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The recent arrival of CDK4/6 inhibitor agents, with an approximate doubling of

progression-free survival (PFS) associated with their use in hormone receptor-positive,

HER2-negative advanced breast cancer (BC), has radically changed the approach

to managing this disease. However, resistance to CDK4/6 inhibitors is considered

a near-inevitability in most patients. Mechanisms of resistance to these agents are

multifactorial, and research in this field is still evolving. Biomarkers with the ability to

identify early resistance, or to predict the likelihood of successful treatment using CDK4/6

inhibitors are yet to be identified, and represent an area of unmet clinical need. Here we

present selected mechanisms of resistance to CDK4/6 inhibitors, largely focussing on

roles of Rb, cyclin E1, and the PIK3CA pathway, with discussion of associated biomarkers

which have been investigated and applied in recent pre-clinical and clinical studies. These

biological drivers may furthermore influence clinical treatment strategies adopted beyond

CDK4/6 resistance.

Keywords: CDK4/6 inhibitors, biomarker, thymidine kinase-1, PIK3CA, resistance, palbociclib, ribociclib,

abemaciclib

In normal cell signaling, mitogenic signaling via pathways including ER and PI3K/Akt/mTOR
activates the cyclin D1-cyclin-dependent kinases 4 and 6 (CDK4/6) complex. Once activated,
CDK4/6 phosphorylates the retinoblastoma protein (Rb), an event which causes Rb to lose the
ability to bind to the E2F family of transcription factors. E2F is therefore released, activating
gene transcription and thus initiating progression of the cell cycle from G1 to S phase (resulting
in DNA synthesis) (1). Dysregulation of the CDK4/6 pathway, occasioning unchecked cell-cycle
progression and proliferation, has been implicated in breast cancer (BC) via various mechanisms,
including amplification of cyclin D1 (2), gain of CDK4, low expression of p18/high expression
of RB1 (3) and inactivation of p16, the tumor suppressor protein and negative moderator of the
cyclin D-CDK4/6 complex (4). The p16 protein, encoded by the INK4a gene, is a common target
of inactivating mutations and deletions, operating upstream from RB (5).

The past decade has seen a radical shift in the management of advanced or metastatic
hormone receptor-positive (HR+), human epidermal growth factor receptor-2 (HER2) negative
BC. Endocrine therapy (ET) as monotherapy, previously thought to be the gold-standard in first
and often subsequent lines of management, has been augmented and displaced in the treatment
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hierarchy by the emergence of selective, small-molecule
inhibitors of CDK4/6. Three such agents are currently
in widespread clinical use, with all three, when given in
combination with ET, resulting in an approximate doubling
of progression-free survival (PFS) in patients with advanced
HR+/HER2–negative BC, compared to ET plus placebo. These
consistent positive PFS results have been demonstrated in
large phase III trials in the upfront setting [PALOMA-2 (6) for
palbociclib plus letrozole; MONALEESA-2 (7) for ribociclib plus
letrozole and MONARCH-3 (8) for abemaciclib plus letrozole
or anastrozole], as well as in populations previously treated
with ET for advanced disease [PALOMA-3 for palbociclib plus
fulvestrant (9); MONARCH-2 for abemaciclib and fulvestrant
(10); and MONALEESA-3 for ribociclib plus fulvestrant (11)].
However, de novo or acquired resistance to CDK4/6 inhibitors
is an almost ubiquitous inevitability, which has stimulated
substantial interest in examining potential mechanisms of
resistance, ways to overcome it, and methods of identifying it.
Recently published reviews offer detailed insight into the myriad
of likely mechanisms of resistance (12–14); conversely, we focus
primarily on selected mechanisms and associated biomarkers
that are of particular clinical interest, of whose potential has been
validated in recent studies.

MECHANISMS OF
RESISTANCE—AVENUES FOR POSSIBLE
MOLECULAR BIOMARKERS

Loss of Retinoblastoma Susceptibility
Gene Product (Rb) Function
Loss of Rb, the main target of CDK4/6, has been implicated
by multiple preclinical studies in being a driver of resistance to
CDK4/6 inhibitors (15–17). Without the inhibitory influence of
Rb, transcription factors of the E2F family continue unchecked,
thus facilitating unregulated cellular progression to S-phase
entry. Conversely, higher levels of RB1, the gene encoding for Rb,
and cyclin D1 (and lower levels of p16) are observed in human
BC cell lines sensitive to palbociclib (18). Clinical evidence of
acquired RB1 mutations leading to CDK4/6 inhibitor resistance
was recently reported in a case-series of three patients with
metastatic BC who had genotyping performed in both tissue and
blood samples before and after commencing a CDK4/6 inhibitor
(19). Each somatic mutation was detected via ctDNA analyses
performed at the point of disease progression, and was not
present prior to initiation of CDK4/6 inhibition. Polyclonal RB1
mutations were identified in patients assigned to the palbociclib
arm of PALOMA-3, albeit at comparatively low frequency (4.7%)
(20). RBsig, a gene expression signature of Rb loss-of-function,
has been validated in identifying between palbociclib-sensitive
and resistant BC cell lines (21), and has been associated with
sensitivity to abemaciclib monotherapy in tumors derived from
the neoMONARCH study (NCT02441948) (22). Similarly, a gene
set containing E2F targets, the E2F regulon, was significantly
associated with lack of PFS improvement from palbociclib
combination in the PALOMA-3 trial (23). Of note, no interaction
was found between treatment and RB1 expression in the same

study, indicating that a wider analysis of RB pathway might
be needed to identify resistant patients. Recent data emerging
from genomic analysis of ER-positive BCs treated with CDK4/6
inhibitors revealed—not unsurprisingly—that loss of RB1 was
associated with treatment resistance. However, also implicated in
resistance to CDK4/6 inhibition were loss-of-function mutations
of FAT1, leading to cellular proliferation mediated via activation
of the Hippo signaling pathway and elevations in CDK6, thus
revealing an additional and intriguing potential mechanism of
resistance (24).

Cyclin E1 (CCNE1)
CCNE1, the gene that encodes cyclin E1, is upregulated in
models with resistance to CDK4/6 inhibitors (25, 26). Data
emerging from PALOMA-3 suggests that CCNE1 expression
is associated with benefit from palbociclib (23), in line with
previous pre-clinical data which suggested CCNE1 amplification
is associated with acquired resistance to palbociclib (27), as well
as exploratory data derived in the neoadjuvant NeoPalAna trial,
associating high levels of CCNE1 with palbociclib resistance
(28). Tumor tissue procured from recurrent disease on trial was
assessed via mRNA profiling, assessing a range of cell cycle-
related genes. Although all biomarker groups derived benefit
from palbociclib, those with low tumor CCNE1 expression had
a greater response (median PFS for those receiving palbociclib
plus fulvestrant, 14.1 months; vs. 4.8 months in those receiving
fulvestrant plus placebo) than those with high CCNE1 expression
(7.6 months vs. 4.0; palbociclib plus fulvestrant vs. fulvestrant
plus placebo, respectively). The predictive power of CCNE1
mRNAwas stronger inmetastatic biopsies (interaction p< 0.001)
than archived primary biopsy samples (interaction p = 0.09).
Investigators provided further validation in an independent
cohort (N = 61) drawn from the Preoperative Palbociclib (POP)
Clinical Trial (NCT02008734), wherein high CCNE1 mRNA
expression correlated with a significantly lower anti-proliferative
response to palbociclib. Contrastingly, no such association with
CCNE1 expression and PFS was found in the biomarker analyses
of MONALEESA-2, with near-identical hazard ratios observed
across expression groups (HR 0.54 95% CI 0.38–0.78 for CCNE1
high expression; HR 0.53 95% CI 0.34–0.83 for low expression)
(29). An earlier analysis of tumor specimens from PALOMA-
2 also failed to demonstrate an association between CCNE1
expression and benefit from palbociclib (30).

Combining Rb and CCNE1—Possible
Biomarker of CDK4/6 Sensitivity
A recent analysis of cell cycle-related markers found in a
large panel of HR+ BC cell lines was recently reported,
describing findings identified by gene-expression profiles and
western blot (31). Both modalities identified that concurrent
overexpression of CCNE1 and down-regulation of Rb occurred
at the time of palbociclib resistance. Subsequent in silico analyses,
correlating the ratio between CCNE1 and RB1 expression levels
(CCNE1/RB1) with palbociclib IC50 in a large dataset of cell
lines, showed the ratio outperformed both CCNE1 and/or
RB1 when they were utilized as sole markers. Furthermore,
retrospective analyses showed CCNE1/RB1 to be an adverse
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prognostic factor, with the ability to differentiate between
palbociclib sensitive and resistant patients enrolled in the
neoadjuvant NeoPalAna trial (28).

Initially Promising Targets but Negative
Data: Cyclin D and p16
CCND1, the gene coding for cyclin D1 is amplified in
approximately 15% of all BCs, and overexpression of cyclin D1
is observed in around 50% (32). Given the crucial role cyclin D1
plays in cell cycle mediation and its interplay with CDK4/6, it
has been hypothesized that expression levels or dysregulation of
cyclin D1may relate to response to CDK4/6 inhibition. Similarly,
intuitively, loss of p16INK4A and the consequent deficit of its
usual inhibitory action on cyclin D1 would appear to be a
reasonable premise of CDK4/6 inhibitor resistance. However,
this is largely not been borne out in the clinical setting. In
a phase II study of single-agent palbociclib, low p16 did not
correlate with clinical outcome in Rb-positive, heavily pre-
treated advanced BC (33). In the same study, amplification of
cyclin D1 was also not associated with clinical benefit or PFS.
PALOMA-1 failed to show any significant difference in PFS
in patients whose tumors harbored evidence of a loss of p16
or CCND1 amplification, compared to unselected patients (34).
Expression levels of cyclin D1 was not associated with benefit
from palbociclib in PALOMA-3 (23).

PIK3CA—Activation of Growth Factor
Signaling Pathways
Mutations in the phosphatidylinositol 3-kinase (PI3K) catalytic
subunit (PIK3CA) are found in approximately 40% estrogen
receptor-positive BC (3). The PI3K/mTOR pathway has been
shown to be upregulated in response to chronic exposure
to CDK4/6 inhibitors, which in turn upregulates cyclin D.
In the absence of CDK4 and CDK6, activated cyclin D can
activate CDK2, which subsequently drives cell cycle progression
(27). Circulating tumor DNA sequencing was performed on
195 patients enrolled in the PALOMA-3 study, comparing
baseline and end-of-treatment analyses (20), demonstrating the
emergence of driver mutations in PIK3CA and ESR1. Patients
with a history of greater drug exposure appeared more likely to
develop driver gene mutations, perhaps underlining the role that
drug pressure plays in clonal expansion. Contrastingly, PIK3CA
mutations were detected in the circulating DNA of 129 patients
enrolled in PALOMA-3, with no significant association observed
with response to treatment (9). Similarly, biomarker analysis of
MONALEESA-3 demonstrated consistent benefit from ribociclib
plus fulvestrant, irrespective of PIK3CA alteration status, as
detected in baseline circulating tumor DNA (35). Functioning
downstream of PI3K is 3-phosphoinositide-dependent protein
kinase 1 (PDK1), a vital requisite for the full activation of AKT
(36). The PI3K-PDK1 signaling pathway has been implicated
in mediating resistance to CDK4/6 inhibitors, with ribociclib-
resistant BC cell lines demonstrating an increase in PDK1 levels
following drug exposure, resulting in activation of the AKT
pathway (37).

PREDICTION OF SENSITIVITY OR EARLY
RESPONSE TO CDK4/6 INHIBITION—A
POSSIBLE ROLE FOR TK1

Thymidine kinase-1 (TK1) is an enzyme in the pyrimidine
salvage pathway that plays a critical role in the synthesis
of DNA and in cell proliferation (38). High TK1 levels and
activity in primary BC tissue correlate with poor prognosis
(39, 40). Malignant cells can secrete pathological levels of TK1
detectable in blood, whereas in disease-free controls, levels
are low or undetectable (41), with similar patterns reported
in membrane expression of TK1 (42). TK1 as a marker
of cell proliferation has been known and studied for some
decades, but until recently, widespread, reliable quantification
of absolute levels and activity have been limited, with
most historical tests being radioimmunoassay-based. DiviTum
(Biovica International, Sweden) is a refined ELISA-based assay
capable of estimating TK1 activity (TKa) in cell lines, plasma
and serum. Previous studies have suggested baseline and repeated
assessments of TKa during the course of treatment may provide
prognostic information (43–45).

TK1 as a Biomarker—Founding Data Within
Endocrine Therapy Studies
Previous studies have validated the use of DiviTum, both as a
prognostic marker, and as one of response to ET. A pilot study of
31 women with advanced HR+/HER2 negative BC commencing
on a new line of palliative endocrine therapy showed that those
with low baseline levels of plasma TKa had a median PFS of
25.9 months, vs. 5.9 months in those with high baseline levels (p
= 0.012) (46). Furthermore, patients whose TKa levels dropped
after 1 month of ET demonstrated a significantly higher median
PFS than those in whom TKa levels increased on treatment (14.5
months vs. 3.8, respectively; p= 0.0026).

These findings were upheld by a second retrospective study
of a larger, more heavily pre-treated population derived from the
cohort of EFECT, a landmark study which originally compared
head-to-head palliative exemestane vs. fulvestrant (47). Again,
baseline TKa levels proved prognostic: patients with low baseline
readings had a median TTP (mTPP) of 5.03 vs. 2.57 in those with
high baseline readings (p < 0.001). Patients whose TKa increased
from baseline after 3 months of treatment had a significantly
shorter mTTP (3.39 months, 95% CI: 2.14–4.11) than those
whose TKa did not increase (5.39 months, 95% CI: 4.01–6.68)
(P = 0.0045). After adjusting for major prognostic factors, TKa
remained an independent marker (48).

TK1 and CDK4/6 Inhibitors
Evidence of the prognostic role TK1 may play in HR+ BC
patients has provided a proof-of-concept to justify moving
investigation forward into the field of CDK4/6 inhibitors. Recent
data suggests potential utility for TKa as a marker of CDK4/6
inhibition in patients receiving neoadjuvant ET plus palbociclib
(49). DiviTum was employed in an analysis of serum samples
derived from NeoPalAna, a neoadjuvant trial of 4 weeks of
anastrozole monotherapy followed by four cycles of additional
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palbociclib, followed by a subsequent palbociclib washout in
all but eight patients (28, 49). TKa was shown to markedly
reduce with the introduction of palbociclib, rising at washout (but
remaining suppressed in patients who did not receive washout).
There was high concordance between changes in TKa and tumor
Ki67 in the same direction from baseline to C1D15 and from
C1D15 to point of curative surgery. This led to the conjecture
that TKa may be seen as a dynamic marker that signifies the
presence or absence of palbociclib activity. However, there is
some pre-clinical evidence suggesting that TKa may precede
a significant reduction in cellular proliferation. In a panel of
HR+ BC models—both with sensitivity to palbociclib, and with
acquired resistance to the drug—exposure to escalating levels of
palbociclib and its relation to cellular proliferation and TKa was
examined (50). In palbociclib-sensitive models, TKa significantly
reduced after 3 days of drug exposure compared to control
(p < 0.05). Concurrently, cellular proliferation (as assessed
by methylene blue assay) was observed to drop significantly
after a minimum of 6 days, suggesting TKa may be an early
marker of proliferative inhibition in response to palbociclib.
This phenomenon was not observed in models with acquired
resistance to palbociclib. The prognostic ability of TKa has been
clinically validated in planned translational studies of plasma
derived from the TREnd study (NCT02549430), a phase II trial
which tested the activity and safety of single-agent palbociclib
against palbociclib combined with the ET the patient had
received (and progressed on) most recently before enrollment
(51). Not unlike to previous findings in ET-based TK studies,
TREnd patients with a low baseline TKa had a significantly
longer PFS compared to those whose levels were high at study
commencement. Similarly, on treatment, those patients whose
TKa levels rose had a shorter time to disease progression
compared to those patients whose levels remained stable or
dropped in response to treatment (52). The prognostic role
of serum TK1 assessed at baseline and on treatment is being
further explored in two ongoing clinical trials of luminal BC
patients treated with CDK4/6 inhibitors and ET: BIOITALEE
(NCT03439046), a Phase 3b biomarker study of ribociclib plus
letrozole in the first-line setting and PYTHIA (NCT02536742), a
phase 2 biomarker discovery trial of palbociclib and fulvestrant
in patients with endocrine resistant disease.

IMPLICATIONS ON THERAPEUTIC
APPROACHES FOLLOWING
PROGRESSION ON CDK4/6 INHIBITORS

Primary Resistance to CDK4/6 Inhibitors
Approximately 10% of patients will have primary resistance to
CDK4/6 inhibitors. Biomarkers may have future potential to
identify such patients at baseline or soon after commencing
treatment, thus facilitating an early switch to a more efficacious
treatment. For instance, patients with evidence of functional
Rb loss at baseline are not likely to benefit from CDK4/6
inhibition. Similarly, baseline evidence of increased cyclin E1
expression, or the CCNE1/RB ratio may also play a role
in identifying these patients. Peripheral evidence of ongoing

neoplastic proliferation, as manifested by a rise in TK1 activity
within a month of commencing therapy, may also provide a
marker of early resistance.

Secondary Resistance to CDK4/6 Inhibitors
An unanswered question regards the continuation of CDK4/6
inhibitors beyond progression on these agents. The premise that
continuing a CDK4/6 inhibitor beyond progression may prove
an effective strategy is being tested by several ongoing Phase 1
and 2 trials (MAINTAIN NCT02632045, PACE NCT03147287,
NCT01857193, NCT 02871791, and TRINITI-1 NCT 02732119).
Mutations in RB1, resulting in activation of other cell cycle
factors, such as E2F and the Cyclin E-CDK2 axis, has been
demonstrated in cases of acquired resistance (19, 53). This in
turn results in independence from the CDK4/6 pathway for cell
cycle progression from G1 to S phase. In such cases, in the
setting of disease progression on a CDK4/6 inhibitor, concurrent
biomarker evidence of a functional loss of Rb may support a
switch to a new agent, rather than continuing CDK4/6 agents
beyond progression.

A Potential Role for PIK3CA Inhibitors?
PI3K-dependent activation of non-canonical cyclin D1-CDK2
and resultant recovery of Rb phosphorylation and S phase entry
has been implicated in early resistance to CDK4/6 inhibition,
with combined PI3K and CDK4/6 inhibition demonstrating the
ability to overcome resistance to CDK4/6 inhibitors in BC cell
lines (27). Hence, the role that PIK3CA inhibitors may play in
overcoming resistance is of relevant interest. The SOLAR-1 trial
randomly assigned 572 patients with pre-treated HR+/HER2–
negative advanced BC to receive the oral PIK3CA inhibitor
alpelisib plus fulvestrant or fulvestrant plus placebo (54). The
primary endpoint was PFS in patients with PIK3CA mutations
detectable in tumor tissue (n = 341). After a median follow up
of 20 months, the median PFS was almost double in mutation-
positive patients receiving alpelisib compared to those receiving
placebo (11.0 months vs. 5.7 months, respectively; HR 0.65 95%
CI 0.50–1.25 p = 0.00065). Further data, reporting the efficacy
of alpelisib according to mutational status evaluated by ctDNA,
suggested an even greater clinical benefit than tissue analysis
(55). In patients with a PIK3CA mutation detected via liquid
biopsy (n = 186), there was a 45% risk reduction in PFS (HR
0.55 95% CI 0.39–0.79). In the small number of patients who
had previously received CDK4/6 inhibition (n = 20), there was
a 52% risk reduction in PFS in favor of alpelisib over placebo
(HR 0.48 95% CI 0.17–1.36). Alpelisib is selective for the alpha
isoform of PI3K, which has so far set it apart from pan-PI3K
inhibitors, which have reported notably poor safety profiles (56,
57). Nevertheless, data from SOLAR-1 still reflect considerable
toxicity. All-grade hyperglycaemia occurred in 64% of patients
receiving alpelisib (37% occurring at grade 3/4), 58% reported
diarrhea, 45% nausea and 36% developed rash (10% at grade 3/4).
Five percent of patients discontinued from the alpelisib arm due
to adverse events (54).

Whilst the number of patients with prior exposure to CDK4/6
inhibitors subsequently enrolled in SOLAR-1 was small, it is not
unreasonable to consider—in patients harboring an actionable
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mutation—PIK3CA inhibition following disease progression on
a CDK4/6 agent. This is particularly relevant, given the likelihood
of emergence of driver mutations of PIK3CA secondary to

previous ET and CDK4/6-targeted therapies (20). Whilst some
pre-clinical data suggest that triplet therapy, combining ET
plus CDK4/6 inhibitors with PIK3CA agents may be better in

TABLE 1 | Ongoing trials evaluating the combination of CDK4/6 inhibitors with PIK3CA agents in breast cancer [ClinicalTrials.gov June 2019].

ClinicalTrials.gov

identifier

Phase Setting/key eligibility Intervention Primary endpoint(s)

NCT02088684 Phase 1b/2*

(*Phase 2 portion of study

not opened due to

sponsor decision)

ER+/HER2–negative metastatic or

advanced disease

Ribociclib + fulvestrant + buparlisib

or ribociclib + fulvestrant + alpelisib

or ribociclib + fulvestrant

DLT (Phase 1b part only)

NCT02389842 Phase 1b (dose escalation

and expansion phases)

Specific sub-group for patients with

PIK3CA mutation

Palbociclib + taselisib + fulvestrant or

palbociclib + taselisib or letrozole +

palbociclib + taselisib

Recommended Phase 2 dose

Safety and toxicity

Anti-tumor response

NCT03939897 Phase 1/2 Endocrine resistant metastatic

disease

Abemaciclib + fulvestrant +

copanlisib vs. abemaciclib +

fulvestrant

DLT

PFS

NCT02684032 Phase 1b (dose escalation

and expansion phases)

ER+/HER2 negative metastatic

disease

Letrozole + palbociclib + gedatolisib

or palbociclib + fulvestrant +

gedatolisib

DLT rate

ORR

NCT03128619 Phase 1/2 Locally advanced or metastatic

disease not previously treated in

advanced setting (Phase 1b portion);

Stage I, II or III disease (Phase

2 (portion)

Copanlisib D1,8,15 + letrozole

continuously or copanlisib D1,8,15 +

palbociclib + letrozole continuously or

palbociclib + letrozole for 14 days,

followed by copanlisib D 1,8,15 +

letrozole continuously

MTD

Change in Ki67 on treatment

DLT rate

NCT02154776 Phase 1 (dose escalation,

open label)

ER+/HER2–negative advanced

disease

Ribociclib + buparlisib + letrozole DLT rate

Safety and tolerability

DLT, dose limiting toxicity; ER+, endocrine receptor-positive; MTD, maximum tolerated dose; ORR, objective response rate; PFS, progression-free survival.

TABLE 2 | Currently enrolling trials recruiting patients with hormone receptor-positive metastatic breast cancer, evaluating the role of PIK3CA agents [ClinicalTrials.gov

June 2019].

ClinicalTrials.gov

identifier

Phase Setting/key eligibility Intervention Primary endpoint(s)

NCT03006172 Phase 1

Dose escalation and

expansion stages

PIK3CA mutation-positive GDC-077 as single agent and also in

combination with ET and CDK4/6i

% of pts with DLTs

Recommended Phase 2 dose

% of pts with AEs and SAEs

NCT03207529 Phase 1

Dose escalation and

expansion stages

AR-positive and PTEN positive

metastatic disease

Alpelisib + enzalutamide MTD

NCT02705859 Phase 1b/2

Single arm

HER2-positive disease Copanlisib and trastuzumab MTD with trastuzumab

CBR

NCT03767335 Phase 1b

Dose escalation and

expansion stages

HER2-positive disease

(+/– HR-positivity)

MEN1611 + trastuzumab +/–

fulvestrant (in HR-positive disease)

MTD

Recommended Phase 2 dose

NCT03386162 Randomized

Phase 2

PIK3CA mutation-positive

Patients not progressing after 6–8

cycles of 1st or 2nd

line chemotherapy

Fulvestrant + alpelisib vs.

maintenance chemotherapy

PFS

NCT03056755 Phase 2

Non-comparative study

PIK3CA mutation-positive

Post progression on CDK4/6i

Alpelisib + fulvestrant OR

Alpelisib + letrozole

% of patients alive without

progressive disease (at ∼6

month mark)

NCT03337724 Phase 3

Randomized, double blind

PIK3CA/AKT1/PTEN-altered disease

Accepting TNBC or HR+/HER2neg

Ipatasertib + paclitaxel vs.

placebo+paclitaxel

PFS

AE, adverse event; AKT1, Alpha serine/threonine protein kinase; CBR, clinical benefit rate; CDK4/6i, Cyclin-dependent kinase 4/6 inhibitor; DLT, dose-limiting toxicity; HR, hormone

receptor; ET, endocrine therapy; MTD, maximum tolerated dose; PIK3CA, phosphatidylinositol 3-kinase catalytic subunit; PFS, progression-free survival; PTEN, phosphate and tensin

homolog tumor suppressor; SAE, serious adverse event; TNBC, triple negative breast cancer.
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preventing acquired CDK4/6 resistance than doublet regimens
(27), this approach may potentially come at the cost of increased
toxicity (58). Clinical trials investigating the feasibility and
utility of combining CDK4/6 and PI3K inhibition are ongoing
(Table 1). Another alternative may be to expose patients to
these agents sequentially rather than simultaneously, reserving
PIK3CA inhibition for those harboring a druggable mutation
following exposure to CDK4/6 inhibition. This tactic is being
tested in a currently-recruiting phase II study, which will assess
the efficacy and safety of combining alpelisib and ET in patients
with PIK3CA mutations whose disease has progressed on or
after receiving a CDK4/6 inhibitor plus ET (NCT03056755). A
summary of clinical trials of PIK3CA agents, currently recruiting
patients with endocrine receptor-positive advanced BC, is
presented in Table 2.
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