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A Full-Image Deep Segmenter for CT
Images in Breast Cancer
Radiotherapy Treatment
Jan Schreier*, Francesca Attanasi and Hannu Laaksonen
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Radiation therapy is one of the key cancer treatment options. To avoid adverse effects in

the healthy tissue, the treatment plan needs to be based on accurate anatomical models

of the patient. In this work, an automatic segmentation solution for both female breasts

and the heart is constructed using deep learning. Our newly developed deep neural

networks perform better than the current state-of-the-art neural networks while improving

inference speed by an order of magnitude. While manual segmentation by clinicians takes

around 20 min, our automatic segmentation takes less than a second with an average

of 3 min manual correction time. Thus, our proposed solution can have a huge impact

on the workload of clinical staff and on the standardization of care.
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1. INTRODUCTION

For radiation therapy treatment planning, the anatomical structures need to be segmented from
computed tomography or magnetic resonance imaging scans. The segmentation is currently done
by a trained clinical expert and it takes, in the case of breast cancer, on average 34 min per patient
and 6.5 min per organ-at-risk(OAR) (1). This generates cost for care providers and makes adaptive
planning approaches, which use the anatomy of the day, not feasible in many cases.

In the case of breast cancer, for treatment planning purposes commonly both ipsi and contra
lateral breasts and the heart are contoured. However, the delineation of the breasts is poorly defined
in comparison to, e.g., the segmentation of the lungs or the heart. The reason for this is the diffuse
boundary between the breast tissue and the surrounding fat tissue. Therefore, a high inter-observer
variability exists. This can change the position of the border on average between 1.6 to 8.5 mm (2)
and with a mean standard deviation of 5.7 mm (3). Additionally, a multi-institutional and multi-
observer study reported a standard deviation of up to 60% in volumetric variation (4). Thus, the
definition of the correct contour is inherently influenced by the person performing the contouring
work. An automatic contouring algorithm could therefore accelerate the delineation process and
improve consistency between observers. The automation of the breast segmentation has been
achieved using atlas methods (5) or filter methods (6). However, through the advancement of deep
learning in other fields of science, we can create more robust algorithms, which can adapt better to
different anatomies.

1.1. Related Work
Atlas methods are successful in image segmentation of the brain (7, 8) and the breast (5). In atlas
methods, the patient is registered to an atlas patient and the segmentations of the atlas patient are
transformed to the patient coordinate space. One hindrance here is that for each segmentation a
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patient needs to be chosen from a patient library whose anatomy
is similar. In addition to that, 5 to 10% of the volume still needs
editing (5).

Another approach is the combination of locally adaptive
filters in combination with heuristic rules (6). This has been
done using a tunable Gabor filter yielding a robust and accurate
segmentation on axial MR slices. One advantage of their
method over deep learning is that it is independent of any
training data. With deep learning, the network is generally
only able to be applied to cases which are similar to the
data it has seen whereby robustness cannot be ensured. In
addition, machine learning approaches are always in need of
a large number of training cases, whereas tunable filters are
designed independent of the training cases. One advantage of
our approach, however, is that the model architecture can be
easily applied to different organs and different anatomical sites,
provided the training data are available. Thus, the tedious work
of defining heuristic rules and exploring filter options for each
organ can be omitted.

Deep neural networks for segmentation typically use a
structure similar to auto-encoders, in the sense that a
dimension reduction is followed by a reconstruction network.
Differences exist, however, in whether the spatial information
is completely omitted such as in the anatomically constrained
neural network (ACNN) (9), or if the spatial resolution
is only reduced, as for example in the U-Net (10). The
latter has been used for segmentation of CT images of
pancreatic tumor (11) and liver (12). However, those approaches
either use a 2D U-Net or are in need of another neural
network on top of the U-Net. The skip connections from
the downward path to the reconstruction path of the U-
Net are an important improvement over convolutional neural
networks (CNNs) as they help preserve more detailed spatial
information for the reconstruction. Additionally, Drozdal et al.
(13) propose the use of short skip connections, which improve
the segmentation quality.

In a recent approach, the proposed network uses the shape
of a U-Net but includes residual blocks both in the downward
path and the reconstruction part (14). Additionally, a fully
connected layer is constructed parallel to the lowest resolution
level. The advantage is that through this approach the benefits
from Ronneberger’s U-Net and the Oktay’s ACNN are combined.
One downside however is that, due to the fully connected
layer, the input size cannot be adapted during inference to the
size of the CT image. Additionally, the inference is performed
slice-wise. Even though this allows processing the image in full
resolution, it deteriorates the inference speed compared to full-
image processing. However, this particular model has a large
capacity and can handle 21 organs with one inference.

The goal of this work is to improve the inference speed of a
deep neural network for the segmentation of the organs needed
for radiotherapy treatment planning, while maintaining state-of-
the-art segmentation quality. We focus on the ipsi and contra-
lateral breasts and the heart. The approach, here, is to replace
the patch-wise or slice-wise processing by a full-image processing
approach. The proposed network structure is a combination of
the U-Net and the ResNet.

2. MATERIALS AND METHODS

2.1. Model Architecture
We construct a fully convolutional neural network, which we
refer to as BibNet in the following, due to its bib-like shape. For
this network, the input and the output size is equivalent to the
full image size, typically 256 × 256 × 128 pixels (xyz). Due to
its fully convolutional structure, the network size can be adapted
to the incoming input size. The network inherits its basic shape
from the U-Net proposed by Ronneberger et al. (10). In addition
to the U-Net architecture, connections on all resolution levels are
added. These connections themselves process the image and are
interconnected with layers of higher and lower resolution levels.
Therefore, processing of features of different resolution scales
becomes possible. Furthermore, the network is deeper with the
concept of residual connections, which have proven to increase
the performance of a neural network (15). In addition to that, in
contrast to the U-Net proposed by Ronneberger et al. (10), we
use transpose convolutions instead of upsampling followed by a
convolutional layer.

The network architecture is illustrated in Figure 1. The strided
convolutions use a filter size of (2,2,2) and both the strided
and the transpose convolutions have a stride factor of two in
each dimension. In order to prevent bottlenecking in the lower
resolution levels, the number of filters per layer is increased by
a factor of two after each pooling. The filters themselves are
convolutional filters with a shape of (3,3,3) with padding applied.
Therefore, each dimension is treated equally and the image size is
equivalent before and after the convolution.

The parameterized rectified linear unit (PReLU) is used as the
activation function and the dropout rate is set to 0.5. The number
of parameters for this network is∼7.5 million.

2.2. Data and Preprocessing
We use a data set consisting of 251 CT scans from female breast
cancer patients with intact breasts in head-first supine position.
The data set is split into a training, a validation and a test set,
which are randomly selected. The training set contains 149 scans,
the validation set 50 scans and the test set 52 scans. Additionally,
a fourth data set is used for a robustness test. This data set stems
from a hospital in North America and includes 64 patients. The
position of the patients in the robustness set differ from those
in the training set: The patients in the robustness set are imaged
with one arm down, whereas the patients in the training set are
imaged with both arms up.

The images and structure sets originate from three different
European clinics. The contours are reviewed and missing
structures added by experienced dosimetrists. As the voxel
spacing differs depending on the clinic between 0.98 and 1.27
mm and the slice thickness between 2.5 and 3 mm, we resample
the images to a common voxel spacing of 1.17 mm and a slice
thickness of 3 mm. As a second step, we downsample the images
by a factor of two in the axial slice to improve training speed
and reduce the memory consumption. The downsampling is
performed using trilinear interpolation on the CT scans and the
corresponding structure sets, leading to a final voxel spacing of
2.34 mm in the axial slice and 3 mm slice thickness.
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FIGURE 1 | The architecture of our newly developed network, called BibNet. Here, the blue boxes represent convolutional blocks with each block comprising a

dropout layer, a convolutional layer, an activation layer and a batch normalization layer. The black boxes represent residual blocks; each comprising two convolutional

blocks and a skip connection. The number inside the box represent the number of convolutional or residual blocks which are appended. The arrows indicate the

connections in between the convolutional and residual blocks: the black arrows are forwarding the output of the previous block to the input of the next block, whereas

the gray arrows symbolize a strided convolution, which is performed to decrease the resolution of the output of the previous layer. Additionally, the red arrows indicate

transposed convolutions, which are used to double the resolution in each dimension.

2.3. Computing Platform
As a high-level interface, a deep learning framework developed
in-house by Varian is used. This is necessary to generate the
3D patches for training. It builds on top of Keras, which uses
Tensorflow as a backend. Tensorflow itself then uses CUDA 9.0
and the corresponding cuDNN library.

2.4. Loss Function
The loss function or error function tries to measure how well the
model performs with respect to this measure. The loss function
can, therefore, be used to adjust the network to a desirable result.

For a pixel-wise output, such as image segmentations, a simple
loss function is the binary categorical accuracy. It is defined as the
percentage of the pixels which are correctly classified.

For medical segmentations, as large parts of the image belong
to the background, the binary categorical accuracy can lead to
false classification of the whole image to the background class.
Therefore, a definition of the loss using the intersection and
union of the segmentation with the ground truth is helpful. One
loss function is the Sørensen-Dice coefficient defined as:

DSC =
2 | X ∩ Y |

| X | + | Y |
(1)

where X and Y are the sets of voxels classified to belong to
one class through the algorithm and through the human expert
respectively. This can be rewritten as:

DSC =
2TP

2TP + FP + FN
(2)

with TP: true positives, FP: false positives and FN: false negatives.
The Dice loss can then be defined as 1− DSC.

Another loss function is the Jaccard loss, which is based on the
Jaccard index defined as (16):

r =
| X ∩ Y |

| X ∪ Y |
(3)

The Jaccard loss can then be defined as:

J = 1− r (4)

During the training, the Jaccard loss is used as a loss function for
the back-propagation. The Dice loss on the other hand is used
during the hyper search for an initial scoring of the model. It is
also used for evaluation after training the models.

2.5. Training
The networks are trained on a Nvidia Quadro P5000, a P4000 or a
K80 until convergence. During training the patch size is reduced
to 256 × 256 × 48 to be within the memory constraints. For the
evaluation of this model, we increase the patch size to 256 × 256
× 128, such that the whole image can be processed at once. We
train two different types of networks: single-organ and multi-
organ networks. While the single-organ networks only segment
one of the three organs at a time, the multi-organ network
segment all three at once. The idea behind the latter is that basic
image processing within the neural network is shared for the
different organs and, thus, the network can generate different
structures at the same time.

The patches for training are sampled using a combination of
an entropy sampler, two shell samplers and a mask sampler. The
sampling strategy is vital for the training of the 3-level U-Net,
as the image is processed in small patches. The entropy sampler
chooses random samples with an entropy higher than a certain
threshold. This tries to avoid patches taken from plain surfaces,
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such as the air surrounding the body. The shell sampler generates
patches, which are at most 20 or 40 mm away from the surface
of a ground truth structure. The mask sampler, on the other side,
restricts patches to be taken only if they intersect with the ground
truth. The choice of the sampler might be less relevant for the
BibNet as here larger parts of the image are processed at the
same time.

As an optimizer, the Nesterov Adam optimizer (17) is
used. This optimizer combines the adaptive momentum update
(Adam) (18) with the idea from Nesterov (19) to apply the
gradient only after the momentum update has been done.
It can improve the convergence rate and minimize the loss
more effectively than Adam. The learning rate is initially set
to 10−2 and then linearly decreased during the training to a
minimum of 10−5.

To improve the performance of the model, we initialize
eight networks with random weights. We train these networks
and drop half of the networks at 20, 40, and 80 epochs. The
networks dropped are the ones with the worst performance on
the validation set. At the end, we choose the best performing one
on the validation set and train it until the validation loss does not
decrease further.

2.6. U-Net
In order to compare the newly built network, the U-Net-like
architecture proposed by Hänsch et al. (20) is reproduced. This
architecture is a 3-level UNet with two convolution layers and
a max-pooling layer per level in the encoder part and two
convolution and one upsampling layer per level in the decoding
part. The filters are (3,3,3) convolutional filters without padding.
In the first level, there are 32 filters in each of the convolutional
layers; in the second, 64 in the first and 128 in the second
convolutional layer. In the lowest layer, there are 256 filters in
each of the two convolutional layers. In the upward path, there
are 128 and 64 filters per convolutional layer for the lower and
upper level respectively. The training is performed on the same
data set and the model is trained until convergence.

With this architecture, the 3D images are processed in patches,
meaning that the network is applied to a subset of the actual
image, which then outputs an even smaller subset. Afterwards,
the receptive field of the network is shifted and the next output
patch generated.

2.7. Evaluation Metrics
To be able to compare our model, an appropriate metric needs to
be chosen. The Dice score can give an indication for the quality
of the model. It is also useful for comparison to the works done
by other researchers. However, it usually achieves higher scores
for bigger organs, as the main problems occur on the boundary
and gives, therefore, a less meaningful measure when comparing
the quality of the segmentation between different organs.

Thus, a more informative metric is the average surface
distance between the segmentation and the ground truth. Here
for each point of the surface of the segmentation, the distance r to
the closest point on the surface of the ground truth is measured.
Then, for each organ the root-mean-square (RMS) value of these

distances is calculated:

rms surface distance =

√

√

√

√

∑

xi∈P

(

min
q∈G

| xi − q |

)2

(5)

with P being the set of surface points of the prediction and G the
set of surface points of the ground truth.

Another common metrics is the Hausdorff distance, which is
defined as (21):

DH(P,G) = max

(

sup
x∈P

inf
q∈G

d(x, q), sup
q∈G

inf
x∈P

d(x, q)

)

(6)

with d being the Euclidean distance. This distance measures the
maximum distance between the two surfaces, whereas the rms
surface distance measures an average of the distance.

For reporting the score of a model, we report the median
value of the scores per organ and model. The median is chosen
as even one failing segmentation can deteriorate the mean score
significantly. The mean values are however reported for the
comparison with the results fromMen et al. (22).

2.8. Statistical Methods
For comparing the different models, a paired two-tailed T-test for
the means is performed. The significance threshold is set to 5%.
However, as we have three different models, a multi-comparison
problem exists. Thus, the α-value is adjusted using the Bonferroni
correction to α = 0.05/3 = 0.0167.

2.9. Inference Time
The inference time is measured on a machine with the Nvidia
P5000 graphics card, two Intel Xeon E5-2640 v4 at 2.40 GHz
and 64 GB memory. Here, only the actual inference time is taken
into account, not including, for instance, the loading of modules
such as Tensorflow and initializing the Tensorflow graph. For the
timing, Tensorflow version 1.6.0 is used.

In addition to this, for more reproducible results, a NC6_v2
virtual machine(Nvidia Quadro P100 graphics card, 6 Intel Xeon
E5-2690 v3 2.60GHz processor cores and 128 GB memory) is
instantiated on Azure with the pre-configured “Ubuntu Data
Science” image. This image contains Cuda 9.0 and the Nvidia
Docker runtime. On this machine, the Tensorflow serving docker
image with version 1.12.0 for GPU and CPU is run and an image

TABLE 1 | The median Dice scores for the patients in the test set, and inference

times with standard deviation in parenthesis using Tensorflow Serving for the

different models.

Dice score Inference time in s

Model Left breast Right breast Heart GPU CPU

BibNet single-organ 0.924 0.929 0.951 3.38 (5) 48.9 (1)

BibNet multi-organ 0.924 0.935 0.949 1.13 (1) 16.30 (3)

3-level U-Net 0.910 0.911 0.935 12.4 (1) 253 (2)

The best value for each category is marked in bold.
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TABLE 2 | The median Hausdorff and RMS surface distances in millimeter for the patients in the test set.

Hausdorff distance Surface distance

Model Left breast Right breast Heart Left breast Right breast Heart

BibNet single-organ 20.6 20.0 8.5 3.36 3.36 2.31

BibNet multi-organ 21.3 20.8 8.5 3.47 3.71 2.34

3-level U-Net 26.4 25.6 11.4 4.49 4.20 2.98

The best value for each category is marked in bold.

of size 256 × 256 × 128 (xyz) inferred using gRPC through the
local host. In order to reduce in memory transfer times, the input
image is in uint8 and gzip as compression is applied. The timing
is taken for 11 consecutive prediction requests, where the channel
is already created. The first of each timings is discarded to ensure
that the model is already loaded by tensorflow serving.

2.10. Required Correction Time
Even though different metrics are able to show the similarity
between human-created structures and structures stemming
from deep learning models, these differences need to be
translated into the impact on the clinical work flow. To
address this, two experienced dosimetrists and two radiation
oncology specialists are asked to correct structures stemming
from the single-organ bibnet with the goal of producing clinically
acceptable segmentation according to the RTOG consensus
contouring guideline (23). For this exercise, 7 patients are used,
which were not included in the training: one patients from each
of the three clinics of the test set and four patients from a clinic
in North America. The output of the models is resampled to
the resolution of the CT images using trilinear interpolation.
Furthermore, Gaussian smoothening is applied to avoid aliasing
effects of the resampling and the largest connected component
taken. The correction is done using Eclipse Treatment Planning
Software (Varian Medical Systems, Palo Alto), which is familiar
to all participants. The time needed for the correction for each
organ is measured.

3. RESULTS

The inference time on the Azure machine using Tensorflow
Serving on GPU for a full image with a resolution of 256 × 256
× 128 (xyz) is 1.13(1) s for the multi-organ BibNet, 3.38(5) s for
the single-organ BibNet and 12.4(1) s for the U-Net. On CPU, the
inference times are 16.30(3)s for themulti-organ BibNet, 48.9(1)s
for the single-organ BibNet and 253(2) s for the U-Net.

The inference time on the local machine for a full image with
a resolution of 256 × 256 × 128 (xyz) on GPU is 10.68 s for the
U-Net, 1.92 s for the single-organ BibNet and 0.64 s for the multi-
organ BibNet. On CPU, the inference times are 19 min 2 s for the
U-Net, 7 min 8 s for the single-organ BibNet and 2 min 18 s for
the multi-organ BibNet.

The median Dice scores for the three different organs for
the patients in the test set as well as the inference times for the
different models using Tensorflow serving can be seen in Table 1.

FIGURE 2 | Box-plot of the Dice scores of the three networks on the test set.

FIGURE 3 | Box-plot of the RMS surface distances of the three networks on

the test set.

The median Hausdorff distance and median RMS surface
distance for the three different organs for the patients in the test
set can be seen in Table 2. The median values cannot characterize
either the inter-subject variability of the inference quality or the
robustness of the network. Therefore, box-plots for the Dice
scores are shown in Figure 2 and for the RMS surface distance
in Figure 3. In the latter, for the U-Net two outliers at 26.8 and
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41.6mm on the left breast and on the right breast two outliers
at 34.6 and 53.4 mm are not visible. Additionally, one patient,
which was imaged with contrast agent, was removed from the
analysis for the heart, since here the U-Net was unable to produce
a structure.

The p-values of the two-tailed paired t-test for Dice scores and
surface distance are shown in Table 3.

The median dice score, surface distance and Hausdorff
distance for the three models applied to the robustness data set
is shown in Table 4.

For one test patient, axial slices with the segmentations done
by the three networks and by a clinical expert as well as sagittal
and frontal topograms are shown in Figure 4. For the axial
slices, the largest connected component is taken and a Gaussian
smoothening applied. The topograms, however, show the raw
output of the networks.

The correction time needed for each of the organs of the seven
patients by the two dosimetrists and two radiation oncology
specialists are shown in Table 5. The average correction time for
the heart is 33s, for the left breast 101s and for the right breast 97s.
For three of the patients, the generated structures as well as the
corrected structures from one dosimetrist are shown in Figure 5.

4. DISCUSSION

The main observation is the inference time: the newly
constructed multi-organ BibNet performs the inference 10 times
faster than the U-Net on GPU and 15 times faster on CPU.
Through the full-image architecture of the BibNet, the inference
needs to be performed only once, whereas the U-Net needs to
perform the inference several times as it processes the image in
patches. The single-organ BibNet needs to perform the inference
for each organ separately and is therefore three times slower than
the multi-organ BibNet.

The time difference between the local implementation using
Tensorflow 1.6.0 and Tensorflow serving 1.12.0 stem from two
different causes: Firstly, using Tensorflow serving creates an
overhead compared to the plain inference time measured with
Tensorflow as the gRPC request needs to be sent. This effect is
reduced through the usage of uint8 and compression, which both
lead to reduced transfer times. Secondly, the inference time on
CPU was improved between Tensorflow 1.6 and 1.12, whereas
the inference time on GPU is nearly unchanged. Thus, the local
inference is faster on GPU as the transfer times are larger than
the improvement on GPU speed, whereas the opposite holds true
for the CPU.

The average correction time combined for the three structures
created by the single-organ bibnet is 4 min. This stands in
comparison to the average manual contouring time per organ-
at-risk of 6.5 min in clinical practice (1). Therefore, the proposed
deep neural network is able to save ∼15.5 min per patient in the
clinical work flow if integrated seamlessly.

The Dice scores, surface distances and Hausdorff distances
show that the segmentation quality is better for the two BibNet

TABLE 5 | The average correction time and standard deviation in minutes needed

for each of the organs of the seven patients by the two dosimetrists and two

radiation oncology specialists.

Corrector Left breast Right breast Heart Per patient

Dosimetrist 1 1.5± 0.6 1.0± 0.2 0.2± 0.1 2.7± 0.7

Dosimetrist 2 1.8± 0.6 1.1± 0.2 0.3± 0.1 3.2± 0.5

Radiation oncology specialist 1 1.4± 0.5 1.7± 0.9 0.8± 0.2 3.9± 1.2

Radiation oncology specialist 2 2.1± 1.5 2.7± 0.9 0.8± 0.2 5.6± 1.1

Average 1.7± 1.0 1.6± 0.9 0.5± 0.4 3.9± 1.4

The original structures stem from the single-organ bibnet and are corrected to be clinically

applicable according to the RTOG contouring guidelines. Four patients stem from one

North American clinic and one patient from each of the three different European clinics.

TABLE 3 | The p-values (in decimals) of the two-tailed paired t-test for Dice scores and surface distance in comparison of the different models.

Dice score Surface distance

Model Left breast Right breast Heart Left breast Right breast Heart

BibNet single-organ vs multi-organ 0.0096 0.34 0.89 0.042 0.132 0.796

BibNet multi-organ vs 3-level U-Net 0.0078 0.0061 < 0.0001 0.0040 0.022 < 0.0001

BibNet single-organ vs 3-level U-Net 0.0043 0.0057 < 0.0001 0.0020 0.016 < 0.0001

The scores, which are statistically significant, are marked with a gray background.

TABLE 4 | The median dice score, surface distance (in mm) and Hausdorff distance (in mm) for the three models applied to the 64 patients of the robustness data set.

Dice score Surface distance Hausdorff distance

Model Left breast Right breast Heart Left breast Right breast Heart Left breast Right breast Heart

BibNet single-organ 0.935 0.938 0.966 3.69 3.58 1.86 21.2 22.2 7.2

BibNet multi-organ 0.929 0.928 0.967 4.14 4.01 1.84 24.4 25.2 6.3

3-level U-Net 0.900 0.917 0.942 5.99 5.74 2.96 36.4 41.3 12.8

The best performing model in each category is marked with bold letters.
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FIGURE 4 | Axial slices of one breast cancer patient from the test set as well as frontal and sagittal topograms. The structures stem either from a clinical expert

(yellow) or from one of the three models (blue). For the axial slices, Gaussian smoothening is applied and the largest connected component taken. The topograms

display the raw output of the models without post processing.

FIGURE 5 | Axial slices of three patients from the correction time test. Each axial slice has the structures stemming from the model and the corrected structures

(yellow) from the dosimetrist.

models than for the 3-level U-Net proposed by Hänsch et al. (20).
In addition to that, the BibNet seems to be more robust than the
U-Net as several outliers occur with the latter.

The differences between the single-organ and multi-organ
BibNet are not statistically significant (p-value < 1.67%) except

for the dice score of the left breast. Here, the mean dice score is
higher for the single-organ BibNet.

The robustness test shows that both BibNets are able to
perform equally good on patients from a different clinic as
from the training clinics. This is surprising as the different
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patient position affects the anatomy of the contralateral breast
and as several of the patients have breast implants. Both the
Hausdorff distance and the surface distance show that the U-Net
is performing worse for both breasts on the robustness data set.
This indicates that the BibNet is more robust than the U-Net,
which might be due to the greater receptive field of the BibNet
and the smaller input size of the U-Net of 68 × 68 × 64 (xyz).
For the BibNet, every neuron in the last layer of the encoding
part has a receptive field of 484× 484× 484 (xyz) and can, thus,
see the full input image, whereas the input of the U-Net is fixed
to a smaller patch. Therefore, a larger context is available to the
BibNet compared to the U-Net.

The performance of the heart segmentation of all three models
is equivalent between the test patients from the training clinics
and the robustness test clinic. This might be due to the reduced
dependency of the heart structure on the patient position.

When inspecting the raw output of the three models on the
topograms, it can be seen that the breast structure is contoured
too far superior in the U-Net compared to the expert’s contour.
The two BibNet networks are able to follow the shape better
in the superior part. However, the two networks are unable to
produce the sharp cut on the upper part of the breast. This might
be because there are no clear anatomical landmarks where to
cut and the sharp cut is not necessarily following any actual
anatomical structure.

The U-Net yields several false positive clusters, whereas the
two BibNet models each only produce one small false positive
cluster on the superior end of the image. This might be due to the
smaller receptive field and input size of the U-Net. Therefore, the
context for the inference is missing, leading to false positives, for
example, in the fat tissue of the arm or of the belly.

The small false positive cluster produced by each of the
two BibNets can be easily mitigated through maintaining only
the largest connected component. This approach, however, is
prone to failure for the U-Net, since here the clusters are of
similar size as the actual organ and are close to the actual
structure. Thus, it is likely that these clusters could connect to
the actual segmentation. In the presented topograms in Figure 4,
the false positive clusters of the heart are one example of these
large clusters.

Recently, Men et al. used 2D networks in breast segmentation
in slice-by-slice manner (22). In their approach, several fully
convolutional networks were trained on 800 breast cases. The
networks achieve an average Dice score of 0.91 for the breast on
their test set. In comparison, the average Dice score for the single-
organ and multi-organ BibNet is 0.92 for both networks on the
left breast and 0.93 on the right breast. Hence, it shows that our
networks seem to perform slightly better on average. One main
limitation with this comparison is that no common test set was
applied. Therefore, some anatomies might be more difficult, and

the ground truths might be of varying quality and consistency. In
addition to that, the data sets seem to be differing in the sense that
different contouring practices have been applied. For instance in
our data set, the breast is contoured more laterally.

In the literature, high Dice scores are reported using a classical
method of locally tunable Gabor filter (6). The comparability
between their study and the present work is however deteriorated
through the different imagingmodality and patient position used.
In their work, theMRI images were taken in prone position using
a specialized breast coil. Therefore, the breasts are not laying on
top of the patient, which makes the border between the fat tissue
and the actual breast on the superior and inferior boarder easier
to distinguish. Also, the resolution is better in the MRI images.
The processing time on CPU per full 3D image is 4.1 min in
their approach compared to 16 s in our approach using the multi-
organ BibNet. Therefore, the multi-organ BibNet is faster by a
factor of 15. This reduces the interruption in the clinical workflow
when using automated segmentation.

In conclusion, we introduced a novel neural network
architecture, BibNet, that combines the basic shape of a U-
Net with added multi-resolution level processing and residual
connections. The new architecture together with the change
from a patch-wise processing to a full-image processing is able
to increase the inference speed by an order of magnitude,
while also improving the segmentation quality. As the inference
speed is of the order of a second and the correction time
around 3 min, the automatic segmentation has the potential
of not only simplifying the workflow for treatment planning,
but might also open possibilities for adaptive radiation therapy
by allowing to change the radiation plan to the anatomy of
the day.
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