of the inefficiency
of drug transport intracellularly for maximal activity (67). Thus,
inhibitory oligonucleotides for ES are not currently in the clinic.

The Toretsky lab at Georgetown has pioneered the inhibition
of the EWS-FLI1 protein via disruption of protein-protein
interactions. Specifically, they have created a peptide that
competes with wild type RNA helicase A for a specific binding
site on the EWS-FLI1 protein. This interaction between RNA
helicase A and EWS-FLI1 is necessary for the function of EWS-
FLI1 (68, 69). The small-molecule inhibitor of RNA helicase A,
YK-4-279, has shown activity against ES in vitro (70), and an
analog of YK-4-279, TK216, is currently being tested in a Phase 1
trial in relapsed or refractory ES (NCT02657005).

Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme
involved in transcriptional regulation and DNA repair. PARP1
interacts with the EWS-FLI1 protein to create a positive feedback
loop for transcriptional activation. Given the disruption of this
critical interaction with PARP inhibitors, ES is highly responsive
to PARP inhibition in preclinical models (71). Other studies have
found that the concurrent administration of the PARP inhibitor,
olaparib, with radiation results in increased lethal DNA damage
and as a result, increased cell death in vitro (72). A phase II study
including 12 patients with refractory ES showed that olaparib was
well-tolerated, although no significant responses were seen, with
patients progressing at a median time of 5.7 weeks from initiation
of therapy (73). Given the preclinical efficacy data of combining
olaparib with temozolomide (74), there is now an ongoing phase
I study testing the safety and efficacy of this combination in
patients with ES (NCT01858168).

EWS-FLI1 Pathway (Preclinical Data)
Other approaches involve targeting downstream signaling
molecules driven by the EWS-FLI1 fusion protein such as
Glioma-Associated Oncogene Homolog 1 (GLI1). GLI1 is a
transcription factor that is upregulated by EWS-FLI1 and
plays an important role in the Hedgehog pathway (7). In
ES specifically, when upregulated by EWS-FLI1, GLI1 plays a
major role in maintaining the malignant phenotype and cell
growth (75). In mice, antineoplastic arsenic trioxide (ATO)
inhibits ES tumor growth via the inhibition of GLI1 (60).
Anecdotal reports using a combination of ATO and standard
chemotherapy (VP-16 and paclitaxel) have encountered minimal
toxicities (76). A second candidate of the EWS-FLI1 pathway
is the Forkhead box (FOX) gene family of proteins. The
EWS-FLI1 gene regulates, though indirectly, the expression
of FOXO1 which controls tumor growth and differentiation
(61). In an orthotopic xenograft mouse model, methyl-imino
selenium acid (MSA) was found to reactivate endogenous
FOXO1, thereby significantly decreasing tumor growth (62).
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FIGURE 1 | Overview of current molecularly targeted therapy for Ewing sarcoma. For STEAP1 and CD99, antibodies have been tested in mouse models of Ewing

sarcoma but not in the clinical trial setting. Cer, ceramide.

TABLE 1 | Preclinical studies targeting the EWS-FLI1 pathway.

Drug Drug type Molecular target Mechanism References

EC-8042 and

EC-8105

Chemicals

(natural product, mithramycin

analogs)

EWS-FLI1 protein Represses EWS-FLI1 activity by decreasing

expression of EWS-FLI1 downstream targets

(52)

Englerin A Chemicals

(natural product)

EWS-FLI1 protein Inhibits cellular proliferation through a decrease in

EWS-FLI1 phosphorylation and reduction its DNA

binding ability

(53)

ESAP1

(TMRGKKKRTRAN)

Chemicals (synthetic peptide) EWS-FLI1 protein Impairs the transcriptional activity of EWS-FLI1 and

blocks cell cycle progression

(54)

Romidepsin,

Depsipeptide,

FK228, entinostat

(MS-27-275)

Chemicals (natural product,

synthetic peptide)

Histone deacetylase Reverses EWS-FLI1 mediated histone deacetylation,

decreases EWS-FLI1 mRNA and protein levels,

inhibits cell proliferation, and induces

TRAIL-dependent apoptosis of ES cells

(55–57)

LSD1 inhibitor

HCI-2509

Chemicals (benzoic hydrazide) Lysine specific demethylase 1 (Histone

demethylase)

Comprehensively reverses the transcriptional profiles

driven by both EWS-FLI and EWS-ERG, and

markedly delays tumorigenesis in vivo

(58)

JIB-04 Chemicals (pyridine hydrazone) Jumonji domain containing histone

demethylases

Deregulates oncogenic programs and increases DNA

damage, resulting in impaired cell proliferation and

survival, and reduced tumor growth

(59)

Arsenic trioxide Chemicals (inorganic arsenic

compound)

Glioma-Associated Oncogene

Homolog 1 (GLI1)

Inhibits ES tumor growth via the inhibition of GLI1 (60)

Methylseleninic acid

(MSA)

Chemicals (organic selenium

compounds)

FOXO1, Forkhead box family protein Increases FOXO1 expression in the presence of

EWS-FLI1, induces massive cell death and decreases

xenograft tumor growth dependent on FOXO1

(61, 62)

Unlike FOXO1, the FOXM1 protein is upregulated by EWS-
FLI1 and serves as an oncogenic mediator that results in
tumor proliferation; a reduction of FOXM1 protein results in
decreased anchorage independent growth (77). Inhibition of
FOXM1 can be achieved via thiostrepton both in vitro and
in vivo (78), suggesting that FOXM1 may also serve as a
potential therapeutic target of the FOX gene family. Tsafou
et al. also performed an integrative drug screening analysis to
identify mechanisms and compounds that interfere with the
EWS-FL11 pathway and EWS-FL1 cell viability (79). Among the

druggable targets identified, the authors found that MCL-1 (a
known inhibitor of apoptosis) is directly activated by the fusion
protein, suggesting a potential role of BLC-2 family inhibitors
in ES.

Insulin-Like Growth Factor (IGF) Pathway
The IGF family of ligands and receptors play key roles in normal
human growth and development; not surprisingly, they have
been implicated in various types of human cancers. Insulin-like
growth factor 1 (IGF-1) is required for the growth of fibroblasts,
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epithelial cells, bone marrow stem cells, and osteoblasts (80).
The binding of IGF-1 to its receptor, IGF-1R, initiates a
cascade of events that affect protein turnover, exerting potent
mitogenic and differentiating effects on most cell types. In
preclinical models of ES, the IGF-1R-mediated signaling pathway
is constantly active, suggesting its role in the tumorigenesis
of ES (4, 81–85). As such, IGF-R is another attractive target
for ES, where its inhibition both in vitro and in vivo have
impaired the migratory ability of ES cells thereby slowing tumor
growth (83, 86, 87).

Both small molecule and antibody-mediated approaches to
block the IGF pathway have been investigated in early phase
clinical trials (Table 2) (89, 97, 108–110). Five human anti-
IGF-1R antibodies for ES have been tested in phase II clinical
trials: robatumumab (89) (also known as SCH 717454 and
MK-7454, Merck and Schering-Plow), R1507 (111) (Roche),
ganitumab (98) (NantCell, previously known as AMG 479
by Amgen Inc), cixutumumab (94, 95) (IMC-A12, ImClone
systems), and figitumumab (93) (CP-751871, Pfizer). Among
them, figitumumab showed the highest objective response rate
of 14.2%; R1507 showed a response rate of 10.8%, cixutumumab
8.6%, robatumumab 7.1%, and ganitumab 6.1% (Figure 2). An
ongoing phase III trial through the COG is testing the addition
of ganitumab to combination chemotherapy in patients with
newly diagnosed metastatic ES (NCT02306161). In addition,
three other antibodies have been tested in the phase I setting:
dalotuzumab (MK-0646) (99), BIIB022 (100), and AVE-1642
(101). In terms of their clinical efficacy, only one of six patients
treated with dalotuzumab had a partial response; no patients
treated with BIIB022 responded; and three of 40 patients treated
with AVE-1642 had a partial response.

These results suggest that anti-IGF-1R antibody treatment
may provide therapeutic benefit for a select group of patients,
but additional efforts are needed to identify biomarkers that
can predict which subset of patients will respond. In the
cixutumumab trial, tumor levels of IGF-1, IGF-2, and IGF-
1R were evaluated by immunohistochemistry, but there was
no correlation between expression of these three proteins and
response to cixutumumab treatment (94). On the other hand, in
the figitumumab trial, patients with intermediate pretreatment
IGF-1 levels had improved survival compared to patients with
lower baseline IGF-1 levels (93). Data from the R1507 trial
suggest that high baseline IGF-1 levels correlate with improved
overall survival but not with response to treatment (91). Taken
together, IGF-1 levels may be prognostic but did not show
consistent utility in predicting response to anti-IGF-IR therapy
(111). In addition, given the relatively low response rates in the
anti-IGF-1R clinical trials, it may be necessary to re-examine the
mixed results of preclinical and clinical studies as well as the
modest biological evidence underlying IGF-1R as a target for
ES therapy. Specifically, more rigorous preclinical data may be
needed to develop strategies in targeting the IGF family before
further development of clinical trials.

Furthermore, mechanism-based molecular approaches
utilizing combination strategies may prove more efficacious than
IGF-1R antibody monotherapy. For example, the combination
of IGF-1R antibodies with mTOR inhibitors has been evaluated

in ES, with the rationale that mTOR inhibitors can induce
AKT phosphorylation and signaling via an IGF-1R dependent
mechanism; (112) given this dependence, it was thought that the
combination of an IGF-1R antibody and mTOR inhibitor would
have the potential to overcome the resistance seen when either
was given as monotherapy. For ES specifically, the combination
of ganitumab with rapamycin showed efficacy in preclinical
modes (113), and the combination of cixutumumab and
temsirolimus in the phase I setting for patients with refractory
ES showed durable tumor regression in 29% of patients (114).
However, a subsequent phase II study evaluating the efficacy
of cixutumumab and temsirolimus among 46 patients with
refractory or recurrent pediatric sarcoma (12 of whom had ES)
showed no objective responses (96).

Other Tyrosine Kinases
Besides IGF-1R, other receptor tyrosine kinases (RTKs) active
in ES have been explored as potential therapeutic targets given
the key role of RTKs in tumor growth and survival, and the
success of RTK-inhibitors in other cancers. For example, c-
KIT and platelet-derived growth factor receptor β are both
expressed in ES, and treatment of ES with imatinib (which
inhibits phosphorylation of KIT and platelet-derived growth
factor receptors) results in decreased proliferation and enhanced
antitumor activity of both ES cell lines (115) and xenografts (116).
However, three phase II trials treating patients with ES with
imatinib showed either no response in all ES patients enrolled
(102) or partial response only in one patient (103, 104).

Epithelial growth factor receptor (EGFR) inhibition has also
been explored in preclinical models of ES, showing decreased
cell growth with high doses of gefintib in vitro (117), but
minimal activity in vivo (118). Vascular endothelial growth factor
(VEGF) inhibition similarly results in decreased cell growth
as well as reduced tumor vessel density in preclinical models
(119–121). Bevacizumab (monoclonal antibody targeting the
VEGF receptor), has been tested in a phase II study through
the COG including seven patients with ES (four of whom
completed therapy), with results pending (NCT00516295).
Similarly, pazopanib (multi-kinase inhibitor with activity against
VEGF) was tested in a phase I study of children with soft
tissue sarcoma (including three patients with ES), showing that
it was well-tolerated with evidence of anti-angiogenic effects
(105). However, as ES is not dependent on the EGFR and VEGF
pathways for oncogenesis and proliferation, it is unclear how
much patients with refractory disease will ultimately benefit from
targeting of these pathways.

Potratz et al. found that nine individual RTKs were more
active in ES tumors derived frommetastatic disease than localized
disease (122). Among these 9 RTKs, the authors further explored
the role of ROR1 in ES given its promising results as a therapeutic
target in leukemia (123) and metastatic carcinomas in preclinical
models (124, 125). The authors showed that silencing of ROR1
resulted in dysfunctional migration of ES cells in vitro, with
the conclusion that ROR1 may also be a potential therapeutic
target for ES. A second study found that high expression of
the RTK, AXL, was a significant predictor of poor survival, and
that inhibition of AXL with BGB324 resulted in decreased cell
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TABLE 2 | Antibody-based approaches, immunotherapy, and small molecule inhibitors tested in clinical trials for Ewing sarcoma.

Drug Molecular target Phase Clinicaltrial.org

identifier

Number of patients Response rate (RR %) References

Mithramycin EWS-FLI1 pathway 1/2 NCT01610570 8 0 (63)

TK216 EWS-FLI1 pathway 1 NCT02657005 45 N/A Ongoing, recruiting

Olaparib PARP1 2 NCT01583543 12 0 (88)

Olaparib + temozolomide PARP1 1 NCT01858168 93 N/A Ongoing, recruiting

Robatumumab IGF-R1 2 NCT00617890 84 7.2 (89)

R1507 IGF-R1 1 NCT00560144 9 22.2 (90)

R1507 IGF-R1 2 NCT00642941 92 10.8 (91)

Figitumumab IGF-R1 1 NCT00474760 16 12.5 (92)

Figitumumab IGF-R1 2 NCT00560235 106 14.2 (93)

Cixutumumab IGF-R1 1/2 NCT00668148 35 8.6 (94, 95)

Cixutumumab +

Temsirolimus

IGF-R1 + mTOR 2 NCT01614795 46 0 (96)

Ganitumab IGF-R1 1 NCT00562380 12 16.7 (97)

Ganitumab IGF-R1 2 NCT00563680 33 6 (98)

Ganitumab +

chemotherapy

IGF-R1 3 NCT02306161 330 N/A Ongoing, recruiting

Dalotuzumab (MK-0646) IGF-R1 1 NCT01431547 6 16 (99)

BIIB022 IGF-R1 1 NCT00555724 40 7.5 (100)

AVE1642 IGF-R1 1 UK study 40 8 (101)

Ipilimumab CTLA4 1/2 NCT02304458 484 N/A Ongoing, recruiting

Imatinib c-KIT + PDGF-R 2 NCT00031915 185 1.6 (102)

Imatinib c-KIT + PDGF-R 2 NCT00062205 7 14.2 (103)

Imatinib c-KIT + PDGF-R 2 NCT00030667 70 1.7 (104)

Bevacizumab VEGF-R 2 NCT00516295 7 N/A Closed

Pazopanib Multi-targeted RTK 1 NCT00929903 53 3.9 (105)

Lexatumumab TRAIL-R 1 NCT00428272 24 0 (106)

Hu14.18K322A GD2 1 NCT02159443 100 N/A Ongoing, recruiting

Ontuxizumab Endosialin 1 NCT01748721 27 0 (107)

Enoblituzumab B7-H3 1 NCT02982941 25 N/A Active, not recruiting

Nivolumab + ABI-009 PD1 + mTOR 1/2 NCT03190174 40 N/A Ongoing, recruiting

Ipilimumab ± Nivolumab CTLA4 ± PD1 1/2 NCT02304458 484 N/A Ongoing, recruiting

Ipilimumab + Nivolumab CTLA4+PD1 2 NCT02982486 60 N/A Not yet recruiting

EGFR806 CAR T Cell EGFR 1 NCT03618381 36 N/A Ongoing, recruiting

Sarcoma-specific CAR-T

cells

CD133, GD2, Muc1,

CD117

1 NCT03356782 20 N/A Ongoing, recruiting

growth, viability, and migratory capabilities of ES cells in vitro
(126). The authors concluded that AXL is also a potential target
for ES.

Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase
that may also serve as a targetable oncogene in ES. SYK is
known to promote cell survival in a variety of pediatric tumors
including leukemia and retinoblastoma (127). Sun et al. recently
found that SYK is also highly phosphorylated and active in
ES, with inhibition of SYK resulting in decreased cell growth
both in vivo and in vitro (128). This study also identified c-
MYC as an SYK-promoted gene that in turn could activate
transcription of MALAT1, resulting in tumor growth. Given
the oncogenicity that results from activation of the SYK/c-
MYC/MALAT1 pathway, inhibition of SYK signaling may be a
potential treatment strategy for ES, although further preclinical

studies testing this hypothesis are needed before translation into
the clinical setting.

TRAIL
Tumor necrosis factor-related-apoptosis-inducing ligand
(TRAIL) is a member of the tumor necrosis factor (TNF) family
that plays a key role in immunosurveillance and apoptosis.
The binding of TRAIL to death receptors (TRAIL-R1 and
TRAIL-R2) leads to the activation of the extrinsic apoptosis
pathway (129). Pediatric soft tissue sarcomas including ES
and rhabdomyosarcoma are sensitive to TRAIL-induced
apoptosis (130, 131). As TRAIL-R1 and TRAIL-R2 have
restricted expression on normal tissue, TRAIL receptors are
attractive immune targets. A monoclonal antibody activating
TRAIL-R2, lexatumumab, has been tested in the phase I
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FIGURE 2 | Clinical trial results of anti-IGF-1R therapy across phase II trials.

setting for adult solid tumors (132), as well as pediatric
solids tumors including four patients with ES, with results
showing some anti-tumor activity but no partial or complete
responses (106).

Gangliosides
The ganglioside, GD2, is a cell-surface molecule with a highly
restricted pattern of expression, found in neuroectoderm-derived
tumors and sarcomas, including ES. Although the expression
level of GD2 is heterogeneous across different ES cell lines
and primary ES cell cultures, GD2 is still a potential cell
surface target for treating ES, with expression levels ranging
from 40 to 90% from diagnostic biopsy samples (133, 134).
In addition, anti-GD2 antibodies have been actively tested in
clinical trials for neuroblastoma for over two decades, with
proven safety and efficacy (23, 24, 135–137). An ongoing
clinical trial study at St. Jude is testing the role of the
anti-GD2 antibody, hu14.18K322A, in the treatment of ES
(NCT02159443). GD2 remains an attractive target in ES,
but more preclinical and clinical data are needed to justify
this approach.

GD3 is a ganglioside that is primarily expressed on
human melanoma tissues (138), with recent findings of high
expression levels on pediatric tumors including osteosarcoma,
ES, rhabdomyosarcoma, and desmoplastic small round cell
tumor (DSRCT) (134). Although there are no randomized
trials testing anti-GD3 antibodies as there are for GD2, the
targeting of GD3 has shown activity in phase I trials including
patients with melanoma (139, 140). In addition, a phase I
trial of a bivalent GD2/GD3 vaccine for neuroblastoma showed
encouraging survival benefit (141), with a phase II study ongoing.
Like GD2, GD3’s expression is largely limited to malignant cells
and some activated T cells, making it a potential immune target
for ES. N-glycolated GD3 (Neu-Gc-GM3) also has a restricted
expression pattern on malignant cells and not normal tissues.
A controlled phase II trial in patients with metastasis breast
cancer with a Neu-Gc-GM3 based vaccine showed that the
vaccine was well-tolerated, immunogenic, and had encouraging

efficacy (142). Neu-Gc-GM3 is also expressed on the surface of
ES, Wilm’s tumor, and neuroblastoma (143), making it another
potential target for treatment of ES that could avoid non-
specific toxicity.

B7-H3
B7-H3 is a cell surface immunomodulatory glycoprotein that
could play a role in tumor progression via the inhibition of T cells
and natural killer cells (144). B7-H3 is overexpressed in a variety
of adult and pediatric tumors including ES (145), and shown to be
a good target for tumor purging before stem cell transplant (146).
Radioimmunotherapy directed at B7-H3 using the antibody,
8H9, has been tested in the phase I setting for patients with
DSCRT (NCT01099644), neuroblastoma with central nervous
involvement (NCT00089245 and NCT03275402), and diffuse
intrinsic pontine glioma (NCT01502917). Results have shown
minimal toxicity and encouraging efficacy, with the potential
to increase survival in patient populations that have very few
treatment options (147–149).

Endosialin
Endosialin (also known as tumor endothelial marker-1 or TEM-
1) is a cell surface glycoprotein that is found on mural cells,
myofibroblasts, as well as a variety of pediatric tumors including
ES, rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and
neuroblastoma (150–153). Endosialin promotes tumor cell
growth and neovascular formation via the platelet-derived
growth factor (PDGF) pathway (154). Ontuxizumab is a
humanized monoclonal antibody targeting endosialin and
has the ability to block PDGF signaling and tumor stroma
organization (155). A phase I study of ontuxizumab in relapsed
or refractory pediatric solid tumors (including four patients with
ES) showed that ontuxizumab was well tolerated, although no
objective responses were seen (107).

STEAP1
Another potential therapeutic target for ES includes the six-
transmembrane epithelial antigen of the prostate 1 (STEAP 1).
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STEAP1 is a 339-amino-acid protein named for its six
transmembrane spanning regions, and is upregulated in
a variety of tumors, including prostate, bladder, ovarian,
rhabdomyosarcoma, and ES (156, 157). Grunewald et al. utilized
transcriptome and proteome analyses as well as functional studies
to show that STEAP1 expression correlates with oxidative stress
responses and elevated levels of reactive oxygen species. This in
turn regulates redox-sensitive and pro-invasive genes, suggesting
that STEAP1 may be associated with an invasive phenotype of
ES (158). Grunewald et al. also found that STEAP1 can serve as
an immunohistological marker for patients with ES; 71 of 114
(62.3%) ES samples displayed detectable membranous STEAP1
immunoreactivity, making STEAP1 a potential therapeutic target
(159). Another genetic profiling study done in ES patients
showed that the absence of STEAP1 transcript in the bone
marrow was strongly correlated with patient overall survival and
survival without new metastases (160). Given the expression of
STEAP1 in >60% of ES tumors but with limited expression
in normal tissue (secretory tissue of the bladder and prostate)
(161, 162), it could be a useful target for antibody-based and
T-cell based strategies.

CD99
CD99 antigen, also known as MIC2 or single-chain type-1
glycoprotein, is a heavily O-glycosylated transmembrane protein
with a molecular weight of 32 kD. It is expressed on leukocytes
and is believed to increase T-cell adhesion and function in
apoptosis (88, 163). CD99 is also expressed on the surface
of ES cells, making it an attractive tumor target. Reduced
CD99 expression leads to neural differentiation of ES cells,
suggesting that CD99 may have role in the inhibition of neural
differentiation (164). In addition, knockdown of CD99 in ES
cell lines results in decreased oncogenic potential, including
decreased growth in tissue culture, diminished colony formation
in soft agar assays, reduced cell motility, and smaller tumors with
less metastasis in xenograft models. Given CD99’s involvement
in apoptosis, CD99 engagement in ES cell lines have led to
caspase-independent cell death (165, 166), making anti-CD99
antibody therapy another attractive therapeutic approach (75).
Cu-labeled anti-CD99 antibodies were shown to be superior
to FDG-PET in detecting micrometastases in xenograft models
(167). A combination of doxorubicin and an anti-CD99 antibody
could improve mouse survival (168, 169). Unfortunately, CD99
is not only expressed on ES but also on normal human tissues
including the testis, gastric mucosa, prostate, and hematopoietic
tissues, with potential of off-tumor, on-target bystander toxicities
when used in humans (170).

Methionine Depletion
Cancer cells require methionine for aberrant transmethylation.
As a result, cancers develop a dependence on methionine (171),
with deprivation of methionine resulting in cell cycle arrest
and eventually apoptosis (172). Recombinant methioninase (L-
methionine-cleaving enzyme from Pseudomonas putida) acts
to deplete methionine and in a variety of tumors including
ES, results in arrested cell growth in preclinical models
(typically at the S/G2 phase) (173). Although prolonged use of

recombinant methioninase is not feasible given the potential
liver toxicity, there has been interest in combining recombinant
methioninase with standard chemotherapeutic agents, especially
those active in S/G2 (171). For example, in preclinical
models of neuroblastoma, recombinant methioninase showed
synergism with microtubule depolymerization agents (174), and
in preclinical models of synovial sarcoma, overcame resistance to
doxorubicin monotherapy (175).

IMMUNOTHERAPY

Immunotherapy is a treatment modality for many human
solid tumors. Unfortunately, ES belongs to the majority
class called “cold” tumors where little immune and/or
inflammatory infiltrates are present, whether as a result of
immune privilege, immune escape, or immune inhibition by the
tumor microenvironment. Consistent with the absence of tumor
infiltrating lymphocytes (TILs), ES tumors typically have low
expressions of immune checkpoint molecules including PD-1
and PD-L1 (176). Nevertheless, the observation of an increased
number of tumor-infiltrating CD8+ T cells associated with
decreased tumor progression of ES might suggest a role for T cell
based therapy if only T cells can be educated appropriately (177).

Cell-Based Immunotherapy and Vaccines
Cell-mediated immunotherapy strategies explored in ES include
both T cell cancer vaccines and cell-based immunotherapy.
Peptides produced from the EWS-FLI1 fusion protein are weakly
immunogenic and do not significantly stimulate cytotoxic T-
lymphocytes (CTL). Methods to enhance antigen presentation
and strengthen the immunogenicity of the EWS-FLI1 peptides
have been explored. For example, Evans et al. found that a
modified peptide, YLNPSVDSV, induced strong CTL killing in
ES cells, and the adoptive transfer of these specific CTLs intomice
killed ES xenografts and increased survival (178). A translocation
specific peptide vaccine has also been tested a pilot study in
humans, although disappointingly with no impact on patient
outcomes (179). Membrane-associated phospholipase A1 beta
(LIPI) is a cancer/testis antigens (CTA) that is highly tumor
specific, making it a potential target for immune-based therapies
as well (180). Mahlendorf et al. found that CTLs targeting LIPI-
derived peptides, LDYTDAKFV and NLLKHGASL, were able to
kill ES cells in vitro (181).

Ghisoli et al. tested the efficacy and safety of a therapeutic
vaccine known as FANG immunotherapy, consisting of
autologous tumor cells that have been transfected with RNAi
bi-shRNA furin and the rhGMCSF transgene. This creates a
vaccine that assists in antigen presentation and the recruiting
of regional nodal migration of dendritic cells (via GM-CSF),
with the possibility of negating the immunosuppressive
proteins including TGB1 and TGB2 (via furin). A pilot trial
of FANG immunotherapy given to 12 patients with advanced
or metastatic ES showed a good safety profile and successful
elicitation of a tumor-specific systemic immune response in
all patients. Additionally, the 1-year overall survival for this
heavily pre-treated cohort was 75% (182). A two-part Phase
II study utilizing FANG immunotherapy in patients with
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refractory ES is now ongoing (NCT02511132). In the first
part, patients with refractory ES are randomized to either
FANG immunotherapy or chemotherapy with gemcitabine
and docetaxel; while in part two, patients with refractory ES
receive FANG immunotherapy in combination with irinotecan
and temozolomide. Another strategy utilizing dendritic cell
vaccination with or without recombinant human IL7 has
been tested in patients with metastatic and recurrent ES. The
5-year survival in the intent-to-treat analysis for patients with
newly metastatic ES or rhabdomyosarcoma was 77%, with
a T cell response to autologous tumor lysate seen in 62% of
patients (183).

Natural killer (NK) cell based immunotherapy is another
potential treatment strategy for ES. In the absence of tumor
specific antibody, NK cells can kill ES tumors. In the presence
of specific antibodies, NK cells mediate efficient antibody-
dependent cell mediated cytotoxicity (ADCC). Cho et al.
tested NK cell cytotoxicity in a variety of pediatric tumors,
and found that ES cells are sensitive to the cytotoxicity
of expanded, activated NK cells in vitro (184). NK cell
killing of ES cells is specifically mediated via NKG2D and
DNAM-1 receptor dependent pathways (185), and histone
deacetylase inhibitors can enhance expression of NKG2D
ligands and increase the sensitivity of ES cell lines to
NKG2D-depedent toxicity (186). Additionally, expanded
NK cells have shown efficacy in treating immunodeficient
mice with ES tumors, resulting in long-lasting disease
control (184).

Immune Checkpoint Inhibitors and
CAR-T Cells
Immune checkpoint inhibitors have been evaluated in a
multitude of clinical trials involving many different cancer types
and are currently an area of active investigation in ES (Table 2).
Ongoing clinical trials testing checkpoint inhibitors in ES
patients include: Ipilimumab (anti-CTLA4, NCT02304458),
Nivolumab (Anti-PD1, NCT03190174), Ipilimumab +

Nivolumab (NCT02982486), and Enoblituzumab (B7-H3,
NCT02982941). Given the paucity of mutations in ES (hence low
frequency of neoantigens) accompanied by low expression levels
of PD-1 and PD-L1, it remains questionable if patients with ES
can derive significant clinical benefit from these agents.

To overcome the low frequency of tumor-specific T cell clones,
CAR T cells may provide an alternative option. In one adoptive
T cell study, patients are randomized to either EGFR-specific
CAR T cells or CAR T cells directed at both EGFR and CD19
(NCT03618381). A second ongoing trial is treating patients
with relapsed or metastatic ES with 4th generation CAR T cells
(NCT03356782). Another strategy explored in a pilot study of
ES patients utilized chondromodulin-I/HLA-A∗02:01/antigen-
specific allorestricted T cells, with a treatment response seen in
one of three patients (187). Given the lack of success of CART
across a broad spectrum of human solid tumors, more research
is probably needed before the success of CD19 CART could be
translated into solid tumor systems. Their clinical application will
likely have to wait for more in-depth research.

FUTURE DIRECTIONS FOR COMBINED
MODALITY TREATMENT

Although the novel therapies discussed above have shown
encouraging results in preclinical models of ES, successful
integration into the clinical setting remains challenging. Careful
consideration must be given to the timing of signaling blockade
(with small molecules) and immunotherapy (whether antibody-
based or cell-based) in relation to standard chemoradiation
in order to maximize clinical benefit. For example, patients
with locally advanced non-small cell lung cancer treated on
the PACIFIC trial were randomized to receive either placebo
or adjuvant durvalumab (PD-L1 inhibitor) after completion
of definitive chemoradiation (188). The addition of adjuvant
durvalumab significantly improved progression-free survival,
with the benefit exclusively seen in patients who received
durvalumab within 2 weeks of completion of RT. These findings
highlight the importance of the timing of immunotherapy in
relation to RT. However, the ideal sequencing of immunotherapy
with standard therapy for many adult solid tumors remains
unknown, and preclinical data have largely resulted in conflicting
data (189). Similarly how the inhibition of signaling pathways
could be optimally combined with cytotoxic therapy, either
concurrently or sequentially, requires more detailed testing
in preclinical models. Perhaps combination therapy targeting
multiple signaling pathways to overcome heterogeneity and
resistance is one of several principles one can borrow from the
past experience in cancer therapeutics.

In ES, where the intensive induction chemotherapy is
immunosuppressive, a 6–12 month recovery period is generally
needed for any adaptive immunity to be operational (190). As
in metastatic neuroblastoma treated with N6/N6-like induction
regimens (from which P6 regimen was derived), a viable
immunotherapy option immediately post-chemotherapy is the
“passive” monoclonal antibody approach (e.g., against GD2).
That success in neuroblastoma is predicated on its sensitivity
to myeloid-ADCC and cell-mediated cytotoxicity, where the
effector cells and proteins (neutrophils and complement) can
rapidly recover even after strong chemotherapy, and where
myeloid cells can be put into overdrive using growth factors
such as GM-CSF. On the other hand, even though CD16(+)
NK cells that mediate NK-ADCC recover faster than T and
B cells, their numbers are still suboptimal. Furthermore, after
many years of testing, IL2 is now proven to have no role
in accelerating their recovery or function to impact patient
outcome (191). For neuroblastoma, the 6-month immune
convalescence has pushed the timing of the GD2/GD3 vaccine
to later on during consolidation when patients could make a
meaningful anti-ganglioside immune response. It is expected
that T cell based therapies using bispecific antibodies (BsAb),
T cell vaccines, or checkpoint inhibitors will likely require a
similar recovery period. Alternatively, if healthy autologous T
cells are cryopreserved before significant chemotherapy damage,
or if third party antigen-primed (e.g., EBV) T cells, can be
activated ex vivo for arming with BsAb or for viral transduction
to make CARTs, they may be ideal for “passive” adoptive cell
therapy. KIR-mismatched NK cells may also be used for cell
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therapy with or without anti-tumor antibodies, although their
expansion ex vivo will require cocktails of interleukins (e.g., IL7,
IL15, IL21).

For patients with locally advanced ES, administration of
“passive” immunotherapy (using tumor-selective antibodies,
CART, BsAb, or BsAb armed-T cells), either integrated with
or right after the completion of definitive radiation therapy
(as done on the PACIFIC trial) may provide the most
benefit given the immunomodulatory effects of RT such as
increased neoantigen presentation and enhancement of T-cell
infiltration (192–195). Again, full immune recovery will not be
complete for at least 6–12 months, at which point a vaccine
program may be most useful. For patients with metastatic
disease, adding immunotherapy to chemotherapies that are
not immunosuppressive could be advocated (196–198). Such
combination strategies of immunotherapy with RT have been
explored in many preclinical and clinical studies of adult solid
tumors (195, 198). However, parallel studies in pediatric solid
tumors including ES remain largely unexplored. A more in-
depth immune profiling and genomic tracing of ES as patients
recover from induction chemoradiotherapy, or suffer relapse, is
critically important to inform the future design and integration
of immunotherapy and small molecules into the standard of
care of ES.

Further consideration must also be taken to incorporating
ongoing discoveries of the molecularly diverse underpinnings
of ES. For many years, the heterogenous clinical presentations
and outcomes of ES were at odds with its relative genomic
homogeneity, consisting of near-universal EWS-FLI1 fusion
alterations and relatively few other recurrent somatic alterations
(199). However, recent in-depth epigenomic profiling of ES
has uncovered significant inter-individual and intra-tumoral
heterogeneity of DNA methylation states, most pronounced in
metastatic tumors (200). Additionally, large genomic sequencing
efforts in ES have shown that the presence of intra-tumor genetic
heterogeneity at diagnosis affects the evolution of recurrent ES

tumors, with an∼3-fold increase in number of genetic alterations
seen in relapsed samples (199). This genetic and epigenetic
intra-tumoral heterogeneity likely plays a substantial role in
driving clonal evolution and clinical response to therapy (201).
Therefore, incorporating in-depth molecular profiling both at
diagnosis and at the time of recurrence may be imperative to the
potential design and success of precision-targeted ES therapy.

CONCLUSION

Proteomics and genomic analysis of normal and tumor tissue
have led to the discovery of many genes whose downstream
products may provide substrates for targeted therapies. Valuable
insights into the role of different targets in ES biology have
been gained throughout the past two decades. Antibody-
based and cell-based immunotherapy have emerged rapidly as
potential modalities for ES (20). Many have shown promising
results in preclinical models. The clinical success of GD2-based
immunotherapy in neuroblastoma could provide a framework
in designing the next generation strategies for metastatic ES, a
tumor much less lethal than high risk neuroblastoma historically.
The successful integration of biologic targeted therapies and
immunotherapy into standard of care will be the future challenge
in changing the natural history of a lethal disease.
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