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Background: Head and neck squamous cell carcinoma (HNSCC) exists within a

microenvironment rich in immune cells. Macrophages are particularly abundant in

and around tumor tissue, and have been implicated in the growth, malignancy,

and persistence of HNSCC (1). However, current literature reports variable degrees

of association between the density of tumor-associated macrophages (TAMs) and

clinicopathologic markers of disease (2, 3). These inconsistent findings may be a result

of differences in approach to TAM detection. Authors have measured total TAMs in

tumor tissue, while others have stained tumor samples for individual subtypes of TAMs,

which include pro-inflammatory (M1-like) and immunosuppressive (M2-like). Our aim is

to more clearly define the prognostic significance of the phenotypes of tumor-associated

macrophages in HNSCC.

Methods: We conducted a meta-analysis of the existing publications investigating the

relationship between TAMs (total and M2-like subtype) and T stage, nodal involvement,

vascular invasion, lymphatic invasion, and tumor differentiation (Figure 1). A total of 12

studies were included. Forest plots and risk ratios were generated to report overall effect.

Results: Higher density of both total and M2-like subtype of TAMs in the tumor

microenvironment is associated with advanced T stage, increased rates of nodal

positivity, presence of vascular invasion, and presence of lymphatic invasion (p< 0.0001;

Figures 2–9). There is no significant association between TAM density, either total or

M2-like subtype, and tumor differentiation (Figures 10, 11).

Conclusions: Increased density of TAMs, including those of the M2-like phenotype,

correlate with poor clinicopathologic markers in HNSCC. Our findings warrant additional
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investigation into the subpopulations of TAMs, the mechanisms behind their recruitment

and differentiation, and the associated influence of each phenotype on tumor growth

and invasion. A greater understanding of TAM dynamics in HNSCC is critical for directing

further research and employing TAM-targeted adjunct therapies.

Keywords: tumor microenviroment, tumor associated macrophage (TAM), head and neck (H&N) cancer, CD68,

CD163, M1 macrolphage, M2 macrophage

BACKGROUND

The tumor microenvironment (TME) is comprised of various
cellular components with complex interactions between these
components and tumor cells. In 1889, Paget first described the
“seed and soil” hypothesis, wherein carcinomas induce changes
in adjacent stromal and inflammatory cells, which contribute
to neoplastic growth and invasion (1–3). Tumor associated
macrophages (TAMs) are one such critical component of the
TME. TAMs are macrophages present in close proximity to
tumor cells which play important roles in influencing host
immune response to cancer. Macrophages, like many other
immune effector cells, exist as multiple subtypes with differing
expression patterns, surface markers, and secretable factors.
The role they play in the TME depends on the phenotype of
the macrophage. They are broadly categorized into two types,
though this is a matter of debate and many subtypes exist. The
first type is “classically activated,” or M1-like macrophages, and
these stand in contrast to “alternatively activated,” or M2-like
macrophages. M1-like macrophages are pro-inflammatory and
are thought to exert antitumor effects through production of
IL-12, IL-23, IFN-γ, and reactive oxygen and nitrogen species
(4). Studies in multiple cancer types, including non-small cell
lung, ovarian, and colorectal cancers, have correlated extended
survival with presence of predominantly M1-like TAMs in the
TME (5–7) Cumulatively, “classical” M1-like macrophages elicit
tumor tissue disruption and may be considered host protective
(8). M2-like macrophages inhibit M1-like TAMs and promote
tissue remodeling (4, 9) through production of IL-10, TGF-β,
VEGF, and TNF-α, and induction of angiogenesis (9, 10). In
many tumors, infiltrating macrophages are predominantly of
the “alternative” M2-like type, providing an immunosuppressive
environment suitable for tumor growth (11). All TAMs,
including both the M1-like and M2-like subtypes, can be
identified and quantified by CD68 immunostaining, whereasM2-
like macrophages are additionally and specifically characterized
by CD163 surface marker (12, 13). Although other surface
markers may be utilized to detect these subpopulations of
macrophages, CD163 and CD68 are the most commonly
employed for M2-like and total TAM identification, respectively.
When present in high numbers, TAMs are associated with poor
survival outcomes and the promotion ofmetastasis, angiogenesis,
and invasion into nearby tissues and vasculature across many
cancer types (2, 14, 15).

In head and neck squamous cell carcinoma (HNSCC), TAMs
are recruited to the tumor microenvironment and directly
contact SCC cells. These cells have been shown to promote
disease progression and relapse, cellular dedifferentiation, and

angiogenesis in HNSCC (16–18). Tumors demonstrating high
levels of CD68 and CD163 immunostaining, representing
total TAM and M2-like macrophage populations respectively,
correlate with increased lymph node metastasis, extracapsular
extension, and advanced stage (19). Poor cellular differentiation,
advanced T and N stage, lymphovascular invasion are predictive
of shorter survival in patients with HNSCC (20–25). Presence
of TAMs in high numbers in the tumor microenvironment may
thus be viewed as an indicator of poor prognosis (26). Current
data suggest that CD163-positive protumor macrophages
dominate the population of tumor associated macrophages
(27, 28). Increased levels of these M2-like macrophages
have been associated with high pathological grade, tumoral
angiogenesis, recurrence after radiotherapy, poor response
to chemotherapy, and decreased overall survival (26, 29–32).
However, TAMs exist on a dynamic continuum between the two
phenotypes, M1-like and M2-like, and their differentiation is not
fixed (6, 8, 9). Studies have shown that specific signals can shift
M2-like macrophage populations toward the M1-like phenotype,
or even inhibit the polarization to M2-like subtype entirely
(33, 34). Therefore, TAMs may represent a therapeutic target for
various types of cancers, including HNSCC. There are multiple
stages during which TAMs may be targeted for treatment,
including recruitment to target tissue via CCL2/CCL8-CCR2
pathways, prevention of differentiation to the M2-like type,
and direct induction of phenotypic M2-to-M1 reprogramming,
possibly through Wnt/Beta-catenin pathway inhibition (34, 35).
Clinical assessment of specific agents targeting TAMs is currently
underway (36).

The aim of this meta-analysis is to define the prognostic
significance of TAM populations in HNSCC by compiling
existing data on the effect of total TAM (CD68+) and M2-like
TAM (CD163+) density on burden of disease and pathologic
markers of tumor aggressiveness.

METHODS

A PubMed search was conducted with the following keywords:
(“Tumor associated macrophages” OR “TAM” OR “M2” OR
“CD163” OR “CD68”) AND (“squamous cell carcinoma”).
PRISMA recommendations were followed (37). Of the articles
found, studies were selected for analysis using the following
criteria: (1) English language; (2) human subjects; (3) squamous
cell carcinoma of the head and neck; (4) measurement of either
CD68+ or CD163+ tumor associated macrophages or both;
(5) available data on at least one of the following pathological
markers: T stage, N stage, differentiation, lymphatic vessel
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FIGURE 1 | Flowchart of systematic review.

FIGURE 2 | High CD68+ TAM density correlates with advanced T stage (T3, T4).

FIGURE 3 | High CD163+ TAM density correlates with advanced T stage (T3, T4).

invasion, vascular invasion. After identification, screening, and
evaluation of eligibility, 12 studies were selected for meta-analysis

(Figure 1). All immunohistochemistry was performed on tumor
samples from patients with HNSCC. A total of 1,551 patients
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FIGURE 4 | High CD68+ TAM density is associated with nodal positivity.

FIGURE 5 | High CD163+ TAM density is associated with nodal positivity.

FIGURE 6 | High CD68+ TAM density is associated with higher rates of vascular invasion.

FIGURE 7 | High CD163+ TAM density is associated with higher rates of vascular invasion.
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FIGURE 8 | High CD68+ TAM density is associated with higher rates of lymphatic invasion.

FIGURE 9 | High CD163+ TAM density is associated with higher rates of lymphatic invasion.

FIGURE 10 | CD68+ TAM density is not associated with poor differentiation of tumor.

FIGURE 11 | CD163+ TAM density is not associated with poor differentiation of tumor.

were assessed, with 945 having oral SCC, 500 with esophageal
SCC, and 106 with unspecified HNSCC. CD68 was utilized
as the panmacrophage marker, including M1-like and M2-like
subtypes, and CD163 represented only the M2-like population of
TAMs in all studies. CD68 and CD163 detection was reported by
pathologist scoring or software calculation. Seven studies utilized
median values of marker density while four studies utilized mean

values of marker density to distinguish high vs. low CD68 or
CD163 staining. One study (38) utilized an online software-based
method established by Budczies et al. (39) to distinguish high
vs. low density. Based on classifications outlined by the selected
studies, high T stage was defined as T3 or T4, nodal status was
grouped as positive or negative, lymphatic invasion and vascular
invasion were deemed present or not present, and tumors were
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pathologically classified as poorly or well differentiated. All data
was entered into Review Manager 5.3 (Nordic Cochrane Centre,
Copenhagen, Denmark) in order to construct Forest Plots. Forest
Plot specifications were as follows: dichotomous for data type,
fixed effect for analysis methods, and risk ratio for effect measure.

RESULTS

The characteristics of the 12 studies selected for meta-analysis are
summarized in Table 1 (14, 38, 40–49). The articles constituted a
total sample size of 1,551 patients. In all but three studies, patients
had not received therapy prior to surgery. Four studies evaluated
CD68 density; two studies evaluated CD163 density; six studies
evaluated both markers in relation to clinicopathologic factors
of HNSCC.

Increased CD68+ and CD163+ Density Is
Associated With Advanced T Stage
Increased presence of tumor-associated macrophages (CD68+)
was associated with stage T3 and T4 HNSCC (Figure 2). Of
the nine identified studies that compared high vs. low CD68+
immune cell density, eight suggested a greater risk of high T
stage with increased TAMs. The combined risk ratio of these
studies was 1.42 (95%CI= 1.25–1.62), representing a statistically
significant correlation between high total TAM number and
high T stage (p < 0.00001). The average rate of advanced T
stage was 52.6% in those samples with high CD68 density, and
37.6% in samples with low CD68 density. Greater density of
M2-like TAMs (CD163+) was associated with higher T stage
(Figure 3). Eight studies compared the density of CD163+ and
T stage with a cumulative risk ratio of 1.31 (95% CI = 1.16–1.48,
p < 0.0001). The average rate of advanced T stage was 55.3% in
those samples with high CD163 density, and 44% in samples with
low CD163 density. Taken together, increased presence of TAMs,
and specifically the M2-like subtype, is associated with larger and
more locally invasive primary tumors.

Increased CD68+ and CD163+ Density Is
Associated With Nodal Metastasis
The presence of high numbers of CD68+ TAMs in primary
tumor site was associated with nodal metastasis (Figure 4). Eight
studies investigated the relationship of CD68+ and N stage,
of which seven demonstrated correlation to nodal positivity.
Cumulatively, high density of CD68+ TAMs was correlated with
a risk ratio of 1.42 (95%CI = 1.23–1.65, p < 0.00001). The
average rate of nodal positivity was 56.3% in samples with high
CD68 density, and 36.8% in samples with low CD68 density.
High CD163+ staining in primary tumor site was associated
with positive nodal metastasis in all eight of the studies that
examined this relationship (Figure 5). The combined risk ratio
for all studies was 1.38 (95%CI = 1.22–1.56, p < 0.00001). The
average rate of nodal positivity was 55% in samples with high
CD163 density, and 34% in samples with low CD163 density.
Overall, higher numbers of TAMs, and specifically M2-like
polarized TAMs, correlates with higher rates of nodal metastasis
in HNSCC.

Increased CD68+ and CD163+ Density Is
Associated With Higher Rate of Vascular
Invasion
High staining of CD68+ macrophages was associated with
increased rate of vascular invasion in HNSCC (Figure 6). All
four identified studies demonstrated risk ratios >1, with a
cumulative ratio of 1.91 (95%CI= 1.47–2.48, (p < 0.00001). The
average rate of vascular invasion was 39.1% in samples with high
CD68 density, and 18.9% in samples with low CD68 density.
Increased staining for CD163+ was associated with increased
risk of vascular invasion (Figure 7). Three studies contributed
to a risk ratio of 2.24 (95%CI = 1.69–2.97, p < 0.00001). The
average rate of vascular invasion was 51.9% in samples with high
CD163 density, and 21.7% in samples with low CD163 density.
Cumulatively, increased presence of TAMs, including M2-like
TAMs specifically, is associated with an increased risk of vascular
invasion in HNSCC.

Increased CD68+ and CD163+ Density Is
Associated With Higher Rate of Lymphatic
Invasion
Increased density of CD68+ in HNSCC samples was associated
with higher risk of lymphatic invasion (Figure 8). Three studies
contributed to a cumulative risk ratio of 1.36 (95%CI = 1.16–
1.59, p < 0.0001). The average rate of lymphatic invasion
was 57.5% in those samples with high CD68 density, and
38.1% in samples with low CD68 density. High density of
CD163+was associated with increased risk of lymphatic invasion
(Figure 9). Three studies were identified, resulting in a risk
ratio of 1.52 (95%CI = 1.30–1.78, p < 0.00001). The average
rate of lymphatic invasion was 60.0% in samples with high
CD163 density, and 36.1% in samples with low CD163 density.
In summary, the presence of high levels of TAMs, including
M2-like TAMs specifically, is associated with increased rates of
lymphatic invasion.

Increased CD68+ and CD163+ Density Is
Not Associated With Poor Differentiation of
Tumor
There was a trend suggesting high density of CD68+ TAMs may
be associated with higher rates of poor differentiation of HNSCC,
but this did not reach statistical significance (Figure 10). Five
studies compared the correlation between these two factors,
demonstrating a risk ratio of 1.27 (95%CI= 0.99–1.64, p= 0.06).
The average rate of poor differentiation was 50.6% in samples
with high CD68 density, and 35.9% in samples with low CD68
density. Presence of high levels of CD163+ density was also
not associated with differentiation (p = 0.19) (Figure 11). Four
studies were determined to examine this relationship. The
resulting risk ratio was 1.13 (95%CI = 0.94–1.34, p = 0.19). The
average rate of poor differentiation was 55.2% in those samples
with high CD163 density, and 45.1% in samples with low CD163
density. While there is a trend approaching significance for
CD163+TAMs, neither CD163+ nor CD68+ staining correlated
significantly with degree of tumor differentiation.
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TABLE 1 | Characteristics of studies evaluating TAM density and clinicopathologic markers in HNSCC.

References Number of

patients

Site of

cancer

Age of patients TAM markers

assessed

Prior therapy received TAMs high-low distinction

Balermpas et al. (40) 106 HNSCC Not reported CD68, CD163 Chemoradiotherapy > or < than median value of all

patients

Fang et al. (41) 78 Oral SCC 60 (24–82) CD68 No neoadjuvant therapy > or < than mean value of all patients

Fujii et al. (42) 108 Oral SCC 66.4 (23–93) CD68, CD163 No neoadjuvant therapy > or < than mean value of density

Hu et al. (43) 127 Oral SCC 61 (34–88) CD68, CD163 No neoadjuvant therapy > or < than mean value of density

Liu et al. (44) 112 Oral SCC Not reported CD68 No neoadjuvant therapy > or < than median value of density

Lu et al. (14) 92 Oral SCC 51 (21–76) CD68 No neoadjuvant therapy > or < than median value of density

Matsuoka et al. (45) 60 Oral SCC 68.9 (33–87) CD163 Chemoradiotherapy > or < than median value of density

Shigeoka et al. (46) 70 Esophageal

SCC

65.7 (54–88) CD68, CD163 No neoadjuvant therapy > or < than median value of density

Sugimura et al. (32) 210 Esophageal

SCC

154 patients <70,

56 patients >70

CD68, CD163 104 received prior

chemotherapy

> or < than median value of density

Wang et al. (47) 298 Oral SCC 53 (21–78) CD163 No neoadjuvant therapy > or < than mean value of density

Yamagata et al. (48) 70 Oral SCC 28–84 CD68, CD163 No neoadjuvant therapy > or < than median value of density

Zhu et al. (38) 220 Esophageal

SCC

124 patients <60,

96 patients >60

CD68 No neoadjuvant therapy Method established by Budczies et al.

(http://molpath.eharite.de/cutoff/)

DISCUSSION

TAMs are a critical component of the TME in HNSCC and other

cancers. Published studies evaluating TAMs have occasionally
been contradictory, with high TAM levels both negatively and
positively correlating with outcome (50, 51). Therefore this
work aimed to evaluate the current literature on the prognostic

relationship of this TME component. We conducted a meta-
analysis on 12 studies that evaluated the association between
TAMs and clinicopathologic factors of HNSCC. The analysis
shows that an increase in total TAMs, particularly the M2-
like subtype, was associated with a significant increase in risk

for high T stage and nodal positivity. A significantly greater
risk for lymphatic invasion and vascular invasion were also
seen when TAMs were present in higher numbers in tumor
tissue. In contrast, greater numbers of CD68+ as well as
CD163+ TAMs were not found to be associated with poorly
differentiated tumors.

The present study suggests a role of TAMs, notably those of the

M2-like phenotype, in tumor growth, invasion, and metastasis.
CD163-positive immunostaining is critical to identifying as well
as activating this protumoral, M2-like subpopulation of TAMs
(52, 53). Studies evaluating TAM RNA and protein products
in HNSCC have identified that CD163-positive protumoral
macrophages co-cultured with cancer cells release TGF-beta
and epidermal growth factor (EGF) and upregulate ERK1/2,
contributing to tumor growth and likely advanced T stage (54).
TAMs also exhibit decreased expression of epithelial marker
E-cadherin, and increased expression of mesenchymal markers
Vimentin, Snail, and Slug, suggesting a role of TAMs in tumor
cell epithelial-mesenchymal transition (EMT) (54, 55). The
release of cytokines and chemokines in to the TME by M2-like
macrophages, such as CCL16, CCL18, IL10, VEGF, Arginase 1,
and YM1, may be responsible for accelerating cancer progression
(56, 57). Antibodies blocking these secreted components are thus

an attractive target for decreasing tumor cell replication, motility,
and invasion.

It remains unclear whether the increased density of M2-
like macrophages represents the majority of the total TAMs
measured, and thus, accounts for similar results amongst the
two groups. Two studies suggested that the population of total
TAMs is skewed toward the M2-like phenotype. Yamagata et al.
demonstrated nearly equivalent density of CD68 and CD163,
with numbers in their samples ranging from 24 to 204/mm2

(median, 73mm2) vs. 22 to 156/mm2 (median, 73/mm2),
respectively (51). Similarly, Fujii et al. noted that although the
average number of CD68+macrophages was slightly greater than
the CD163+ macrophages, this difference was not statistically
significant (2.72 cells/high-power field vs. 2.29 cells/high-
power field) (42). The potential for M2-like macrophages to
be responsible for the observed relation between TAMs and
prognostic factors in head and neck squamous cell carcinoma is
also corroborated in other cancer types (11, 58). Further studies
should investigate whether CD163 indeed represents themajority
of total TAMs in HNSCC tumoral tissue. If so, CD163 may
act as a more specific marker for detection of tumor-promoting
macrophages, and subsequently serve to assess, monitor, and
potentially combat tumor growth and malignancy.

Given their importance in a variety of critical processes in
the TME, interest has focused on TAMs as a therapeutic target.
Strategies for targeting TAMs have shown promising results in
preclinical trials, and several clinical trials are ongoing (34, 36,
59). Broadly, current TAM therapeutic strategies belong to one
of four categories: (1) Depleting total TAM count; (2) Reducing
recruitment of TAMs to primary tumor site; (3) Reprogramming
M2-like macrophages to the tumoricidal M1-like phenotype;
and (4) Limiting activation of TAMs. Trabectedin, which
reduces total TAM number, was associated with reduced
angiogenesis in both mouse tumor models and human sarcoma
specimens (60). Metabolism agents with anti-tumor effects,

Frontiers in Oncology | www.frontiersin.org 7 July 2019 | Volume 9 | Article 656

http://molpath.eharite.de/cutoff/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Kumar et al. TAMs in HNSCC: Meta-Analysis

such as metformin, may decrease M2-like abundance and
polarization (61). Inhibition of the interaction between CD47,
a marker of self upregulated by tumor cells in the TME, and
SIRPα, a surface molecule on TAMs, enhances phagocytosis
and decreases the M2/M1 ratio (62). Humanized anti-CD40
antibodies have been shown to re-educate M2-like TAMs to
become M1-like, and induce tumor regression and improve
survival in pancreatic cancer mouse models and surgically
incurable patients (63). Inhibitors of the colony-stimulating
factor 1 and its associated receptor (CSF1/CSF1R), which serve
to generate monocyte progenitors and differentiate TAMs,
have demonstrated benefit in skewing TAM population from
protumoral to anti-tumoral predominance. Blockade of CSF1R
in pancreatic ductal adenocarcinoma mouse models was shown
to increase the activity of anti-tumor T cells, as well as improve
response to PD-L1 checkpoint immunotherapy (64). Tumor cell-
based activation of the Wnt/Beta-catenin pathway in TAMs is
a newly identified and critical component of M2 polarization
in cancer, particularly hepatic tumors (65). Disruption of Wnt
pathway components with small-molecule inhibitors may be
beneficial in diminishing numbers of M2 macrophages. Evidence
suggests that TAM-associated treatment in conjunction with
existing chemotherapy or radiation may provide the greatest
benefit (65). Radiation induces DNA and cellular damage, leading
to macrophage recruitment and subsequent promotion of tumor
progression (66). Limiting the reactive infiltration of TAMs
may promote improved responses to radiotherapy. Additionally,
macrophage recruitment is often observed in tumors resistant to
anti-angiogenic therapy, suggesting that TAMs may be related
to drug resistance (67). Quantifying TAMs may thus be useful
for prognostic stratification, as well as guidance for post-
surgical therapy.

Limitations
While this meta-analysis showed significant relationships
between both total TAMs and M2 TAMs and multiple
clinicopathologic indicators of poor prognosis, our analysis was
limited in several ways. First, studies that do not demonstrate
statistical significance are less likely to be published, which
may skew our trends toward significance. Furthermore, multiple
studies identified in the initial literature search provided data that
was not amenable to statistical analysis, reporting TAM markers
by percentage of total TAMs or simply displaying calculated
p-values. This study reveals a correlation between TAMs and
poor prognostic markers; however, a causative relationship
would require further study. Mechanistic studies may help to
define the timeline of TAM recruitment and thus, clarify their
role in tumor progression.

In addition, there was not uniformity in the treatment that
patients received prior to analysis. Some studies included patients
who received chemotherapy prior to surgery, and treatment
with radiotherapy and chemotherapy is known to alter the
cellular composition of the TME. Moreover, timing of the
sample collection may contribute to the populations of TAMs in
majority, and thus, the levels of markers identified. It has been
suggested that M1 macrophages are present in highest numbers
when tumors first develop, and a gradual shift to M2 phenotype
occurs as the tumor grows and spreads. A significant increase in
M2 polarization occurs even during the periods between biopsy
and tumor resection (67). While often considered dichotomous
for the purpose of analysis, it should be reiterated that TAMs
exist on a dynamic spectrum with some cells staining positive for
both M1 andM2markers (5). Subtypes within the M2 phenotype
have been described, each elicited by different cytokine signals
(68). Whether macrophages exist in these two polarized states is a
matter of great debate and many authors feel that there is instead
a wide spectrum of phenotypes of macrophages (69).

CONCLUSIONS

Despite growing interest in TAMs, much is still unknown
regarding their development, regulation, and diversity. As
macrophage-focused treatments begin to gain clinical relevance,
it will become necessary to elucidate the best mechanisms
for utilizing TAMs in diagnosis, prognosis, and management.
Within each of the categories of treatment described, multiple
mechanisms to alter TAMs have been proposed and are actively
under investigation. Responses in specific HNSCC subtypes
will require further characterization and description, including
investigation into which combination therapies provide the
optimal tumor response.

Taken together, this meta-analysis lends weight to the growing
interest in TAMs as a prognostic indicator in cancer. The
literature demonstrates that elevated levels of TAMs, particularly
of the M2 subtype, are related to poor clinicopathologic
findings in HNSCC. Novel therapeutics targeting TAMs are an
exciting avenue for targeted therapeutic strategies for HNSCC,
and warrant further investigation.
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