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Objectives: Triple negative breast cancer (TNBC) is a subtype of breast cancer with

stronger invasion and metastasis, but its specific mechanism of action is still unclear.

Tuft1 plays an important regulatory role in the survival of breast cancer cells; however,

its role in regulating TNBC metastatic potential has not been well-characterized. Our

aim was therefore to systematically study the mechanism of TUFT1 in the metastasis,

stemness, and chemoresistance of TNBC and provide new predictors and targets for

BC treatment.

Methods: We used western blotting and IHC to measure TUFT1and Rac1-GTP

expression levels in both human BC samples and cell lines. A combination of

shRNA, migration/invasion assays, sphere formation assay, apoptosis assays, nude

mouse xenograft tumor model, and GTP activity assays was used for further

mechanistic studies.

Results: We demonstrated that silencing TUFT1 in TNBC cells significantly inhibited

cell metastasis and stemness in vitro. A nude mouse xenograft tumor model revealed

that TUFT1 knockdown greatly decreased spontaneous lung metastasis of TNBC

tumors. Mechanism studies showed that TUFT1 promoted tumor cell metastasis and

stemness by up-regulating the Rac1/β-catenin pathway. Moreover, mechanistic studies

indicated that the lack of TUFT1 expression in TNBC cells conferred more sensitive

to chemotherapy and increased cell apoptosis via down-regulating the Rac1/β-catenin

signaling pathway. Further, TUFT1 expression positively correlated with Rac1-GTP in

TNBC samples, and co-expression of TUFT1 and Rac1-GTP predicted poor prognosis

in TNBC patients who treated with chemotherapy.

Conclusion: Our findings suggest that TUFT1/Rac1/β-catenin pathway may provide a

potential target for more effective treatment of TNBC.
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INTRODUCTION

Triple negative breast cancer (TNBC) is a subtype of BC that
lacks estrogen or progesterone receptors and has no epidermal
growth factor receptor 2 amplification, accounting for about 20%
of the total breast cancer (1–3). TNBC is defined mainly based
on its pathology. Its features overlap with those of basal-like
BC, one of five subgroups based on microarray gene expression
profiling (4, 5). TNBC usually presents with less favorable clinical
features than other subtypes of breast cancer, for example, tumors
proliferate faster, relapse earlier and metastasis more easily and
is usually associated with poorer prognosis as a result (6–8).
However, the mechanism by which TNBC’s metastasis is less
clear. In addition, there are currently no very effective targeted
drugs available for TNBC, cytotoxic chemotherapy remains the
main adjuvant therapy for this subtype of breast cancer (9). A
more in-depth study of the mechanism of TNBC metastasis may
be able to more efficiently find its target, and at the same time
provide theoretical support for the exploration of new TNBC
therapeutic drugs.

Tuftelin (TUFT1) is an acidic, hydrophilic, glycosylated, and
phosphorylated protein. Sequence and characterization analysis
has shown that TUFT1 is well conserved, with high homology
across various species. The protein is considered to act on
enamel mineralization and is involved in the interaction between
mesenchymal ectoderm and autosomal enamel dysplasia during
tooth development (10). Zhou et al. (11) demonstrated that the
expression of TUFT1 protein in pancreatic cancer is higher than
that in normal pancreatic tissue. Its expression is closely related
to both the disease stage and local lymph node metastasis. Cell
function experiments further confirmed that TUFT1 depletion
reduced proliferation and metastasis of pancreatic cancer cells,
and impaired various proteins expression related to epithelial-
mesenchymal transition. The authors suggested that TUFT1 may
affect HIF1 by influencing the expression of members of the
Snail signaling pathway, which regulates epithelial mesenchymal
transition. Our previous study found that inhibition of TUFT1
expression in breast cancer cells inhibited proliferation, affected
the cell cycle, and induced apoptosis. In addition, we showed
that suppression of TUFT1 affected the expression of the
proteins RelA, Caspase 3, DUSP1, and Rac1 (12, 13). Kawasak
et al. (14) found that TUFT1 activated the mTORC1 signaling
pathway by regulating the Rab GTPase, and that the interaction
between TUFT1 and RabGAP1 mediated intracellular lysosome
localization and vesicle transport in tumor cells. However, the
precise role of TUFT1 in breast cancer (BC), including the
mechanics of TNBC’s metastasis remain unclear.

Rac1 is a member of the Rho GTPases family, which is
a subgroup of the Ras superfamily (15). Rac1 is activated by
binding to GTP, while it is deactivated by binding to GDP, which
makes it play an important role in many signaling pathways
(16). Rac1 plays an important role in cancer progression
(17), affecting cell adhesion, proliferation, migration, invasion,
and cancer metastasis (18–20). The new study highlights the
importance of Rac1 activation in cancer metastasis and acquired
chemoresistance (21–24). One major mechanism by which Rac1
may provide resistance to chemotherapy is its role in apoptosis

regulation. Rac1-GTP can bind directly to the key apoptotic
regulator Bcl-2 to elicit anti-apoptotic cell responses (25). Many
studies have also proved that Rac1-GTP can affect the genes
Nanog, Sox2, and Oct4, which play a central regulatory role in
CSC (26–28). Rao et al. (29) showed that Rac1/β-catenin pathway
participated in SEMA3F-mediated regulation of colorectal cancer
cell stemness. In addition, Kawasak et al. (14) found that TUFT1
increased Rac1 levels through activation of the AKT/mTOR
pathway. However, the functional mechanism of TUFT1 in
metastasis, stemness, and chemoresistance of BC, especially in
TNBC, has not been adequately characterized.

In this study, we showed that stable TUFT1 knockdown in
TNBC cells drastically inhibited their migration, invasiveness,
and CSC-like properties. Moreover, we found that the expression
of TUFT1 increased significantly in TNBC samples. The co-
expression of TUFT1 and Rac1-GTP suggested poor prognosis.
Further functional studies showed that TUFT1 promoted TNBC
cell metastasis, stemness, and chemoresistance by up-regulating
the Rac1/β-catenin signaling pathway.

MATERIALS AND METHODS

Human Specimens
In our study, we recruited 60 pathologically confirmed TNBC
patients at Affiliated Hospital of Hebei University of Engineering,
between January 2014 and December 2014. All patients treated
with anthracycline followed by taxanes chemotherapy after
surgery. This study was carried out in accordance with the
recommendations of ICMJE with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the Ethics Committee of Affiliated Hospital of Hebei
Engineering University.

Human BC Cell Lines and Plasmids
HCC1937 cell line was obtained from the American Type
Culture Collection (USA). MDA-MB-231 cell line was gained
from the Chinese Academy of Sciences (China). Cells were
cultured in RPMI-1,640 mixed with 10% FCS in an atmosphere
containing 5% CO2. Recombinant retroviruses carrying
PLNCX2-vector or PLNCX2-TUFT1 were synthesized based on
relevant instructions (Clontech). MDA-MB-231 or HCC1937
cells with Polybrene [8µg/mL (Sigma-Aldrich)] were infected
these retroviruses and then were selectively isolated with G418
[750 µg/mL (Calbiochem)].

RNA Interference
The recombinant adenoviruses encoding 2 different short-
hairpin RNAs (shRNAs), respectively specific for human TUFT1
were designed and prepared from company (GeneChem,
Shanghai, China).TUFT1-shRNA#1: AGAGAATTTAGAGATG
CAT; TUFT1-shRNA#2: GGTGGAGTATTTACGGTAAAC.
Lentiviruses were transfected into cells based on the relevant
instructions. The ability of TUFT1 knockdown was assessed by
real-time quantitative PCR and western bolt. Cell lines with over
80% efficacy were considered stable. More than 80% of the cell
transfection efficiency was considered stable.
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IHC Analyses
TUFT1 (dilution 1:100, Abcam, USA), RAC1-GTP (dilution
1:800, NewEast Bioscience, USA), were purchased. The
experimental method was carried out and the expression of
TUFT1 and RAC1-GTP was evaluated semi-quantitatively
according to the criteria described previously (12, 13). The
analysis was performed by two independent pathologists.

Real-Time PCR
Total RNA was extracted by Trizol (Invitrogen) for reverse
transcription, according to manufacturer’s instructions
(Invitrogen). TUFT1 expression was examined by Real-time
PCR according to the criteria described previously (12, 13).

Western Blot
The rabbit antibodies used to detect TUFT1, Rac1, β-
catenin, Nanog, SOX2, and OCT4 were obtained from AbCam
(Cambridge, UK). Their protein levels were examined by western
blot according to the criteria described previously (12, 13).

Wound Healing Assay
Following the manufacturer’s recommendations, marker pen was
used on the back of the 6-well plate, horizontal lines were evenly
drawn, about 2 × 105 cells were added, and the next day, the
gun head was scratched. Cells were washed with PBS for 3 times
and serum-free medium was added. Incubate in a 37◦C, 5% CO2
incubator. Sample at 0, 8, 24 h and take photos.

Invasion Assay
The required number of chambers were placed in a new 24-well
plate and 500µL serum-free mediumwas added to the upper and
lower chambers, respectively. The preparation of serum-free cell
suspension is usually 5 × 104 cells/well (24-well plate). 500 µL
cell suspension was added to the upper chamber and 750 µL 30%
FBSmediumwas added to the lower chamber. The incubator was
incubated at 37◦C for 24 h. Hematoxylin and eosin (H&E) stained
cells to the lower surface of themembrane. Photographs are taken
under a microscope.

Transwell Assay
Serum-free cell suspension was prepared and counted, usually
5 × 104 cells/well (24-well plate). Carefully remove the culture
medium in the upper chamber and add 100 µL cell suspension.
Add 600 µL 30% FBS culture medium in the lower chamber.
The incubator was incubated at 37◦C for 24 h. The chamber was
fixed in 4% paraformaldehyde for half an hour. 1–2 drops of
staining solution were used to stain and transfer cells to the lower
surface of the membrane for 1–3min. Photographs are taken
under a microscope.

Sphere Formation Assay
Cell trypsin of each experimental group in the logarithmic growth
phase was digested, serum-free medium was resuspended, cell
suspensions were made, and counted. The cell suspension was
inoculated in the ultra-low adhesion 6-well plate culture plate
at a density of 10,000–20,000 cells/wells, and 2mL serum-free
medium DMEM/F12 was added to each well. Will the good cells
in under the condition of 37◦C and 5% CO2, every 2–3 days

in liquid, extend the every 6–8 days. Observe cell balling and
morphology under microscope at any time.

Apoptosis Assay
After infection, supernatant was collected from cell culture in
each experimental group in a 5ml centrifuge tube. The cells were
washed once by D-Hanks, the cells were digested by trypsin, and
the culture supernatant was terminated. The cells were collected
in the same 5ml centrifuge tube. Centrifuge 1,500 rpm for 5min
and discard the supernatant. The cells were washed with PBS
and precipitated once, centrifuged at 1,500 rpm for 5min, and
the cells were collected. The cells were washed with 1 × binding
buffer for once, centrifuged at 1,500 rpm for 5min, and the cells
were collected. Cell suspension of 100 µl (1 × 105-1 × 106 cells)
was taken and stained with PI complex dyeing liquor (0.5mL)
for 10–15min at room temperature. Flow cytometry was used
for detection.

Rac1–GTP Pull-Down Assay
Cells were splitting in buffer including 25mM HEPES, 1%
NP40, 10% glycerin, 5mM MgCl2, 1mM DTT, 100mM NaCl,
and protease inhibitors. The pyrolysate was cultured on ice for
5min and centrifuged for 1min with 10,000 × g. Post-nuclear
supernatant was tested for pull-down analysis of 30 µg GST-
RBD (Rac1) pre-coated GSH beads in each case. The beads and
supernatant were cultured in a table at 4◦C for 15min. The
beads were washed with a solution buffer containing 0.01%NP40,
boiled with SDS PAGE, and separated. The beads were analyzed
by Western blotting as shown above. NSC23766 (obtained from
Tocris Bioscience) was used to inhibit Rac1 activation.

Tumor Metastasis and Growth in Nude
Mice
4–6-weeks female nude mice were obstained from the Shanghai
Lingchang Biological Technology Ltd (Shanghai, China). The
caudal vein was selectively injected into ShTUFT1—MDA-MB-
231 cells. The nude mice were anesthetized by isoflurane gas
using in vivo imaging instrument with gas anesthesia system. The
mice were sacrificed at 10 weeks after treatment, and metastatic
lung nodules were counted.

For the in vivo chemoresistance experiment, shTUFT1—
MDA-MB-231 cells were injected into the flanks of nude mice
(10 mice/group). Each group was divide randomly into two
subgroups after 2 weeks that were either left untreated or
received intraperitoneal injections of doxorubicin (4mg kg−1)
every 5 days(three cycles), as previously described by Ghebeh
et al. (30). Animal handling and research protocols were
approved by the Ethics Committee of Affiliated Hospital of Hebei
Engineering University.

ONCOMINE Analysis
The mRNA levels of TUFT1 in BCs were determined through
analysis of data from theONCOMINE database (www.oncomine.
org). In our study, BC specimen data were compared with control
datasets using student’s t-test to examined the p-value. The fold
change was defined as 2, and the p-value was set up at 0.01.
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FIGURE 1 | Effects of TUFT1 on migration, invasiveness and stemness in vivo and in vitro. MDA-MB-231 and HCC1937 cells were infected with TUFT1-shRNA or

scramble (scr)-shRNA. (A) TUFT1 protein and mRNA expression levels were reduced in MDA-MB-231 and HCC1937 cells with infection of adenovirus encoding

(Continued)
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FIGURE 1 | TUFT1-shRNA#1 and TUFT1-shRNA#2. Cell wound (B), invasiveness (C) and migration (D) were aberrant regulated after TUFT1 down-regulation in

MDA-MB-231 or HCC1937 cells (n = 3). (E) TUFT1 knockdown in MDA-MB-231 cells significantly reduced the number of lung metastatic nodules (n = 10). (F)

TUFT1 knockdown drastically reduced the number of mammary spheres formed by MDA-MB-231 cells (n = 3). (G) The protein levels of Nanog, Sox2 and Oct4 were

decreased by TUFT1 knockdown in both MDA-MB-231 and HCC1937 cells (n = 3). Results are presented as means ± SD. The statistical significance was assessed

by student’s t-test; *p < 0.05, **p < 0.01.

Statistical Analysis
The SPSS 23.0 software was used for statistical analyses. Student’s
t-test and Pearson correlation test were used to compare the
classified variables. p < 0.05 was considered significant.

RESULTS

TUFT1 Regulates Metastasis and
Stemness of TNBC Cells in vitro and in vivo
First, we performed TUFT1 knockdown in the HCC1937 and
MDA-MB-231 TNBC cell lines using shRNA. Western blot
and Real-time PCR revealed that TUFT1 protein and mRNA
levels were prominently reduced in TUFT1-knockdown cells
compared to control cells (p < 0.01, Figure 1A). Wound healing
assays, invasion assays, and transwell assays were all used
to examined the role of TUFT1 on the migration of TNBC
cells. We found that TUFT1 down-regulation markedly reduced
the migration of both TNBC cells compared to control cells,
indicating that TUFT1 knockdown inhibits cell migratory ability
(p < 0.05, Figures 1B–D).

To expand on our study in vitro, we next examined if TUFT1
could promote the metastasis in TNBC cells. ShTUFT1- MDA-
MB-231 cells were injected into the caudal vein of nude mice.
Then mice were sacrificed for quantitative analysis of lung
metastatic nodules. Mice injected with ShTUFT1- MDA-MB-
231 cells developed significantly fewer metastatic lung nodules
than control mice (p < 0.05, Figure 1E). Taken together, results
in vitro and in vivo reveal the metastatic potential of TUFT1 in
TNBC cells.

CSCs play a key role in cancer metastasis (31, 32). We used
a sphere formation assay to examined the role of TUFT1 on
the stemness of TNBC cells. We found that TUFT1 knockdown
drastically reduced the number of mammary spheres formed
by MDA-MB-231 cells (p < 0.05, Figure 1F). Nanog, Sox2, and
Oct4 play a central regulatory role in CSCs (26–28, 33, 34). We
found that the Nanog, Sox2 and Oct4 levels were reduced by
TUFT1 knockdown in both MDA-MB-231 and HCC1937 cells
(p < 0.05, Figure 1G). These results reveal that TUFT1 is capable
of significantly promoting CSC-like properties in TNBC cells.

TUFT1 Promotes the Metastasis of TNBC
Cells by Up-Regulating the Rac1/β-Catenin
Pathway
To further investigate TUFT1-regulated metastasis in TNBC
cells, we performed Rac1 activity assays following manipulation
of TUFT1 expression levels. This revealed that knockdown of
endogenous TUFT1 decreased Rac1–GTP levels in MDA-MB-
231 cells (p < 0.01, Figure 2A), whereas TUFT1 overexpression
increased Rac1–GTP levels in HCC1937 cells (p < 0.05,

Figure 2B). These data indicate that TUFT1 promotes Rac1
activation in TNBC cells.

To investigate the potential role of Rac1 downstream of
TUFT1, endogenous Rac1-GTP was inhibited using the Rac1
inhibitor NSC23766 (29) in TUFT1 overexpression TNBC cells.
We confirmed that NSC23766-mediated inhibition of Rac1 was
associated with a substantial reduction in its active form, Rac1–
GTP (Figure 2C). The activation of Wnt/β-catenin pathway is
related to the proliferation and metastasis of TNBC (35, 36).
Interestingly, we found that β-catenin levels were significantly
increased by TUFT1 overexpression in both TNBC cells (p <

0.01, Figure 2D). However, the increase in β-catenin induced by
TUFT1 overexpression was significantly decreased by NSC23766
treatment in both TNBC cells, compared to the controls (p <

0.01, Figure 2D). Consistent with this, we observed that TUFT1-
dependent TNBC cells metastasis was reversed in cells treated
with NSC23766, as assessed by both invasion and transwell assays
(p < 0.05, Figures 2E,F). In conclusion, these results suggest that
Rac1 is necessary for TUFT1-dependent β-catenin activation and
TNBC cells metastasis.

TUFT1 Promotes the Stemness of TNBC
Cells by Up-Regulating the Rac1 Signaling
Pathway
To further investigate the regulation of TNBC cell stemness
by TUFT1, we once again employed the Rac1 inhibitor
NSC23766 (29) to inhibit endogenous Rac1-GTP in both
TUFT1 overexpression TNBC cells. We found that Nanog,
Sox2, and Oct4 levels were significantly increased by TUFT1
overexpression in both TNBC cells (p < 0.05, Figure 3A).
However, the TUFT1-induced increase in Nanog, Sox2, and
Oct4 was significantly decreased by NSC23766 treatment in both
TNBC cells, compared to the corresponding controls (p < 0.05,
Figure 3A). Consistent with this, we observed that NSC23766
treatment in MDA-MD-231 cells impaired TUFT1-dependent
CSC-like properties, as assessed by the sphere formation assay
(p < 0.01, Figure 3B).

TUFT1 Inhibits Chemotherapy-Mediated
Apoptosis in TNBC Cells by Targeting the
Rac1/β-Catenin Signaling Pathway
ONCOMINE data showed that TUFT1 mRNA levels were
significantly lower in epirubicin/docetaxel responder BC samples
than epirubicin/docetaxel non-responder BC samples (p =

0.031, Figure 4A). To evaluate whether TUFT1 expression can
directly contribute to resistance to chemotherapy in TNBC,
we used MDA-MB-231-shTUFT1 cells (or control MDA-MB-
231 cells) in a xenograft tumor model. IHC staining revealed
that the tumors formed by the MDA-MB-231-TUFT1-shRNA
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FIGURE 2 | Role of TUFT1 in TNBC migration and invasiveness by promoting the Rac1/β-catenin signaling pathway. (A) Down-regulation of TUFT1 by shRNA

dramatically decreased the protein level of Rac1-GTP in MDA-MB-231 cells (n = 3). (B) Overexpression of TUFT1 increased the protein level of Rac1-GTP in

HCC1937 cells (n = 3). (C) Western blot showed effect of Rac1 inhibitor NSC23766 on Rac1-GTP in MDA-MB-231 cells (n = 3). (D) Down-regulation of Rac1-GTP

treated with NSC23766 decreased expression of β-catenin in TUFT1—MDA-MB-231 and TUFT1—HCC1937 cells (n = 3). Down-regulation of Rac1-GTP treated with

NSC23766 decreased cell invasiveness (E) and migration in (F) in TUFT1—MDA-MB-231 and TUFT1—HCC1937 cells (n = 3). Results are presented as means ±

SD. The statistical significance was assessed by student’s t-test; *p < 0.05, **p < 0.01.

cells had lower TUFT1 expression than those formed by the
control cells (Figure 4B). The size of tumors formed by TUFT1-
positive cells was slightly reduced by doxorubicin treatment
(p > 0.05, Figure 4C), whereas the size of the tumors formed by

TUFT1-negative cells was significantly reduced by doxorubicin
treatment (p < 0.05, Figure 4C). These results show that
the expression of TUFT1 is directly related to the increase
of chemoresistance.
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FIGURE 3 | Role of TUFT1 in TNBC stemness by promoting the Rac1 signaling pathway. (A) Down-regulation of Rac1-GTP treated with NSC23766 decreased

expression of Nanog, Sox2, and Oct4 levels in TUFT1—MDA-MB-231 and TUFT1—HCC1937 cells (n = 3). (B) Down-regulation of Rac1-GTP treated with

NSC23766 decreased number of mammary spheres formed by TUFT1 - MDA-MB-231 cells (n = 3). Results are presented as means ± SD. The statistical

significance was assessed by student’s t-test; *p < 0.05, **p < 0.01.

We next wondered whether TUFT1 confers resistance to
chemotherapy in TNBC cells via the Rac1/β-catenin signaling
pathway. Treatment of TUFT1-negative MDA-MB-231 cells
with doxorubicin and HCC1937 cells with taxotere induced
a decrease in both Rac1-GTP and β-catenin levels in a
dose-dependent manner (Figures 4D,E). The protein levels of

Rac1-GTP and β-catenin were significantly lower in TUFT1-
negative cells than in TUFT1-positive cells following treatment
with corresponding dose of doxorubicin and taxotere (p <

0.05, Figures 4D,E). However, the level of total Rac1 protein
was unchanged (Figures 4D,E). Furthermore, we observed a
significantly higher level of apoptosis in TUFT1-negative cells
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FIGURE 4 | TUFT1-knockdown TNBC cells are more sensitive to doxorubicin and taxotere. (A) TUFT1 mRNA expression was lower in epirubicin/docetaxel responder

BC samples by ONCOMINE analysis. (B) scr-shRNA- and TUFT1-shRNA-MDA-MB-231 cells were injected into nude mice as described in the Materials and Methods.

(Continued)
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FIGURE 4 | The tumor volumes were measured following treatment with or without doxorubicin (n = 5). Representative images showing tumor formed in nude mice

after injection with scr-shRNA- or TUFT1-shRNA cells and IHC staining of TUFT1 in tumor tissues. (C) Tumor volumes in four groups. (D,E) Western blot showing the

expression levels of Rac1-GTP, Rac1 and β-catenin in scr-shRNA- and TUFT1-shRNA-MDA-MB-231 cells following treatment with various doses of doxorubicin or

TUFT1-shRNA-HCC1937 cells following treatment with various doses of taxotere for 24 h (n = 3). (F,G) Apoptotic cell death was detected by PI single staining

method following treatment of scr-shRNA- and TUFT1-shRNA-MDA-MB-231 cells without or with 200 ng ml−1 of doxorubicin or TUFT1-shRNA-HCC1937 cells

without or with 200 ng ml−1 of taxotere for 24 h (n = 3). Numbers in the subG1 phase (blue bar) represent the percentage of apoptosis. Results are presented as

means ± SD. The statistical significance was assessed by student’s t-test; *p < 0.05, **p < 0.01.

FIGURE 5 | The expression of TUFT1 and Rac1-GTP in 60 TNBC patients who had received anthracycline/taxanes chemotherapy after surgery. (A) Show the positive

expression of TUFT1 and Rac1-GTP in serial sections. (B) Rac1-GTP positively correlated with TUFT1 expression in the TNBC samples. (C) Kaplan–Meier survival

curves showing survival in 60 patients who received chemotherapy blotted in relation to TUFT1 and Rac1-GTP expression. Survival curves showing the poor overall

survival in patients with tumors co-expressing TUFT1 and Rac1-GTP that received chemotherapy.

than in TUFT1-positive cells following treatment with 200 ng/mL
doxorubicin or taxotere (p < 0.05, Figures 4F,G). These results
indicate that TUFT1 may confer resistance to chemotherapy in
TNBC cells by promoting cell apoptosis via the Rac1/β-catenin
signaling pathway.

TUFT1 and Rac1-GTP Expression
Positively Correlate and Predict Poor
Prognosis Following Treatment With
Chemotherapy in TNBC
We next studied the clinical correlation of TUFT1 and Rac1-
GTP using 60 TNBC specimens from patients who had received

anthracycline followed by taxanes chemotherapy after surgery.
Examples of positive expression of TUFT1 and Rac1-GTP in
serial sections are presented in Figure 5A. The level of TUFT1
protein was positively correlated with tumor size, histological
grade and axillary lymph node metastasis (p = 0.010, p =

0.005, and p = 0.010, respectively, Table 1). The level of Rac1-
GTP protein positively correlated with TUFT1 expression in the
TNBC samples (p = 0.001, Table 2; Figure 5B). We divided the
patients into four groups according to the TUFT1 and Rac1-
GTP expression in the TNBC samples. Our patient follow-up
analysis showed that a total of 27 of 60 patients died, and the 5-
years overall survival rate was 55.0%. Fourteen of the 22 patients
with tumors co-expressing TUFT1 and Rac1-GTP were dead,
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TABLE 1 | The relationship between TUFT1 expression and the clinicopathological

factors in TNBC patients who have received chemotherapy (n = 60).

Variable n TUFT1− TUFT1+ p-variable

Age 0.695

≥40 49 21 28

<40 11 4 7

Tumor size 0.010

T1 16 11 5

T2–4 44 14 30

Histological grades 0.005

I, II 28 17 11

III 32 8 24

Lymph node metastasis 0.010

− 18 12 6

+ 42 13 29

“+,” positive; “–,” negative.

TABLE 2 | Correlations between expression of TUFT1 and Rac1-GTP.

Variable n Rac1-GTP− Rac1-GTP+ p-variable

TUFT1 0.001

– 25 20 5

+ 35 13 22

“+,” positive; “–,” negative.

and this group displayed the lowest 5 years survival than other
groups (log-rank test, p < 0.05, Hazard Ratio = 1.775, 95% CI
of ratio= 0.986–3.195, Figure 5C). Therefore, TUFT1 and Rac1-
GTP expression positively correlate and predict patient prognosis
following treatment with chemotherapy in TNBC.

DISCUSSION

To our knowledge, this is the first systematic study on the
functional mechanism of TUFT1 mediated metastasis and
stemness in TNBC. Zhou et al. (11) reported that TUFT1
overexpression promoted the metastasis of pancreatic cancer
cells, and affected the expression of a number of epithelial-
mesenchymal transformation-related proteins. They suggested
that TUFT1 may affect HIF1 by influencing the expression
of members of the Snail signaling pathway, which regulates
epithelial-mesenchymal transition. Kawasak et al. (14) found
that TUFT1 may be activated by the AKT/mTOR pathway
to regulate tumor proliferation and metastasis. Compared to
cells of other breast cancer subtypes, basal mesenchymal-like
TNBC cells display increased migration, invasion, and metastatic
potential (37). In this study, we found that TUFT1 promotes the
metastasis of TNBC cells both in vitro and in vivo. CSCs have
high tumorigenic capacity and are important features of new
tumors (secondary and third foci) at locations other than those
of the original tumor (38, 39). Here, we propose for the first time
that TUFT1 can regulate the stemness of TNBC cells. TUFT1
knockdown in TNBC cells reduced the number of mammary

spheres and stemness-associated molecules. These results reveal
that TUFT1 may promote the metastasis of TNBC cells by up-
regulating their stem capacity.

Rac1, a member of the Rac subfamily of small GTPases,
has its forms of active GTP-bound and inactive GDP-bound.
Rac1 activity plays roles in the regulation of proliferation,
differentiation, apoptosis, cell movement, and adhesion.
Moreover, Rac1 has been shown to have an important role in
tumor cell migration (40). Rac1-GTP interacts with different
downstream effector molecules, thus affecting tumor invasion
and metastasis (41). β-catenin, a target molecule of Rac1, is a key
regulator of cell proliferation and metastasis (42, 43). β-catenin
is a multi-gene nuclear transcription target. It can regulate the
proliferation and metastasis of cancer cells (44, 45). Rac1 gene
regulates β-catenin and locates its nucleus at the promoter
TCF3/4 of target gene (46). Furthermore, active/inactive
Rac1 state was shown to direct Rac1-β-catenin complex to
the nucleus in CRC cells (47). De et al. (36) demonstrated
that Rac1 was activated by cascade of β-catenin-Tiam1/vav2
as downstream target of Wnt/β-catenin pathway activation
during TNBC metastasis. However, our results show that
TUFT1 can promote the metastasis of TNBC cells by activating
Rac1 in the Rac1/β-catenin signaling pathway, suggesting
that the TUFT1/Rac1/β-catenin axis may regulate metastasis
in TNBC. NSC23766 reduces total β-catenin in CRC cells,
thus demonstrating that Rac1 regulates stemness in CRC by
activating Wnt/β-catenin signaling (29). Our study further
implicates Rac1 and its downstream target β-catenin as critical
molecules in the regulation of stemness in TNBC downstream
of TUFT1. Our study identifies the TUFT1/Rac1/β-catenin
axis as a novel regulator of metastasis and stemness in TNBC.
However, how TUFT1 specifically regulates Rac1 expression, in
a recent study, Kawasak et al. (14) found that TUFT1 activated
the mTORC1 signaling pathway by regulating the Rab GTPase,
and that the interaction of TUFT1 and RabGAP1 mediated
intracellular lysosome localization and vesicle transport in BC
cells, while Rac1 is the substrate of mTOR. In addition, through
high-throughput differential gene screening, TUFT1 was found
to be associated with Rab5 and Rac1 (13). Rab5 is responsible
for regulating the early stage of vesicle transport. Once activated,
Rab5 recruits a number of interacting proteins, such as Rac1
and Tiam1, which play an important role in tumor metastasis
(48, 49). Díaz et al. (50) found that Rab5 activation could recruit
Tiam1 around the endosome, thereby leading to the activation
of Rac1. Based on this, we hypothesize that TUFT1 may initiate
vesicle transport through activating Rab5, thereby affecting
downstream Rac1 expression. So, regulatory processes may
be complex, the relationship between TUFT1 and Rac1 needs
further study.

As endocrine therapy or HER2 targeted therapy is ineffective
for TNBC patients. Chemotherapy is the most effective treatment
at present. In addition, more than 50% of TNBCs were resistant
to adjuvant chemotherapy. Because of chemotherapeutic
resistance, patients often have relapse and metastasis (51, 52). In
2015, experts at St. Gallen agreed to recommend anthracyclines
and taxanes as the main adjuvant chemotherapeutic drugs
for TNBC. However, the use of platinum antineoplastic drugs
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is still controversial (53, 54). Here, we demonstrated that
TUFT1 knockdown can reverse doxorubicin resistance in a
TNBC xenograft tumor model. Meanwhile, TUFT1 suppression
conferred sensitivity to chemotherapy and increased cell
apoptosis via inhibition of Rac1/β-catenin signaling in TNBC
cells. The mechanism of Rac1-mediated chemoresistance has
been studied in several tumors (23, 55–57). We have found in
previous studies that TUFT1 can inhibit the apoptosis of BC
cells and the activation of Caspase 3 (13). Rac1 can regulate
the DNA damage response, drug-induced apoptosis, and
tumor metastasis by activating a number of stress-activated
kinases, such as JNK and p38 kinase, which can regulate the
activation of Caspase 3 (58, 59). In addition, dual specificity
phosphatase-1 (DUSP1) can dephosphorylate all three family
members of MAPK (ERK1/2, JNK1/2, p38 MAPK), which play
a negative regulatory role in MAPK signaling pathway (60, 61).
DUSP1 mediates breast cancer proliferation and chemotherapy
resistance by inhibiting JNK pre-apoptotic signaling pathway
(62, 63). TUFT1 can regulate DUSP1 expression in our
previous studies (13), therefore, we consider whether there is
a link between TUFT1/Rac1 pathway and DUSP1 to regulate
downstream MAPK pathways, or whether TUFT1 directly
mediates DUSP1 bypass signal to regulate apoptosis and
chemoresistance of BC cells. This requires further study. CSCs
as a target is a promising method for reversing chemoresistance,
and activated Wnt/β-catenin pathway also can inhibit apoptosis
of BC cells and confer the stemness of BC cells and lead to
chemoresistance (64–66). Therefore, these results suggest that the
TUFT1/Rac1/β-catenin axis can at least partially inhibit TNBC
cells apoptosis and then promote doxorubicin/taxotere resistance
in TNBC. Moreover, TUFT1 expression positively correlates
with Rac1-GTP, and co-expression of TUFT1 and Rac1-GTP
predicts poor patient prognosis in TNBC following adjuvant
doxorubicin/taxotere treatment. Thus, TUFT1may be a potential
novel clinical therapy target for reversing chemoresistance
in TNBC.

CONCLUSIONS

In summary, we first systematic study on the functional
mechanism of TUFT1 mediated metastasis, stemness and
chemoresistance in TNBC. Our results find that TUFT1 can
promotes the metastasis and stemness of TNBC cells via the
RAC1/β-catenin pathway, meanwhile, TUFT1 could increase

TNBC resistance to chemotherapy induced by RAC1/β-catenin

pathway. Therefore, our findings suggest that TUFT1 may
provide a potential target for more effective treatment of TNBC.
The mechanism of TUFT1 regulating Rac1 and the mechanism
of TUFT1 mediating metastatic and apoptotic bypass signaling
in TNBC cells need to be further explored.
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