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Cancer treatment with either standard chemotherapy or targeted agents often results

in the emergence of drug-refractory cell populations, ultimately leading to therapy

failure. The biological features of drug resistant cells are largely overlapping with

those of cancer stem cells and include heterogeneity, plasticity, self-renewal ability,

and tumor-initiating capacity. Moreover, drug resistance is usually characterized by a

suppression of proliferation that can manifest as quiescence, dormancy, senescence, or

proliferative slowdown. Alterations in key cellular pathways such as autophagy, unfolded

protein response or redox signaling, as well as metabolic adaptations also contribute

to the establishment of drug resistance, thus representing attractive therapeutic targets.

Moreover, a complex interplay of drug resistant cells with the micro/macroenvironment

and with the immune system plays a key role in dictating and maintaining the resistant

phenotype. Recent studies have challenged traditional views of cancer drug resistance

providing innovative perspectives, establishing new connections between drug resistant

cells and their environment and indicating unexpected therapeutic strategies. In this

review we discuss recent advancements in understanding the mechanisms underlying

drug resistance and we report novel targeting agents able to overcome the drug resistant

status, with particular focus on strategies directed against dormant cells. Research on

drug resistant cancer cells will take us one step forward toward the development of

novel treatment approaches and the improvement of relapse-free survival in solid and

hematological cancer patients.

Keywords: cancer stem cells, chemoresistance, dormancy, quiescence, plasticity, drug resistance, target

therapies

INTRODUCTION

Resistance to chemotherapy and molecularly targeted therapies is a major problem that limits the
effectiveness of cancer treatments. While some tumors are intrinsically insensitive to therapies
due to pre-existing resistance factors (primary or intrinsic resistance), others become resistant
during drug treatment (1). The development of resistance after an initial period of response
(acquired resistance) is due to the molecular heterogeneity of tumor cells which, together with
their ability to evolve at the genetic, epigenetic, and phenotypic level, is able to overcome the
action of cancer therapies. The emergence of resistant cells has been observed upon treatment with
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chemotherapy, radiotherapy, and targeted therapies, including
EGFR tyrosine kinase inhibitors in lung cancer, anti-HER2
therapies in breast cancer, and BRAF inhibitors in melanoma.
Even cancer immunotherapies, which exploit a dynamic
interaction between the host immune system and tumor cells
thus achieving lasting antitumor responses, are linked to the
development of resistance and consequent cancer progression
(2). Treatment with chemotherapeutic or targeted drugs is
increasingly recognized to promote the emergence of resistant
cells with features of cancer stem cells (CSCs) (3). This
process clearly involves a Darwinian selection of cell populations
with novel genetic mutations conferring drug resistance (4–
6). However, non-genetic events involving both chromatin
remodeling and the activation of stress-related pathways are
responsible for the establishment of drug tolerance, a process
more rapid, and massive than genetic mutation (7–9). Drug
tolerance is habitually associated to a transient state of slow
proliferation, thus identifying a population of Drug Tolerant
Persisters (DTPs) that are largely quiescent andmaintain viability
in conditions where other cancer cells are killed (9). Drug
tolerance is a temporary condition, which can revert after the
cessation of cytotoxic stimuli. Differently, in the presence of
continuous drug stimulation or other cellular stresses such
as hypoxia, drug tolerance stabilizes into an enduring drug
resistant state (9, 10). Besides quiescence, senescence has also
been proposed as a process adopted by tumor cells to escape
from therapy (11), suggesting that drug resistance is a composite
picture of heterogeneous cell states. This picture is further
complicated by a plethora of cell-intrinsic and extrinsic factors
that contribute to the establishment of drug resistance including
hypoxia, cytokines (among which IL-6, IL-8, and TGF-β play
a prominent role), cellular composition and stiffness of the
extracellular matrix. Drug resistant cells are found not only
within bulk tumor populations but are also scattered in distant
organs as disseminated tumor cells (DTCs), which have been
recognized as the seeds of metastasis. DTCs are in a state of
dormancy, which is induced and maintained by interactions with
the target organ niche (12). The neutralization of DTCs is a
primary goal in patients with cancers subject to late relapses
such as breast and prostate cancer: in fact, recent insights on
the mechanisms by which DTCs persist and reawaken are paving
the way for new therapeutic avenues (13). This review will draw
a picture of drug resistant cells in different contexts such as
primary tumors or pre-metastatic niches and discuss a surge
of recent findings that shed new light on their strengths and
weaknesses, making drug resistance one of the most fertile fields
of cancer research.

Abbreviations: SA-β-Gal, senescence- associated-β-galactosidase; H3K9me3,

trimethylated lysine 9 at histone H3; CML, chronic myeloid leukemia; p38 MAPK,

p38 mitogen-activated protein kinase; ERK 1/2, extracellular signal-regulated

kinase ½; RARβ, retinoic acid receptor beta; RORγ, nuclear hormone receptor

retinoic acid receptor-related orphan receptor gamma; SOX9 (sex-determining

region Y [SRY]–containing box 9); GRP78, glucose regulatory protein 78; EZH2,

enhancer of Zeste homolog 2; OXPHOS, oxidative phosphorylation; NSAIDs, non-

steroidal antinflammatory drugs; IGF1, insulin growth factor 1; EGFR, epidermal

growth factor receptor; NGFR, nerve growth factor receptor; NSCLC, non-small

cell lung cancer.

DRUG RESISTANT CANCER STEM CELLS:
A CONCENTRATE OF ROBUSTNESS AND
PLASTICITY

The concept of CSCs originated as a hierarchical model where,
in parallel to normal tissues, a small number of undifferentiated
elements give rise to intermediate progenitors and finally to a
differentiated progeny. While the hierarchical model remains
fundamentally valid for normal tissues (with the exception of rare
dedifferentiation events occurring during tissue regeneration or
artificial reprogramming), it is becoming clear that boundaries
between stem and non-stem cells are much weaker in cancer.
In fact, in tumors state transitions seem to be very frequent
and chaotic, thus generating high levels of heterogeneity that
constitute the foundation of drug resistance (14–16). Not
surprisingly, state transitions also affect the expression of
molecules expressed on the cell membrane, such as surface
markers used for CSCs isolation. Expression of surface or
intracellular markers can in some cases identify a population
of cells with enhanced self-renewal and/or metastatic capacity
in several tumors (Supplementary Table 1). However, it should
be kept in mind that such expression is transient, dynamic, and
variable both among individual tumors (17, 18). In fact, few
past studies on the expression of CSCs markers analyzed the
expression of such markers over time (particularly upon flow
cytometry isolation of positive and negative populations) or the
variation of CSCs markers upon microenvironmental stimuli.
Consequently, the phenotypic plasticity and dynamic properties
of CSCs populations were often overlooked. Functional features
such as tumor-repopulating ability in limiting dilution/serial
transplantation assays are more suitable to identify CSCs
populations. Such assays may nonetheless select for particularly
robust cells able to thrive in harsh experimental conditions.
Genetic barcoding makes use of lentiviral infection systems to
tag human cells and has been employed to analyze and track
stem cell hierarchies, particularly in colorectal cancer. In this
context, molecular tracking studies revealed a stable functional
heterogeneity of the colorectal CSCs population during serial
xenografting despite profound changes in genomic subclone
contribution (19), thus highlighting the functional robustness
of cancer cell hierarchies. In addition to cell-intrinsic features,
interactions with the tumor microenvironment are increasingly
recognized as crucial determinants of stemness. The fact that
soluble molecules released by the tumor microenvironment
have the potential to initiate CSC-like programs was first
demonstrated in brain tumors, where the self-renewal and
proliferation of stem-like cells were shown to crucially depend
from their interaction with endothelial cells (20). The tumor
endothelium has also been shown to produce nitric oxide, which
diffuses to neighboring glioma cells and activates the Notch
pathway to induce stem-like characteristics (21). Later studies
in colorectal cancer showed that cancer-associated fibroblasts
secrete hepatocyte growth factor, osteopontin, and stromal-
derived factor 1α, which activate the WNT pathway to promote
cancer cell stemness (22, 23). Tumor-associated macrophages
play also a role in supporting breast CSCs and brain CSCs,
further supporting the importance of the niche in dictating
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a cancer stem cell phenotype (24, 25). Moreover, exosomes
and microvesicles produced by niche cells are increasingly
recognized to influence CSCs and drug resistance. For example,
microvesicles produced by breast cancer-associated fibroblasts
transfer miR-221 to cancer cells thus increasing the drug resistant
CD133hi stem cell population (26). In addition to soluble factors,
other microenvironmental features such as clone location have
been recently shown to determine the self-renewal capacity of
colorectal cancer cells (27). In light of these evidences, stemness
in cancer can be defined as a transient state of enhanced plasticity
and robustness crucially influenced by microenvironmental
signals, including interactions with niche elements, tumor, and
non-tumoral cells, soluble factors, and anticancer therapies. The
link between stemness and drug resistance derives mainly from
three observations: (1) CSCs populations are more resistant
to therapy (28), (2) cancers with a stemness-related gene
expression have a worse prognosis (29–33), and (3) cells with
combined features of stemness, drug resistance, and dormancy
have been identified in several tumors including pancreatic
carcinoma (34, 35), ovarian cancer (36), melanoma (37), lung
cancer (38), and CML (39). More recently, dormant/slow cycling
CSCs have been identified in acute leukemia (40), glioblastoma
(8, 41, 42), breast (43), and colorectal cancer (44, 45). An
interesting association between stemness and dormancy, together
with enhanced migratory features, has also been reported in
early metastatic cells which are largely responsible for tumor
dissemination (46–49). While increasing evidences point to the
presence of drug resistant CSCs in multiple cancers, the effect
of conventional, and targeted therapies is not usually evaluated
specifically on the CSCs compartment, rendering difficult to
estimate CSCs permanence after therapy. Likewise, current
diagnostic and therapeutic approaches include few tools for the
identification, quantification, and elimination of drug resistant
cells andDTCs. The elucidation ofmechanisms of drug resistance
and the identification of biomarkers of resistant cells are therefore
essential to improve the clinical management of cancer patients.

HETEROGENEITY OF THERAPY
RESISTANT CANCER STEM CELLS

Previously thought to be a quite homogeneous condition, drug
resistance is emerging as a surprisingly heterogeneous state
that includes quiescent, drug-tolerant, and persister cells (50).
This scenario is further complicated by the recent addition
of post-senescent cells to drug-resistant cells responsible for
disease recurrence (11). In this section we propose a functional
distinction of drug resistant cells based on their origin,
location, and cellular state. Figure 1 illustrates schematically
three main populations associated with drug resistance such
as (1) “spontaneous” drug-resistant cells in untreated tumors,
(2) stress-induced drug resistant cells (including drug-tolerant
persisters, post-senescent cells, and cells resident in hypoxic
tumor areas), and (3) DTCs. As mentioned previously, a
small population of drug-resistant cells is already present in
tumors before any kind of treatment (32, 34, 37–40, 42, 44,
45). Recent studies showed that populations of endogenous

drug resistant cells transiently arise as the result of stochastic
state transitions that induce a high expression of resistance
factors (9, 51). Such factors have been identified in melanoma
cells and include EGFR, NGFR, WNT5A, AXL, PDGFRB, and
JUN, with cells expressing more than one factor displaying
a higher level of resistance (51). The emergence of drug
tolerant cells has been detected and quantified in multiple
tumors upon treatment with chemotherapeutics or targeted
agents including cisplatin (in NSCLC), erlotinib, and gefitinib
(NSCLC), lapatinib (breast cancer), the RAF kinase inhibitor
AZ628 (melanoma and colorectal cancer), and theMET inhibitor
PF-2341066 (MET-amplified gastric cancer) (9). DTPs represent
a variable percentage of the parental cell population ranging
approximately from 0.2 to 5% and have been identified as
largely quiescent cells, although a minor part of them can
resume proliferation even in the presence of the drug (9). A
particularly interesting mechanism that leads to the emergence
of DTPs has been recently elucidated in melanoma cells that
develop resistance to BRAF inhibitors (BRAFi). A subset of
melanoma cells constitutively activates the Aryl hydrocarbon
Receptor (AhR), a basic helix-loop-helix transcription factor
responsible for the de-differentiation of melanoma cells and
the expression of BRAFi- resistance genes. Treatment with
BRAFi results in the enrichment of a small subpopulation of
AhR-activated BRAFi-persister cells, responsible for melanoma
relapse (52). While spontaneous resistant cells and DTPs can
be appropriately defined as “quiescent” as their cell cycle
interruption is transient and programmed to last until the
subsequent change of gene expression or drug concentration.
However, such quiescent state can be stabilized by a protracted
environmental stresses like hypoxia, thus shifting the balance
from a short-term quiescent state to medium- or long-
term dormancy. Interestingly, cells deriving from a hypoxic
tumor microenvironment have been shown to activate a
dormancy program giving rise to chemoresistant DTCs, further
strengthening the link between dormancy and drug resistance
(10). Recently, senescence has emerged as another key cellular
response to drug resistance, further contributing to the
heterogeneous picture of drug resistant cells. Chemotherapy
and targeted therapies can induce senescence in tumor cells,
intended as a stable form of growth arrest (11, 53, 54). Senescent
cells are characterized by peculiar morphological features, by
the expression of senescent markers (mainly SA-β-Gal and
H3K9me3) and by the so-called Senescence-Associated Secretory
Phenotype (11, 55). Moreover, senescent cells are arrested in
the G1 or G2/M phase of the cell cycle, differently from
quiescent cells that are in G0 or G0/G1 transition. Importantly,
an estimated 1/106 cells can escape from senescence and re-
enter the cell cycle, gaining increased aggressiveness and tumor-
initiating potential (56). Cells able to escape from senescence
express nuclear β-catenin and stem cell markers, indicating
they underwent a process of cellular reprogramming that
rendered them a fully functional cancer stem cell population
(56). Finally, DTCs represent a category of drug resistant
stem cells located in lymph nodes or distant organs that can
persist for decades after removal of the primary tumor. DTCs
are crucially dependent from niche interactions and can be
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FIGURE 1 | A comprehensive scheme of drug resistant cancer stem cells. Representation of main cell populations responsible for drug resistance present in the

untreated tumor (SDR, Spontaneous Drug Resistant) induced by therapeutic treatment (DTPs, Drug-Tolerant Persisters; TIS, Therapy-Induced Senescent; HDR,

Hypoxic Drug Resistant) or disseminated in pre-metastatic organs (DTCs, Disseminated Tumor Cells).

resistant to chemotherapy, targeted therapies, and hormonal
therapy (57–59). Thus, understanding the biology of DTCs is
crucial for devising alternative strategies aimed at eradicating
DTCs while dormant or preventing their awakening (12, 60).
Many efforts are currently dedicated to answer key unresolved
questions regarding DTCs, such as which pathways are involved
in maintaining DTCs dormancy, how DTCs evade immune
surveillance and what triggers their awakening (12, 60, 61).
However, it is also of note that physiologic models for cancer cell
dissemination are represented by orthotopic/metastatic tumors
in mice, which are relatively straightforward in the case of
breast cancer but less feasible in other tumors. An increased
use of orthotopic/metastatic models is therefore, warranted to
improve the knowledge on tumor cell dissemination, dormancy,
and reawakening. A provocative contribution to the field of
DTCs came from recent studies showing that disseminated
breast cancer cells are protected from chemotherapy through
integrin-mediated interactions irrespectively from their cell
cycle status (57). Disrupting the interactions between DTCs
and the perivascular niche with integrin inhibitors results in
DTCs chemosensitization and may represent a clinical strategy
to eradicate minimal residual disease (57). In summary, it
appears that both cell-intrinsic factors and cell-extrinsic signals

(either local or systemic) crucially contribute to drug resistance
(Figure 2). Therefore, integrated approaches able to interfere
with the establishment of drug resistance at multiple levels are
urgently needed to increase the life expectancy of cancer patients.

NON-GENETIC PATHWAYS INVOLVED IN
DRUG RESISTANCE

Pioneer studies on dormant cells and their microenvironment
have led to a deeper understanding of drug resistance (62), thus
paving the way for a flurry of recent studies in this field. Here, we
will discuss themain categories of factors crucially involved in the
determination of a dormant/drug resistant status with particular
focus on recent discoveries. It is important to acknowledge
that factors responsible for dormancy/drug resistance are not
mutually exclusive, but many of them are likely active at the same
time and crosstalk to reinforce each other.

Stress-Induced Pathways Part 1: The p38
Hub
Early studies pointed to a key role for p38 stress-activated
protein kinase activation in dormant cells indicating that the
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FIGURE 2 | What makes a drug resistant cell. Schematic presentation of main factors that influence drug resistance at the cellular, local, and systemic level.

balance between proliferation and dormancy is determined by
the ratio between the activity of p38 and ERK1/2 (63, 64).
Since then, p38 has emerged as a hub in the control of
multiple pathways involved in both drug resistance and cellular
stress and has itself reported to induce chemoresistance in a
variety of tumors. Further insights into p38-activated pathways
led to the key discovery that the orphan nuclear receptor
NR2F1 upon activation by p38 induces dormancy through
SOX9, RARβ, CDK inhibitors, and global chromatin repression
in head and neck squamous cell carcinoma (65). Recently,
NR2F1 has emerged as a clinical marker of dormancy, its
expression being able to discriminate breast cancer patients
with short term systemic relapse from those with long disease-
free intervals (66). Most interestingly, factors involved in
the p38/NR2F1/retinoic acid receptors pathway are possibly
emerging as part of a general program of dormancy/drug
resistance active across several types of cancer. In line with
this hypothesis another retinoic acid-binding nuclear receptor,
RORγ, emerged during a recent mapping of molecular traits
related to stemness and drug resistance in pancreatic cancer (67).
RORγ, which is also known for its role in immune modulation
ad inflammation, was correlated with the aggressiveness of
pancreatic cancer and its inhibition led to a striking defect in
tumor growth (67). A current clinical trial based on the use of
5-azacytidine/all-trans retinoic acid aimed at inhibiting DTCs
reawakening in prostate cancer patients (NCT03572387) will
provide clinical evidence on the efficacy of epigenetic therapies
that induce histone demethylation and NR2F1 activation. SOX9
is another factor downstream of p38 that has recently been
involved in drug resistance of CSCs in breast and esophageal
cancer (68, 69) and in chemoresistance of cholangiocarcinoma
(70). Interestingly, SOX9 expression is regulated by the

SCFFBW7 (Skp1/Cul1/F-box), a component of the ubiquitin
ligase complex (71, 72), which has been recently shown to
regulate dormancy/drug resistance in breast cancer. In fact,
Fbxw7 ablation sensitizes disseminated breast tumor cells to
chemotherapy, arguing for a key role of the ubiquitination
pathway in dictating drug resistance by selective substrate
degradation (72). SOX2 and SOX9 transcription factors are also
typically expressed by dormant CSCs in breast and lung cancer.
Interestingly, these cells maintain dormancy in an autocrine
fashion by inhibiting Wnt signals through expression of the Wnt
inhibitor DKK1 (73). Other tumors have been recently reported
to modulate Wnt signaling in order to maintain dormancy:
prostate cancer cells receive Wnt5a from the osteoblastic
niche and activate a non-canonical signaling that represses
canonical Wnt3a/β-catenin signaling (74). Notably, osteoblast-
produced Wnt5a acts by inducing the Siah E3 Ubiquitin Protein
Ligase expression, further supporting the role of E3 ligases
in dormancy/drug resistance (75). Wnt signals have also been
implicated in the survival of dormant tumor cells in colorectal
cancer, which have been identified as a population of partially
differentiated cells characterized by high clonogenic capacity and
chemoresistance (45).

Stress-Induced Pathways Part 2: Hypoxia,
Endoplasmic Reticulum Stress, and
Autophagy
Global stress responses such as the hypoxia, unfolded
protein response (UPR), endoplasmic reticulum stress and
autophagy have all been implicated in drug resistance and
pre-metastatic dormancy. Hypoxia has been habitually linked
to tumor aggressiveness and poor survival but the underlying
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mechanisms are still under elucidation. Cells in low oxygen
microenvironments activate hypoxia-inducible factors and
increase the expression of key dormancy genes such as N2RF1,
p27, and MIG6, inducing a combined state of dormancy and
drug resistance (10, 76). Hypoxic responses can be triggered by
hypoxic microenvironments in primary tumors but can also be
induced by chemotherapy, which promotes a signaling cascade
involving calcium release from the endoplasmic reticulum and
expression of pluripotency genes, leading to an enrichment of
stem cells in breast cancer (77). The endoplasmic reticulum
and the related UPR, which is responsible for re-establishing
endoplasmic reticulum homeostasis following cellular stress, are
implicated in several steps of the drug resistance process (78).
The endoplasmic reticulum stress sensor GRP78, previously
shown to be downstream of activated p38 (79), seems to play
a central role in the induction of drug resistance and has been
particularly investigated in pancreatic cancer, where it has been
involved in both chemoresistance and maintenance of the stem
cell population (80, 81). Besides chemoresistance, endoplasmic
reticulum stress has been demonstrated to be involved also in
resistance to tyrosine kinase inhibitors in lung cancer, where
drug persister cells activate the recently described ufmylation
pathway and downstream UPR to upregulate key survival signals
such as Bcl-xL (82). An interesting crosstalk occurs between
endoplasmic reticulum stress/UPR and autophagy, which
occur simultaneously and are both implicated in tumorigenesis
and chemoresistance. In fact, GRP78, PERK, and ATF6 lie
at the crossroads between UPR and autophagy, being able to
modulate both pathways (83). Autophagy was recognized a
decade ago as being implicated in the regulation of tumor cell
survival and dormancy in ovarian and gastrointestinal tumors
(84, 85). In fact, autophagy is required during quiescence
for recycling of aminoacids and nucleotides (86), but new
evidence adds to a specific role of autophagy in dictating
chemoresistance in colorectal cancer (87), liver cancer (88),
brain tumors (89), and melanoma (90). Recently, autophagy
has been shown to be essential for the survival of disseminated
dormant breast cancer cells and its inhibition with antimalarial
hydroxychloroquine eliminates DTCs while dormant (91). In
KRAS-dependent tumors such as pancreatic adenocarcinomas
(PDAC), KRAS inhibition has demonstrated to increase
autophagic signaling resulting in autophagy dependance.
Removing this protective mechanism through the combined
use of MEK/ERK inhibitors and autophagy inhibitors may
be therapeutically beneficial in patients with PDAC, NRAS-
driven melanoma, and BRAF-mutant colorectal cancer (92). By
contrast, the activation of autophagic/lysosomal pathways can
occur as the consequence of anticancer therapies, as has been
demonstrated in melanoma treated with anti-BRAF targeted
agents (93). In this case, autophagy blockade has detrimental
effects, resulting in enhanced tumor progression, metastatic
dissemination, and chemoresistance. Thus, autophagy may
play different roles in multiple contexts and further studies are
needed to clarify the potential utility of autophagy modulators in
cancer therapy.

METABOLIC REPROGRAMMING OF DRUG
RESISTANT CELLS

Metabolic deregulation is recognized as a hallmark of cancer, and
increasing evidences suggest that it can be exploited by neoplastic
cells in order to acquire a drug resistant phenotype. Intuitively,
since chemotherapy kills highly proliferative cells that rely on
aerobic glycolysis, it also induces a selective pressure toward
the emergence of slow growing cells switched to OXPHOS
metabolism (94). However, this apparently straightforward
hypothesis is contradicted by very different metabolic patterns
found in resistant tumor cells (95). On one hand, several
studies indicate that chemotherapy-resistant cells become
OXPHOS-dependent (96–99). However, other reports showed
that chemoresistant cells rely on high ATP levels (100) and
express glycolytic markers (101–104). A possible explanation
for such divergences can be found in the timing of data
collection relatively to drug treatment: during therapy, resistant
cells may activate a survival program based on proliferative
slowdown and switch to OXPHOS, while some time after
therapy cessation cells may recover a high proliferative rate
associated to aerobic glycolysis. However, the main explanation
for the different metabolic patterns found in drug resistant
cells probably resides in the high plasticity of the metabolic
response to cytotoxic challenges. A recent study confirmed this
hypothesis by showing that cancer cells are able to switch
between OXPHOS and glycolysis to circumvent the inhibition of
either process (105). A therapeutic strategy targeting metabolic
plasticity based on intermittent fasting (to reduce glucose
availability) plus the OXPHOS inhibitor metformin effectively
restrained tumor growth by activating PP2A, GSK3β, and the
pro-apoptotic protein Mcl-1 (105). These results also suggest
that an optimization of metformin administration schedules
may potentiate its ability on tumor metabolism and increase
its therapeutic efficacy. Metabolic stress is a condition often
encountered by tumor cells, particularly by the quiescent
population resident in poorly vascularized/hypoxic areas. The
combination of hypoxia and reduced nutrient availability limits
the metabolic plasticity of tumor cells, which become more
sensitive to drugs that target mitochondrial respiration. In
fact, drugs targeting mitochondrial bioenergetics have been
proposed to eliminate metabolically stressed quiescent cells,
alone or in combination with autophagy inhibitors (106).
Interesting insights into the mechanisms of drug-induced
metabolic reprogramming have come from the study of estrogen
receptor (ER)-positive breast cancers. In these cancers, hormonal
therapy has been shown to result in the emergence of dormant
CD133high/ERlow cells responsible for metastatic progression
and to induce an OXPHOS metabolic editing of breast cancer
cells through IL6/Notch3 signaling (107). Hormonal therapy
resistance and the generation of breast CSCs have been correlated
to microvesicle-mediated horizontal transfer of microRNAs from
host stromal cells (26). Recently, extracellular microRNAs have
been further implicated in the metabolic crosstalk between
tumor cells and their microenvironment by showing that cancer
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cell-secreted miR-105 instructs cancer-associated fibroblasts to
display different metabolic features, thus helping the tumor
to face changes in the metabolic environment (108). Finally,
metabolic reprogramming related to the development of drug
resistance has been also shown to occur during antiangiogenic
therapies (109). Interestingly, overexpression of the glucose
transporter 3 (GLUT3) recapitulates all the metabolic features
of bevacizumab-resistant cells indicating GLUT3 as a potential
metabolic target in glioblastoma (110). In summary, it appears
increasingly clear that metabolic heterogeneity can be driven by
both intrinsic (either genetic or epigenetic) mechanisms or as an
adaptation to environmental changes and plays a key role in the
development of drug resistance, representing a potential avenue
for targeted therapies (111).

EPIGENETIC PLASTICITY IN THE
REGULATION OF DRUG RESISTANCE

Epigenetic deregulation is a feature of virtually all human
cancers (112). Tumors exhibit a continuously changing
epigenetic landscape that includes altered modifications of
DNA promoter regions, deregulated acetylation, or methylation
of histone proteins or inappropriate expression of repetitive
regions, contributing to tumors biological properties (113). The
involvement of epigenetic (rather than genetic) mechanisms in
drug resistance is particularly evident when drug resistant states
are transient, rapidly emerging, and functionally heterogeneous.
A number of past studies have demonstrated a contribution
of epigenetic modifiers such as histone deacetylases (HDACs)
to oncogenesis with different mechanisms strongly depending
on the cellular context (114). Recent observations point to a
crucial role of histone demethylases, and in particular KDM2,
KDM3, KDM5, KDM6, and KDM7, in generating a drug
resistant state and often a concomitant slow-dividing and
stem cell-like state (8, 9, 115–121). Additional interesting
insights into the epigenetic mechanisms of drug resistance
came from the observation that drug treatment induces a
rapid reprogramming of spontaneous resistant cells in primary
tumors, converting the transient quiescent state into a stably
resistant state and generating DTPs, the cells that actually survive
drug-induced toxicity (Figure 1) (51). In breast cancer, multiple
epigenetic enzymes including KDM5B, bromodomain, and
extraterminal (BET) proteins and the histone methyltransferase
EZH2 have been shown to be responsible for the generation of
persister cells through a dynamic remodeling of the chromatin
architecture, and such state transitions can be counteracted with
inhibitors of chromatin-modifying enzymes (117). Recently,
BET inhibitors were found to revert drug resistance and
to block the pro-tumorigenic activity exerted by YAP/TAZ
binding to the epigenetic coactivator bromodomain-containing
protein 4 (BRD4) (122). However, cancer cells can develop
also resistance to epigenetic inhibitors. In neuroblastoma, PI3K
pathway activation and transcriptional reprogramming can
confer resistance to BET inhibitors, indicating that sequential
or combination therapies will likely be required to achieve
durable antitumor effects (123). In this regard, the combined

inhibition of BET proteins and HDACs is increasingly regarded
as a strategy to improve the effectiveness of these drugs in
cancer (124). A novel link between epigenetic regulation and
chemoresistance has come from colorectal cancer, where the
epigenetic dioxygenase TET2 has been shown to control a
population of slow cycling cells responsible for chemoresistance
and tumor recurrence (44). Slow cycling cell populations
generated by epigenetic factors in multiple tumor settings
likely represent a reservoir for the subsequent emergence of
heterogeneous proliferating drug resistant cells. In fact, further
epigenetic rearrangements and even genetic mutations can
occur in quiescent cells giving rise to a variety of survival
strategies (125). In line with this hypothesis, a single lung cancer
persister cell was shown to generate a variety of colonies with
different mechanisms of erlotinib resistance (126). Finally, recent
discoveries suggest that repetitive transposable elements may
be involved in the epigenetic determination of drug resistance.
Repetitive elements constitute nearly half of the human genome
and in normal cells they are tightly regulated to avoid dangerous
inappropriate activation events. In cancer cells repetitive
elements are often aberrantly activated, in part due to decreases
in DNA methylation (127). Chemotherapeutic and targeted
drugs can also induce a strong activation of repeated elements
in cancer cells that results in cell death (116, 128). By contrast,
DTPs within the heterogeneous cancer cell population are able
to maintain the epigenetic repression of repetitive elements
through increased histone H3K9 and H3K27 methylation even
during drug treatment, exploiting this strategy to survive drug
exposure (116). In line with these observations, a new generation
of drugs targeting epigenetic modulators are finding their
way to the clinic, in the attempt to exploit cancer-associated
epigenetic traits for therapeutic intervention (129). Clinically
induced derepression of genomic repeat elements also harbors
the potential to enhance the immunogenicity of cancer cells
and enhance the response to immunotherapeutic approaches
(127), fostering further investigations on the mechanisms that
deregulate repeat element expression in tumor cells.

INTERACTIONS BETWEEN THE IMMUNE
SYSTEM AND THERAPY RESISTANT
CELLS

The importance of the immune system in controlling tumor
growth, metastatization, and relapse is undisputed, as witnessed
by the expanding role of immunotherapies in cancer treatment.
New challenges concerning the use of immunotherapeutic drugs
are often related to properties of CSCs, which have been reported
to have a low immunogenic profile and peculiar interactions with
immune cells (130). A striking example of interactions between
CSCs and immune cells resulting in immunotherapy resistance
has been recently highlighted in squamous cell carcinoma.
Here, a population of tumor-initiating cells responsive to TGF-β
acquires the expression of CD80 (amolecule previously identified
on cells of the immune system) and hinders cytotoxic T cell
activity leading to tumor relapse (131). The relationships between
drug resistant cancer cells and the immune system are the
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object of particularly intense investigations in the pre-metastatic
context. In fact, while tumor cells in the primary tumor are
often surrounded by an immune-suppressive microenvironment
(132), DTCs are theoretically more vulnerable to immune attack,
providing a window for therapeutic interventions aimed at
preventing metastasis formation. Recent reviews have addressed
in detail the role of the immune system in cancer (133) and the
mechanisms of DTCs immune escape (60, 134). Here, we will
focus our discussion to a limited number of recent breakthroughs
in the relationships between drug resistant cells and the immune
system. New insights on how DTCs evade immune recognition
came from the observation that dormant cells activate the
UPR, which in turn causes the downregulation of major
histocompatibility complex class I (MHC I) molecules required
for antigen presentation to CD8+ T cells. This mechanism
rendered DTCs undetectable by CD8+ T cells, while targeting the
UPR led to MHC I re-expression and reversal of the immune-
evasive phenotype (135). The most important soluble factors
in cancer-immune system interactions are interferons, and
particularly IFNγ produced by T cells and NK cells (136). IFNγ

has been shown to induce cancer cell dormancy throughmultiple
pathways and, interestingly, to exert different effects in indolent
(Ki67low) cells, and in dormant (Ki67−) cells (137). Besides its
established role in contributing to anti-tumor immunity, IFNγ

is also implicated in mediating resistance to various cancer
therapies, including anti-PD1 therapies via downregulation of
MHC I molecules (138, 139). An interesting link between IFNγ

and CSCs metabolism came from the observation that IFNγ

triggers cancer dormancy through indolamine 2,3 dioxygenase
(IDO1), an enzyme that catalyzes tryptophan metabolism.
Blocking IDO1 metabolic circuitry abrogates dormancy and
induces apoptosis of tumor-repopulating cells (140). The same
metabolic pathway was found to be involved in IFNβ-induced
dormancy in melanoma (141). The Stimulator of Interferon
Genes (STING) is a central component of the intracellular DNA
sensing pathway and has been initially characterized for its
capacity to mediate type I interferon inflammatory responses in
immune cells during infections. Recent breakthroughs indicate
that the STING pathway has much broader functions, being
implicated also in fundamental cancer-related processes such
as cellular transformation (142, 143), metastasis (144), and
response to radio- and chemotherapy (145, 146). STING has
been recently identified as an activator of autophagy downstream
of the ancestral cyclic GMP-AMP synthase (cGAS) pathway
(147) and may also be implicated in chemoresistance-related
autophagy. Additional evidences indicate a direct link between
STING and LKB1, which is a crucial regulator of stem
cell quiescence, metabolism, and anti-tumor immunity (148).
Specifically, loss of LKB1 leads to the suppression of STING
and insensitivity to cytoplasmic double-strand DNA detection,
resulting in resistance of lung cancer to immunotherapy
(149). Therefore, therapies that reactivate LKB1 or the STING
pathway may boost anticancer immune response in cancers
with resistance to immune-checkpoint blockade (150). Finally,
immune cells have been recently implicated in DTC reawakening
from dormancy in a study showing a key role for Neutrophil
Extracellular Traps (NETs) produced by neutrophils in the lung

parenchyma upon inflammation. NETs trigger integrin-mediated
activation of focal-adesion kinase in DTCs and subsequent
exit from dormancy, while integrin-blocking antibodies prevent
DTC reactivation in NET-enriched lungs (151). The latter
study confirms the involvement of integrins in chemo- and
radiotherapy resistance of multiple cancers, raising hopes for
the future development of effective therapeutic agents blocking
integrin signaling (152).

CONSIDERATIONS ON TARGETING
THERAPY RESISTANT CANCER STEM
CELLS

Therapies directed against drug resistant cells resident in either
primary tumors, pre-metastatic niches, or metastatic cancers
have to face an array of genetic and epigenetic survival
strategies exploited by cancer cells. Conventional therapies
such as radio- and chemotherapy, although representing the
mainstay of cancer therapy, are intrinsically limited in their
capacity to face drug resistance and may themselves promote
the emergence of more aggressive cells. In recent years the
mechanisms underlying cancer cell plasticity, heterogeneity,
stress responses, and dormancy have begun to be elucidated,
indicating new routes of therapeutic intervention. At the same
time, new therapeutic approaches should undergo careful pre-
clinical evaluation for their effects on the CSCs compartment,
which would provide indications on the development of resistant
cell populations. New therapeutic strategies directed against
dormant/drug resistant cells in primary tumors are progressively
focusing on epigenetic modulators such as inhibitors of KDMs,
HDACs, or BET proteins. By contrast, therapeutic strategies
directed against pre-metastatic DTCs are divided in three
main workstreams: the so-called “sleeping strategies” include
drugs that suppress proliferative signals such as anti-estrogen
therapies (153), inhibitors of CDK4/6 (154), and inhibitors
of ERK or Src (155). Prolonging dormant states can also be
obtained with drugs that increase the expression of dormancy
factors such as p38, DYRK1A, and N2RF1 (63, 65, 156, 157).
Sleeping strategies such as anti-estrogen therapies for breast
and prostate cancer had a profound impact in the clinical
setting. However, sleeping strategies must be long-lasting (or
even lifetime long) and therefore must deal with unwanted
side effects that can limit their long-term usage and reduce
patient compliance. In this regard, the use of retinoic acid or
fenretinide derivatives to induce cancer cell quiescence appear
as a feasible and relatively non-toxic therapeutic approach (12,
158). An additional problem related to sleeping strategies is
that not all tumor cells are responsive, as ER-positive breast
tumors can give rise tometastases even during hormonal therapy.
Thus, the combination or sequential administration of “sleeping”
therapeutics should be explored, with the caution of avoiding
toxic side effects. A second type of strategies directed against
dormant cells is represented by cell cycle reactivation, classically
with G-CSF or IFNα (159). However, treatment with reactivating
agents may not be effective on all the tumor cells, leaving
behind some dormant persisters. Also, therapeutic reactivation
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may render tumor cells more aggressive and potentially resistant
to subsequent chemotherapy. The third strategy consists in
eliminating dormant/drug resistant cells while dormant, a
difficult but not impossible challenge. Elimination of dormant
cells has been achieved in experimental brain tumors with
mithramycin (160), HDACs or KDMs inhibition (8, 9, 116, 119),
while in pancreatic tumors resistant cells were eliminated by
IGF1 inhibition (161). Activators of ferroptosis, a form of cell
death characterized by the accumulation of lipid peroxidation
products and lethal reactive oxygen species derived from iron
metabolism, were shown to kill drug tolerant cells in multiple
tumors (162, 163). Mitochondrial respiration is also considered
a promising target (106, 164–167), although metabolic plasticity
could result in the unresponsiveness of some resistant cells.
Besides the inhibition of specific cellular proteins/pathways,
other strategies with a broader mechanism of action may be
useful to cope with drug resistance. First, immunotherapy alone
or in combination with targeted agents is proving effective in
several cancers even in themetastatic setting (168, 169). Adoptive
transfer of tumor-reactive lymphocytes has led to striking anti-
tumor immune responses in breast cancer and other tumors
(170–174), indicating that totally drug resistant cells such as
those in advanced metastatic tumors can still be eliminated
by the immune system. Also, emerging evidences suggest that
micro- and macro-environmental signals can profoundly impact
on the biology of drug resistant cells. While inflammation has
been shown to facilitate metastatic outgrowth (151, 175, 176),
anti-inflammatory agents such as NSAIDs seem to dramatically
decrease the risk of metastatic relapse, possibly by preventing
the reawakening of dormant cells caused by niche alterations
that occur during inflammation (177, 178). Finally, therapeutic
strategies that include lifestyle-related factors such as exercise
and nutrition are emerging as an important tool not only in
cancer prevention but also inmanaging established cancers (179).
Diet and lifestyle likely act through reinforcing the immune
system, modulating hormone levels, shaping gut microbiota,
preventing inflammatory conditions, and influencing the pre-
metastatic niche to become less favorable to DTCs awakening
(179, 180). A link between diet-related factors and therapy has
recently emerged by studies showing that a hypoglycemic diet
improves the effectiveness of PI3K inhibitors (181). Likewise,
fasting or fasting-mimicking diets are increasingly considered
as valid supports in cancer therapy due to their ability to
induce wide alterations in growth factors and metabolite levels
that generate unfavorable environments for cancer cells and
improve the effects of cancer therapies (182). Finally, physical

exercise is being explored for its ability to promote and restore
antitumor immunity. In fact, the infiltration and antitumor
activity of immune cells are limited by a scarcely oxygenated
and acidic tumor microenvironment. Exercise has been reported
to modulate oxygen concentration and pH in the tumor bed
and to directly stimulate tumor cell killing by immune cells,
thus appearing as a potential tool to improve the effectiveness of
immunotherapy (183). In summary, drug resistance increasingly
appears as a multifactorial process (Figure 2) where each
class of factors can be considered as a target for novel
therapeutic strategies.

CONCLUSIONS

Understanding the mechanisms of drug resistance is mandatory
in order to improve the effectiveness of cancer therapies. While
novel and unexpected mechanisms of drug resistance continue to
emerge, translational research is moving toward new therapeutic
approaches involving not only cancer cells and peritumoral cells
but also other components of the body such as the immune
and the hormonal system. As a result of the discoveries made
in the last decade, drug resistant cancer cells in their different
contexts are starting to appear as a treatable target. However,
increasing efforts are required to explore the mechanisms that
regulate drug resistance of cancer cells either in primary tumors,
pre-metastatic niches, and overt metastases in order to find new
therapeutic avenues.
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