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Background: Conventional methods for predicting treatment response to neoadjuvant

chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC)

are limited.

Methods: This study retrospectively recruited 134 LARC patients who underwent

standard nCRT followed by total mesorectal excision surgery in our institution. Based

on pre-operative axial T2-weighted images, machine learning radiomics was performed.

A receiver operating characteristic (ROC) curve was performed to test the efficiencies of

the predictive model.

Results: Among the 134 patients, 32 (23.9%) achieved pathological complete

response (pCR), 69 (51.5%) achieved a good response, and 91 (67.9%) achieved

down-staging. For prediction of pCR, good-response, and down-staging, the predictive

model demonstrated high classification efficiencies, with an AUC value of 0.91 (95% CI:

0.83–0.98), 0.90 (95% CI: 0.83–0.97), and 0.93 (95% CI: 0.87–0.98), respectively.

Conclusion: Our machine learning radiomics model showed promise for predicting

response to nCRT in patients with LARC. Our predictive model based on the commonly

used T2-weighted images on pelvic Magnetic Resonance Imaging (MRI) scans has the

potential to be adapted in clinical practice.

Novelty and Impact Statements: Methods for predicting the response of the locally

advanced rectal cancer (LARC, T3-4, or N+) to neoadjuvant chemoradiotherapy (nCRT)

is lacking. In the present study, we developed a new machine learning radiomics
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method based on T2-weighted images. As a non-invasive tool, this method facilitates

prediction performance effectively. It achieves a satisfactory overall diagnostic accuracy

for predicting of pCR, good response, and down-staging show an AUC of 0.908, 0.902,

and 0.930 in LARC patients, respectively.

Keywords: locally advanced rectal cancer (LARC), neoadjuvant chemoradiotherapy (nCRT), treatment response,

magnetic resonance imaging (MRI), machine learning radiomics

INTRODUCTION

Rectal cancer is a common malignancy worldwide, accounting
for ∼30–50% of colorectal cancer (1, 2). Moreover, in
rectal cancer patients, lesions are usually located in middle-
low rectum, which causes increased difficulty in treatment
and worse prognosis, especially the locally advanced rectal
cancer (LARC, T3-4 or N+) (3, 4). Currently, neoadjuvant
chemoradiotherapy (nCRT) followed by total mesorectal excision
is the recommended treatment for LARC patients, especially
those with lesions located in the middle-low rectum (5). The
advantages of nCRT are usually significant (6, 7). However,
the response of LARC to nCRT varies widely, ranging from
pathological complete response (pCR, ypT0N0M0) with no
viable tumor cells left in the surgical specimen, to virtually no
tumor regression at all (stable) or even tumor progression in a
small group of patients (8, 9). Among these patients, pCR is not
only associated with favorable disease-free and overall survival (7,
10), but also motivates the “watch-and-wait” treatment strategy,
a non-operative option for patients achieving clinical complete
response (11). Therefore, clinicians are motivated to identify
ways to accurately predict patients’ individual responses to nCRT.

Radiological examination has been considered to be one of
the means most likely to accomplish this task (12). Among
all modalities, Magnetic Resonance Imaging (MRI) is regarded
as the most promising method because it uses no radiation,
shows high soft tissue resolution, and has wide routine
clinical application for evaluation of rectal cancer. Notably,
some conventional and functional MRI methods have been
reported to show some advantages in predicting tumor response
to nCRT (13–15). Unfortunately, conventional MRI analysis
remains limited when predict treatment response in individual
patient using experience (16). There is a need to develop
new methods.

Quantitative image data analysis, such as texture analysis
and radiomics are procedures for converting clinical images
into high-dimensional, exploitable, and quantitative imaging
features by high-throughput extraction of data-characterization
algorithms (17). In addition to clinical outcomes, the biomedical
information contained in medical images, such as overall
information about phenotype and microenvironment of the
tumor, may be vitally important for evidence-based clinical

Abbreviations: LARC, locally advanced rectal cancer; nCRT, neoadjuvant

chemoradiotherapy; MRI, magnetic resonance imaging; RC, rectal cancer; CRC,

colorectal cancer; pCR, pathological complete response; cCR, clinical complete

response; AUC, area under curve; DWI, diffusion-weighted imaging; GR, good

response; ROI, region of interest; ROC, receiver operating characteristic.

decision support. In theory, all magnetic resonance images in
different can be used as a source of analysis. In theory, for
quantitative analysis, used features can be extracted from images
of all modalities (12, 16, 18–22). However, T2 weighted image
is almost the most widely used one, when considering the wide
availability of images which can be stably acquired based on
different machines. Quantitative image data analysis methods
have the potential to reveal such biomedical information,
providing an opportunity to improve decision-support in
oncology and non-invasively (17, 23). The potential advantage of
this kind of method has already been verified in colorectal cancer
(24) and a variety of other cancers, including nasopharyngeal
carcinoma (25), lung cancer (17), and breast cancer (26).
Recently, some independent studies (12, 19–22, 24) reported
that a multimodality MRI based radiomics model could predict
RC tumor response to nCRT with an improved accuracy
for pCR and good response prediction. However, due to the
relatively small sample size, or the inclusion of multimodality
images with other MRI sequences such as diffusion-weighted
imaging, or the lack of integration of important relevant clinical
pathological features, there is a need for improving accuracy of
the prediction model.

In the present study, we retrospectively collected
134 consecutive surgically and pathologically confirmed
LARC patients who received standard nCRT before
surgery. We developed a machine learning radiomics
model based on imaging data extracted from the
T2-weighted images, and validated its prediction
efficiency of treatment response to nCRT in patients
with LARC.

MATERIALS AND METHODS

Patients
This retrospective study was approved by our institutional review
board (IRB No. 201610070). The written informed consents from
patients were waived.

Medical data of consecutive biopsy-proven rectal
adenocarcinoma patients with LARC treated with nCRT
followed by total mesorectal excision between March 2009 and
December 2017 in our institution were retrospectively analyzed.
Complete clinical data, including MRI imaging of all patient’s
performed before radiotherapy, was analyzed. Details about
the inclusion and exclusion criteria, clinical and pathological
characteristics, and treatments information can be found in
Supplementary Files. The patients recruiting process was shown
in Figure 1.
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FIGURE 1 | Flow-chart. LARC, Locally advanced rectal cancer; nCRT, neoadjuvant chemoradiotherapy; TME, total mesorectal excision.

Pathological Assessments of
Tumor Samples
Each specimen was sampled and evaluated by two experienced
dedicated gastrointestinal pathologists. The two pathologists
were both blind to the MRI data and clinical data. Criteria for
pCRT and non-pCRT were defined as described in previous
reports (8). We also classified TRG 3–4 into the good response
(GR) group, and TRG 0–2 into the non-GR group according
to Dowrak/Rödel’s system (27). Changes in TNM staging were
recorded by comparing to cTNM before the surgery, and
responses were classed as either down-staging or non-down-
staging (stability and progression). Details can be found in the
Supplementary Files.

MRI Image Acquisition
All patients underwent an MRI scan in our hospital with either
a 1.5 Tesla (Siemens, Erlangen, Germany) or a 3.0 Telsa scanner
(GE, Milwaukee, US), using a phased-array body coil, 3–10 days
before the start of chemoradiation. To ensure MRI image quality,
a quality assurance check was performed biweekly by a hospital
radiological physicist and executed bimonthly by the Siemens or
GE engineer, as appropriate, according to the maintenance rules
for the MRI scanners in our institute. Axial T2-weighted (T2w
fast spin echo sequence) images (T2WI) and T1-weighted (T1w
spin echo sequence) images (T1WI) were acquired regularly.
Subsequently, multiphase T1w images were obtained before and
after contrast injection, using a spoiled gradient echo sequence
(LAVA/VIBE sequence). Contrast injection and data acquisition
were triggered simultaneously. Briefly, a total of four repetitions
were acquired, including one before the contrast injection and
three after the injection (at 28, 65, and 120 s). For contrast,

generally 90–100ml of the gadolinium-based contrast media
dimeglumine gadopentetate (Magnevist; Schering Diagnostics
AG, Berlin, Germany) was administrated intravenously at a rate
of 2.5 ml/s through a high pressure injector (Optistar LE, Liebel-
Flarisheim Company, OH, USA).

Since all patients had at least three kinds of MRI images
(T1WI, T2WI, and enhanced T1WI), MRI images from these
three serials were included in the present study.

MRI Image Analysis
All MRI images of each patient were evaluated independently
by two experienced abdominal radiologists (reader 1. C.C with 7
years of experience; reader 2, L.X.Y with 15 years of experience),
who were totally blinded to all medical information. Final
disagreement was resolved in a panel format including two
additional radiologists (L.W.H and Y.X.P). The location and
boundary of the tumor were confirmed, tumor size, the distance
from the lower edge of the tumor to the anal canal, and the MRI-
based TNM stage were recorded. The findings were recorded
by consensus.

Texture Analysis Feature Extraction
For each patient, an anonymized representative axial T2WI
image in which the lesion had the largest cross-sectional
area was selected and retrieved from Picture Archiving and
Communication System (PACS, Carestrem, Canada) using
Digital Imaging and Communications in Medicine (DICOM)
Works software (version 1.3.5). Subsequently, each image was
transferred to a personal computer and inputted into the texture
analysis software (MaZda Version 4.6, Institute of Electronics,
Technical University of Lodz, Poland) (28).
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Briefly, the process of texture analysis feature extraction was
conducted by 2-steps as follows: (a) selecting and retrieving the
suitable MRI images, and then (b) outlining the tumors as the
regions of interest (ROI), and extracting quantitative texture
analysis features by using the texture analysis software (MaZda
Version 4.6, Institute of Electronics, Technical University of
Lodz, Poland).

Tumors were outlined as a region of interest (ROI) by
performing MaZda on T2WI, while using all other image
sequences (especially gadolinium-enhanced images) as references
in cases where the margin of the rectal lesion was difficult to
define on unenhanced images. Briefly, a ROI was delineated
initially by following the tumor outline, with notation that fat
and air outside the mass are not included. Then, the ROI
was saved for subsequent texture analysis. Contouring was
performed carefully to cover the maximum extent of the tumor
without exceeding the lesion border, to avoid contamination
from adjacent normal rectal tissues or the intestinal lumen.
For each ROI, a total of 340 quantitative features were
automatically generated using MaZda software, including a
gray level histogram, gradient, run-length matrix, co-occurrence
matrix, autoregressive model, and wavelet transform analysis
according to the software settings.

Evaluation of the Reproducibility of
Radiomics Feature Extraction by the
Two Radiologists
The reproducibility assessment of the features extracted by the
two radiologists from the independent segmentations of T2WI
images of all patients was performed. The inter-observer (reader
1 v reader 2) and intra-observer (reader 1 twice) correlation
coefficient values were evaluated. The final consistency is
evaluated by the following criteria regarding the correlation
coefficient values: <0.20 indicates poor reproducibility, 0.21–
0.40 fair reproducibility, 0.40–0.60 moderate reproducibility,
0.61–0.80 good reproducibility, and 0.81–1.00 excellent
reproducibility. Generally, a correlation coefficient >0.75 is
regarded as being in good agreement.

For the Kappa consistency test, excellent, good, and poor
agreement were defined as kappa values of >0.81, in the range
of 0.61–0.80, and <0.60, respectively.

The Mann-Whitney U-test was used to compare the values of
each feature between the two groups. An independent samples
t-test or Kruskal-Wallis H test, where appropriate, was used to
assess the differences between the features generated by reader 1
(first time) and those generated by reader 2, as well as between
the features generated twice by reader 1.

Inter-observer and intra-observer reproducibility of texture
feature extraction was initially analyzed with 50 randomly chosen
images from all T2WI images selected for evaluation by the
two radiologists (reader 1, and reader 2). To assess the intra-
observer reproducibility, reader 1 repeated the generation of
texture features twice within a 2-week period following the
same procedure. Reader 1 completed the workflow for the
remaining images.

Statistical Analysis, Features Selection,
Signature Generation, and Prediction
Model Building
All statistical analyses were conducted using IBM SPSS version
20.0.0 (IBM Corporation, Armonk, NY, USA). To test the
difference between groups, the Wilcoxon rank-sum test was
performed for the quantitative features, and the chi-square test
or fisher’s exact test was performed for the qualitative features.

All data processing, data reduction and feature selection,
and model built were performed using MATLAB 2017a (The
Mathworks, Inc., Natick, MA, USA). The least absolute shrinkage
and selection operator (LASSO) method, was used to select the
most useful predictive features from the primary data set, and
a radiomics score (Rad-score) was calculated for each patient
at the mean time as a linear combination of selected features
that were weighted by their respective coefficients. Based on
these selected features, another classification model was also
constructed by Random forest (RF), and the RF-score was
generated. Subsequently, a combined classification model was
finally built by the support vectormachine (SVM)method (SVM-
score), based on Rad-score and RF-score in the previous step.
On the basis of two SVM-scores obtained, calculated from TE
and TRC features, respectively, a final classification model was
generated by using the SVM method again (SVM-score-final).
Through the above steps, a total of seven models were generated
representing each classification task, considering there are two
kinds of data (Texture analysis [TA] features, and Traditional
radiological-clinicopathological [TRC] features) that were used
to build the model. The seven models include three models
generated from TA features (model based on Rad-score, RF
model, and first-step SVM model), three models generated from
TRC features (model based on Rad-score, RF model, and first-
step SVMmodel), and one combined SVMmodel.

The basic idea of this algorithm is to consider LASSO and
RF as weak regressors and combine them using SVM. For
each type of data, i.e., texture feature, we first use LASSO to
obtain the Rad-score, and use its side product, i.e., important
features, as the feature set of RF to obtain the RF-score. Since
Rad-score and RF-score are independently acquired by two
different weak regressors, using SVM to regress them in a two-
dimensional plane achieves a better result than by them owns.
Moreover, data sets Texture feature and Traditional radiological-
clinicopathological data are also independent to each other. So
for the same reason, we use SVM to regress the scores from
Texture feature and Traditional radiological-clinicopathological
data to get the final regression score. Finally, the regressed scores
can be binarized for further prediction.

To evaluate the performance of the models, all patients were
divided into two cohorts: a training cohort and a validation
cohort. The models were developed in the training cohort, and
tested in the validation cohort. The classification efficiencies of
each kind of model mentioned above, including the receiver
operating characteristic (ROC) curves, both in the training
and validation cohort were calculated. A P-value < 0.05 was
considered statistically significant. Details of the flow chart for
building the classification model are shown in Figure 2.
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FIGURE 2 | Flow chart depicting construction of the classification models.

LARC, locally advanced rectal cancer; TE, texture features; TRC Traditional

radiological features and clinicopathological features; LASSO, least absolute

shrinkage and selection operator; RF Random forest; SVM support vector

machine. The nx or ny terms used here indicate the different numbers of

selected features used in the LASSO method with three different reduction

schemes based on 340 TE features and 31 TRC features, respectively. The

texture analysis software used was MaZda Version 4.6 (Institute of Electronics,

Technical University of Lodz, Poland).

RESULTS

Patients Characteristics
There were134 patients enrolled in the present study. Patients’
characteristics in the training and validation cohorts were
summarized in Table 1. Patients were randomly allocated into
training cohort and validation cohort in a 3:1 ratio for
building the pCR predictive model, the down-staging model,
and the good response model. No differences were found
between the training and validation cohorts in any of the three
models. In addition, the patients’ clinicopathological data mostly
consisting of laboratory data were also used in building the
predictive models.

The Classification Model Building and
Predicting Efficiency
From a total of 340 features that were extracted from T2-wighted
images for each patient, a set of features with corresponding
numbers were selected by LASSO and used to calculate the Rad-
scores for the pCR, Good Response, and Down-staging models.

Predicting Pathological Complete Response (pCR)
On the basis of the selected 10 texture and 8 clinicopathological
features, a predictive model was finally constructed with SVM
method for pCR prediction. The SVM model yielded an AUC
of 90.78% in the training cohort, and 87.45% in the validation
cohort (Figure 3 and Supplementary Figure 1).

Predicting Good Response (GR)
The predictive model built based on the 10 texture features and
7 clinicopathological features achieved an AUC of 90.17% in the
training cohort, and 89.72% in the validation cohort (Figure 3
and Supplementary Figure 1).

Predicting Down-Staging
The predictive model with 10 texture features and 7
clinicopathological features showed an AUC of 92.97% in the
training cohort, and 89.20% in the validation cohort (Figure 3
and Supplementary Figure 1). Details about prediction
efficiency of three kinds of models could be found in Table 2.
The correlation matrix of the selected features used in the three
kinds of models was showed as Figure 4.

DISCUSSION

To the best of our knowledge, this was the first cohort
studied to date utilizing monosequence-MRI-based machine
learning radiomics to predict tumor response to neoadjuvant
chemoradiation therapy in patients with locally advanced rectal
cancer. Our predictive model constructed with both radiomics
features and clinicopathological data achieved higher accuracies
than previously reported in the literature, with an AUC
of more than 90%. Substantial evidence from prior studies
has demonstrated that a number of clinicopathologcial and
radiological features may help to predict treatment response
(16, 18, 29). Nevertheless, no single factor has stood out to be
the most reliable way for clinicians to use in decision making
process (6, 16). It is important to distinguish the LARC patients
who will likely to respond to nCRT from patients who would not.
However, this has not been achieved yet. We introduced here a
new imaging oriented strategy for a better prediction, which may
have potential for clinical practice.

Our study is in general accord with prior research (19, 30, 31).
Nie et al. (12) have reported a relatively satisfactory result by
using a radiomics method, with an AUC of 0.84 for pCR and
0.89 for good response prediction. Most recently, Cui et al. (19)
reported a further attempt on a bigger group LARC patients by
similar methods, which show very high predictive efficiency with
an AUC of 0.944. In addition, several LARC studies (20, 21) also
perform similar radiomics-based studies with good experimental
results, using features extracted from multimodality MR images
including T2WI. However, there were obvious advantages in our
study when compared to these studies. First, we fully evaluated
three aspects of the treatment response: not only pCR and good
response, but also down-staging. Our study has the potential to
provide more information on the tumor and treatment response.
Second, the number of enrolled patients in our study (n = 134),
was larger than that in the Nie’s (n = 48), and comparable

Frontiers in Oncology | www.frontiersin.org 5 June 2019 | Volume 9 | Article 552

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yi et al. Application of Radiomics in LARC

TABLE 1 | Clinicopathological characteristics in three tumor response predictive models.

Down-staging predictive model pCR predictive model Good response predictive model

Training

cohort

Validation

cohort

P-value Training

cohort

Validation

cohort

P-value Training

cohort

Validation

cohort

P-value

Gender

Male 54 (57.4%) 26 (65.0%) 0.415 57 (61.3%) 23 (56.1%) 0.572 55 (58.5%) 25 (62.5%) 0.667

Female 40 (42.6%) 14 (35.0%) 36 (38.7%) 18 (43.9%) 39 (41.5%) 15 (37.5%)

Age (years) 50.62 ± 10.29 54.70 ± 10.74 0.040 52.32 ± 10.68 50.73 ± 10.32 0.424 52.02 ± 10.82 51.4 ± 10.04 0.757

Distance from the anal

verge (cm)

5.00 (3.00–6.00) 5.30 ± 2.15 0.264 5.0 (4.0–6.0) 5.00 (3.00–6.50) 0.185 5.00 (3.38–6.25) 5.00 (3.00–6.00) 0.233

Pathology type 0.463 0.320 0.087

Well/moderately

differentiated

adenocarcinoma

70 (74.5%) 33 (82.5%) 71 (76.3%) 32 (78.0%) 70 (74.5%) 33 (82.5%) 0.087

Poor differentiated

adenocarcinoma

17 (18.1%) 6 (15.0%) 18 (19.4%) 5 (12.2%) 20 (21.3%) 3 (7.5%)

Mucinous carcinomas 7 (7.4%) 1 (2.5%) 4 (4.3%) 4 (9.8%) 4 (4.3%) 4 (10.0%)

Clinical T staging (cT) 1.000 1.000 0.364

cT2 3 (3.2%) 0 2 (2.2%) 1 (2.4%) 1 (1.1%) 2 (5.0%)

Ct3 73 (77.7%) 29 (72.5%) 71 (76.3%) 31 (75.6%) 72 (76.6%) 30 (75.0%)

cT4 18 (19.1%) 11 (27.5%) 20 (21.5%) 9 (22.0%) 21 (22.3%) 8 (20.0%)

Clinical N staging (cN) 0.632 0.847 0.540

cN0 18 (19.1%) 10 (25.0%) 17 (18.3%) 11 (26.8%) 19 (20.2%) 9 (22.5%)

cN1a 18 (19.1%) 10 (25.0%) 20 (21.5%) 8 (19.5%) 18 (19.1%) 10 (25.0%)

cN1b 25 (26.6%) 8 (20.0%) 23 (24.7%) 10 (24.4%) 26 (27.7%) 7 (17.5%)

cN1c 1 (1.1%) 0 1 (1.1%) 0 1 (1.1%) 0

cN2a 20 (21.3%) 5 (12.5%) 19 (20.4%) 6 (14.6%) 15 (16.0%) 10 (25.0%)

cN2b 12 (12.8%) 7 (17.5%) 13 (14.0%) 6 (14.6%) 15 (16.0%) 4 (10.0%)

to Cui y’s (n = 186), which can ensure the desired prediction
results. Third, we also included conventional MRI findings
and clinicopathological data which may further improve the
prediction. Lastly, our radiomic features were extracted from
only one sequence, i.e., the T2-weighted images, other than
the multi-sequence MRI images used in previous studies. The
T2 weighted images are commonly used in clinical practice,
which is familiar to radiologists. In addition, it can be acquired
easily and the images are quite stable in appearance, especially
when compared with images obtained by special sequence,
such as diffusion weighted images. Notably, diffusion weighted
images are prone to distortion and susceptibility artifacts, which
affect tumor segmentation and data extraction. Similarly, other
sequences such as T1-weighted dynamic contrast enhanced
images depend on the amount and distribution of the injected
contrast-enhancing agent, which might be influenced by variable
hemodynamic conditions in the patients.

The exact reason for why quantitative MRI-based texture
data appear to be able to predict treatment response is still
largely unknown. In theory, the biological phenotype of tumors,
including treatment response, is largely determined by their
underlying molecular subtypes, whose manifestations may vary.
One of the phenotypes may be radiological heterogeneity,
including inter- and intra-tumor heterogeneity. A large body
of literature indicates that texture based radiomic modeling
can evaluate tumor heterogeneity, and can correlate radiological

findings with underlying genomic and biological characteristics,
including prognosis and treatment response (17, 23). Our study
may add into the literature in this regard as we have shown
a predictive model for treatment response with high accuracy.
From another perspective, the large amount of previous evidence
(13, 15), supporting using advanced MRI-based radiomic
features to predict different responses to nCRT in patients with
rectal cancer.

In addition, we introduced clinicopathological features into
the prediction model, which may contribute significantly to
the improvement of prediction efficiencies. These features may
represent, to some extent, some of the intrinsic properties of
the tumor (32, 33). For example, the fecal occult blood test
and red cell counts may indicate oxygen status of tumor.
Neutrophil counts, Monocyte counts, globulin, or platelet counts,
may actually reflect the immune status of LARC patients to
some extent. The hypoxia and immune status of the tumor can
influence tumor treatment response and mediate radiotherapy
resistance (34, 35). Pathology type and distance from the anal
verge also influence the tumor response, as has been shown
in previous studies (36, 37). Our study results suggest that
these clinicopathological data may play an important role in
treatment response.

There were several limitations in our study. First, as a
retrospective study, there may be a selection bias. Second, the
sample size in our study was modest, which may affect the
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FIGURE 3 | The efficiencies of machine learning models predicting treatment response in LARC patients receiving nCRT. The distribution of patients with

down-staging disease or not (A–D), pCR or not (E–H), and good response or not (I–L), in TRC based model (model 6) (A,E,I), TE based model (model 3) (B,F,J) and

the combined TRC and TE based model (Model 7) (C,G,K) were demonstrated by scatter plots. The ROC test (D,H,L) shows that the efficiency of model 7 was

significantly higher than that of either model 6 or model 3 in all three missions (all P < 0.05). There is no significant difference in prediction efficiency between model 6

and model 3 in any of the three missions (all P > 0.05).

FIGURE 4 | Correlation matrix maps show the correlation among all TE and TRC features used in predictive models. (A) Down-staging model. (B) PCR model. (C)

Good-response model. TRC features are expressed in bold fonts.

accuracy and stability of the predictive models. Third, both
the building and validation of the models were conducted in
our institution with a single dataset. A multicenter prospective

study might be helpful to further validate and optimize our
prediction models. The texture features were extracted from the
largest cross-sectional area of the tumor rather than from the
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TABLE 2 | The efficience of models to predict the treatment response in LARC petients.

Training cohort Validation cohort

Score 3 Score 6 Score 7 SVM1 SVM2 SVM3

DOWN-STAGING

AUC 0.8630

(95% CI: 78.36–94.25%)

0.8245

(95% CI: 73.07–91.83%)

0.9297

(95% CI: 87.62–98.31%)

0.8006

(95% CI: 65.28–94.84%)

0.8462

(95% CI: 72.46–96.77%)

0.8920

(95% CI: 79.40–99.01%)

Specificity 0.82812

(95% CI: 68.750–95.312%)

0.85938

(95% CI: 59.375–96.875%)

0.90625

(95% CI: 73.438–98.438%)

0.7778

(95% CI: 51.85–96.30%)

0.7778

(95% CI: 51.85–96.30%)

0.7778

(95% CI: 62.96–92.59%)

Sensitivity 0.83333

(95% CI: 63.333–96.667%)

0.73333

(95% CI: 56.667–93.333%)

0.9000

(95% CI: 73.333–100.000%)

0.8462

(95% CI: 61.54–100.00%)

0.9231

(95% CI: 69.23–100.00%)

0.9231

(95% CI: 76.92–100.00%)

Accuracy 0.82979

(95% CI: 74.468–89.362%)

0.81915

(95% CI: 69.149–89.362%)

0.89362

(95% CI: 79.787–95.745%)

0.8000

(95% CI: 65.00–92.50%)

0.8250

(95% CI: 67.50–92.56%)

0.8500

(95% CI: 70.00–92.50%)

PCR

AUC 0.8361

(95% CI: 74.13–93.09%)

0.8387

(95% CI: 74.83–92.91%)

0.9078

(95% CI: 83.15–98.41%)

0.8194

(95% CI: 69.08–94.79%)

0.7581

(95% CI: 58.56–93.05%)

0.8745

(95% CI: 74.82–99.49%)

Specificity 0.86364

(95% CI: 63.64–100.00%)

0.77273

(95% CI: 54.55–100.00%)

0.86364

(95% CI: 72.73–100.00%)

1.00

(95% CI: 80.00–100.00%)

0.9000

(95% CI: 40.00–100.00%)

0.9000

(95% CI: 50.00–100.00%)

Sensitivity 0.77465

(95% CI: 54.93–91.55%)

0.85915

(95% CI: 49.30–95.78%)

0.88732

(95% CI: 69.01–97.18%)

0.67742

(95% CI: 48.39–90.32%)

0.67742

(95% CI: 32.26–100.00%)

0.80645

(95% CI: 51.61–100.00%)

Accuracy 0.78495

(95% CI: 64.52–89.25%)

0.82796

(95% CI: 61.29–90.32%)

0.88172

(95% CI: 75.27–94.62%)

0.7561

(95% CI: 60.98–90.24%)

0.73171

(95% CI: 48.78–92.68%)

0.85366

(95% CI: 63.35–95.18%)

GOOD-RESPONSE

AUC 0.8374

(95% CI: 75.95–91.53%)

0.8039

(95% CI: 71.42–89.36%)

0.9017

(95% CI: 83.30–97.05%)

0.7920

(95% CI: 65.24–93.16%)

0.7744

(95% CI: 62.65–92.23%)

0.8972

(95% CI: 80.19–99.25%)

Specificity 0.77083

(95% CI: 54.17–97.92%)

0.8125

(95% CI: 52.08–93.75%)

0.875

(95% CI: 70.83–97.92%)

0.7143

(95% CI: 38.10–100.00%)

0.7143

(95% CI: 38.10–95.24%)

0.8571

(95% CI: 66.67–100.00%)

Sensitivity 0.80435

(95% CI: 50.00–95.65%)

0.73913

(95% CI: 56.52–95.65%)

0.9130

(95% CI: 76.09–100.00%)

0.8947

(95% CI: 47.37–100.00%)

0.8421

(95% CI: 52.63–100.00%)

0.8947

(95% CI: 68.42–100.00%)

Accuracy 0.7766

(95% CI: 70.21–85.11%)

0.7766

(95% CI: 69.15–85.11%)

0.88298

(95% CI: 81.92–93.62%)

0.7500

(95% CI: 65.00–87.50%)

0.7750

(95% CI: 65.00–87.50%)

0.8750

(95% CI: 75.00–95.00%)

entire tumor, which may raise questions as to whether these
features were optimally representative of the characteristics of the
entire tumor. Lastly, the MRI images used in the texture feature
extraction were obtained from three different MRI scanners
(Siemens and GE) in our hospital, and differences among the
scanners may potentially influence the texture features and
the subsequent model building. Future research is needed to
standardize the signal intensity among different MRI scanners.

CONCLUSION

Our study showed a predictive model built with radiomic
features and clinicopathological data was promising to predict
tumor response to neoadjuvant chemoradiation in patients
with locally advanced rectal cancer. In addition, our method
developed with information from the clinically obtained T2-
weighted sequence may be used as a complimentary tool to
assist clinical decision making. Nevertheless, future prospective
multicenter studies with larger samples will be needed to validate
our study result and to optimize the prediction models for
clinical practice.
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