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Colorectal cancer is the third most incidental cancer worldwide, and the response

rate of current treatment for colorectal cancer is very low. Genome-scale metabolic

models (GEMs) are systems biology platforms, and they had been used to assist

researchers in understanding the metabolic alterations in different types of cancer.

Here, we reconstructed a generic colorectal cancer GEM by merging 374 personalized

GEMs from the Human Pathology Atlas and used it as a platform for systematic

investigation of the difference between tumor and normal samples. The reconstructed

model revealed the metabolic reprogramming in glutathione as well as the arginine and

proline metabolism in response to tumor occurrence. In addition, six genes including

ODC1, SMS, SRM, RRM2, SMOX, and SAT1 associated with arginine and proline

metabolismwere found to be key players in this metabolic alteration.We also investigated

these genes in independent colorectal cancer patients and cell lines and found that many

of these genes showed elevated level in colorectal cancer and exhibited adverse effect

in patients. Therefore, these genes could be promising therapeutic targets for treatment

of a specific colon cancer patient group.

Keywords: colorectal cancer, genome scale metabolic model, polyamine metabolism, personalized medicine,

transcriptomics

INTRODUCTION

Colorectal cancer (CRC) is one of the most common malignant diseases. It has third highest
incidence among all cancers worldwide. Due to better screening and early interventions, the
mortality of CRC has been decreasing. However, the development of chemotherapy option has seen
a marginal improvement. 5-Fluorouracil based chemotherapy is currently the first-line treatment
against CRC (1), but the response rate of 5-Fluorouracil is only around 10–15% among patients
(2). Several new additions in the form of oxaliplatin, irinotecan, capecitabine, cetuximab, and
bevacizumab and other biologicals have become available mostly as combination therapies. The
level of success anticipated with the targeted therapeutic agents failed on various parameters (3–7).
Therefore, there is still great interest in development of effective treatment strategies for CRC.

While studying colorectal cancer patients locally in Saudi Arabia, we came across the
heterogeneity in the somatic cytogenetic and transcriptomic level changes associated with this
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type of cancer. There were copy number changes that were
reported earlier as well as novel events that characterized
this patient population (8, 9). The transcription level changes
suggest the involvement of different genes in initiation and
progression of CRC in these same patients. An integrated
analysis with data from cytogenetic and transcriptomic level
measurement provided the gene targets that carry higher
confidence value than either of them alone (10). The next level in
the functional hierarchy is protein and metabolites which are the
effector molecules that execute the assigned tasks. Understanding
metabolite level changes related to colorectal cancer in an
integrated manner would increase the confidence level in finding
the biomarkers and therapeutic targets that can be accurate,
precise, and clinically useful.

Colon cancer undergoes severe metabolic reprogramming
during its transformation and systems biology tools can be
employed for identification of the altered metabolic processes.
To this end, the reconstruction of genome-scale metabolic
models (GEMs) can help to knit high-throughput data (i.e.,
proteomics and transcriptomics) in the network topology and a
variety of methods enable the researchers to predict how these
transcriptional perturbations are translated into alterations in
distinct and biologically meaningful metabolic subsystems (11–
13). GEMs condense information about the known functions
of protein-encoding genes, how these genes/proteins interact
with other bioactive compounds and associated reactions,
allowing robust and reliable analyses to be performed by high-
quality bioinformatics pipelines and similar tools (14). These
integrative models have been successfully employed to gain
further biological and mechanistic understanding of metabolism
related disorders (15, 16).

To date, different GEMs for cancer have been reconstructed to
characterize the genetic mechanisms of cancer and to reveal how
cancer cells benefit frommetabolic modifications (17–21). In this
report, we reconstructed generic GEM for colon cancer tumors
by integrating personalized GEMs that are generated based on
the Human Metabolic Reaction 2 (HMR2) database (11, 22)
and transcriptomics data (RNA-Seq) in The Cancer Genome
Atlas (TCGA). The reconstructed model has been used for the
analysis of the gene expression data generated from colon cancer
samples and matched normal samples of patients. These analyses
revealed the keymetabolic alteration around arginine and proline
metabolism as well as glutathione metabolism.

MATERIALS AND METHODS

Patient Samples and mRNA
Expression Profiling
Patient sample collection and RNA extraction were performed
as previously described (10). Briefly, 46 tumor samples and
44 adjacent normal samples were obtained after the requisite
approval of Institutional Review Board at King Abdullah
International Medical Research Center by King Abdul Aziz
Medical City, Riyadh, Saudi Arabia. The samples were obtained
from biopsies as well as surgical resections. All the patients

signed the Institutional Review Board informed consent form
prior to sample collection. All samples were immediately stored
in the RNA later reagent until the extraction of nucleic acids.
Methods mentioned herein were performed in accordance with
the relevant guidelines and regulations. Homogenization was
carried out using a QiaPrep homogenizer (Qiagen, Hilden,
Germany) with stainless steel beads (5mm). Total RNA was
isolated using the Macherey-Nagel TripPrep kit (Macherey-
Nagel Inc., Bethlehem, PA, USA) with <30mg of tissue. Human
Exon ST 1.0 arrays from Affymetrix (Santa Clara, CA, USA),
containing probes set for 22,011 genes, were used as previously
described together with the amplification and labeling kit from
Ambion (Foster City, CA, USA).

All mRNA expression data has been deposited in the GEO
database under the accession number GSE50421 and GSE77434
(90 samples: 44 normal samples and 46 cancer samples). Data
were exported as CEL files (which contain data on the intensity
of each signal, indicating the expression level of the gene
corresponding to each probe) and processed using Expression
Console software (Affymetrix). All data was subjected to quantile
normalization using Integromics Omics office licensed software
available at www.integromics.com. Fold change values for
metabolic genes were obtained using Transcriptomics analysis
console (Affymetrix, Thermofisher scientific, USA).

Animal Cell Culture
HCT8, HCT 116, SW480, and SW620 colorectal cancer cell lines
were obtained from American Type Culture Collection, USA. All
cell lines were maintained in 10% Fetal Calf Serum (Gibco) in
Dulbecco’s modified minimal eagle’s media (DMEM) obtained
from Thermo Fischer Scientific. Culture conditions were: 5%
CO2 at 37

◦

C in a humidified incubator. RNA extraction from
these cell lines was done using Macherey-Nagel TripPrep kit
(Macherey-Nagel Inc., Bethlehem, PA, USA) followed by cDNA
conversion using kit (Roche).

Quantitative Real Time Polymerase
Chain Reaction
Gene expression levels for the candidate genes were obtained
from matched tumor-normal samples of 15 patients. A
Taqman assay from Applied Biosystems (Thermo Fisher
Scientific, USA) was used along with the Taqman master mix.
18S rRNA was used as housekeeping gene. All the samples
were done in quadruplicate using ABI 7900 instrument.
Gene expression analysis software from ABI was used
to calculate fold change values using the 11Ct method
(i.e., RQ= 2−11Ct).

Gene Set Enrichment Analysis and
Bioprofiler Analysis
The KEGG and GO enrichment analysis was done with
PIANO (23) package in R. The gene-set collections for GO
biological process and KEGG pathways was taken from MSigDB
(24). GO and KEGG terms with FDR < 5% in distinct-
directionality class are considered as significantly changed.
Distinct-directionality class in PIANO result is using the
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proportion between significantly up- and down-regulated genes
from differential expression to define the statistical value
and significance level. Bioprofiler analysis was carried out to
know the causal relationship of the six identified genes with
CRC. It was done using Ingenuity pathway analysis software
(Qiagen biosciences).

Reconstruction of GEMs
The generic human colorectal cancer GEM was reconstructed
based on unification of the 374 individual GEMs created in
Human Pathology Atlas (downloaded from BioModels Database
www.ebi.ac.uk/biomodels) to cover the all individual variations
among colorectal cancer patients. The reporter metabolite

FIGURE 1 | (A) KEGG pathway and (B) GO terms enrichment analysis results for differentially expressed genes in colon tumor. The blue and red colors represent up-

and down-regulated in colon tumor compared to normal samples, and the intensity of the color indicates the minus log P-value.

FIGURE 2 | Polyamine metabolic pathway with differential expression genes and reporter metabolites highlighted. Metabolites are shown as bricks and reporter

metabolites are highlighted in red. Arrows represent metabolic reactions, and the genes related to the reactions are annotated closely to the arrows. The genes in red

are significantly up-regulated in the differential expression analysis, and the reporter metabolites and genes with a star are border line significant (FDR ∼ 0.1).
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TABLE 1 | Fold change values for metabolic genes in patient tumor samples.

Gene symbol Description Fold change P-value FDR P-value Chromosome

SRM Spermidine synthase 1.49 1.01E-06 5.11E-05 chr1

ODC1 Ornithine decarboxylase 1 1.67 0.0008 0.0062 chr2

SMOX Spermine oxidase 1.5 2.68E-10 2.23E-07 chr20

RRM2 Ribonucleotide reductase M2 1.89 2.99E-06 0.0001 chr2

SAT1 Spermidine/spermine N1-acetyltransferase 1 1.24 0.0237 0.0804 chrX

analysis is performed using RAVEN toolbox implemented in
Matlab 2017a.

Kaplan-Meier Analysis
The Kaplan-Meier survival analysis and the log-rank P-value
is obtained from pathology atlas (21). We only included data
from dead subjects for robustness, and the default best separation
cutoff for each gene provided by pathology atlas is used to stratify
the patients.

RESULTS

Transcriptomic Comparison Between
Colon Cancer Tumor and Normal Tissue
To investigate the transcriptomic changes in colon cancer
tumor, we performed differential expression analysis using
microarray data from 46 cancer samples and 44 normal samples.
Consequently, we identified 2012 up-regulated genes and 1373
down-regulated (FDR < 0.05; Table S1), respectively. Among
up-regulated genes, we found key glycolytic enzymes, PFKM,
GPI, PGAM5, PKM, and LDHD, and these indicated an
enhanced glycolytic process. This is a strong indication for
Warburg effect, which is well-known to be present in colorectal
cancer cells. We also found FASN, ACLY, ACACA, and SCD
are significantly up-regulated, which indicated an increased fatty
acid biosynthesis. It is clinically well-known that fatty acid
synthesis is increased in colorectal cancer (25), and this could
help the cancer cell to produce lipid metabolites crucial to
cell membranes, cell signaling, post-translational modifications
of proteins, neutralization of toxic reactive oxygen species,
and energy storage (26). In addition, we found GLS2 is also
significantly up-regulated, which indicated an increased uptake
of glutamine and suggested increased glutaminolysis in the
cancer cells.

We also performed GO term and KEGG pathway enrichment
analysis for these differentially expressed genes (Figure 1;
Tables S2, S3). The up-regulated genes were significantly
enriched in cell cycle related pathways (cell cycle in KEGG and
cell cycle check point in GO), and the down-regulated genes were
significantly enriched in the immune related pathways (T cell
receptor signaling pathway in KEGG and leukocyte activation
in GO), which are expected in cancer and could be treated as
good positive controls. In addition, down-regulated genes were
also significantly enriched in fatty acid catabolic metabolism
pathways in KEGG enrichment analyses, which might be related
to normal colon function. Interestingly, we also found several

metabolic pathways, for instance oxidative phosphorylation,
branch amino acids metabolism, and tricarboxylic acid cycle
(TCA) were enriched with down-regulated genes in colon
cancer. This motivates further investigation in metabolic shift in
colon tumors.

Identification of Key Metabolic Pathways
Using Functional GEMs
In order to study the metabolic reprogramming of the colorectal
cancer patients accounting for the differences at the individual
level, we integrated the personalized colorectal cancer GEMs
and generated a generic GEM for colorectal cancer. This GEM
includes 2,628 genes, 4,753 metabolites, and 6,716 biochemical
reactions that happen in 8 different subcellular compartments.
We compared the model with previously published healthy colon
tissue model (27). We found that 467 genes, 681 metabolites, and
1,084 reactions are specific to colon cancer model and it is the
largest colorectal cancer GEM.

We employed the GEM of colorectal cancer for the analysis
of the RNA-Seq data using indigenously generated microarray
data and identified the highly perturbed metabolites and
modules between the two conditions using Reporter Metabolite
and Reporter Subnetworks algorithms, respectively (28).
Reporter Metabolite analysis would allow for the identification
of metabolites in the network for which there is significant
enrichment of associated gene expression changes and
the Reporter Subnetwork algorithm would allow for the
identification of a set of metabolic reactions that exhibit
transcriptional correlation after a perturbation. These algorithms
could provide valuable information on transcriptional regulation
on changes in cell conditions and allowed for identification of
metabolic reprogramming in colorectal cancer metabolism.

The reporter metabolites have been provided in Table S4,
and several polyamines appeared as top significant reporter
metabolites. We identified putrescine, spermidine, and N1-
acetylspermidine are among the top up-regulated reporter
metabolites in colon cancer. These are all polyamines and
indicate an increased polyamine metabolic activity in colon
cancer cells. Polyamines has reported to be natural anti-oxidants
that could protect cells from oxidative damage (29). It has
also been reported before that patients with malignant disease
has higher urine polyamines level (30). Therefore, polyamines
metabolism might play a key role in colon cancer. As shown in
Figure 2, by mapping the differentially expressed genes and the
reporter metabolites, we observed that the metabolic pathway
from ornithine to spermine and spermidine is up-regulated
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FIGURE 3 | Expression changes of ODC, RRM2, SAT1, SMOX, SMS, and SRM in colorectal cancer patients. (A) Boxplot showing the log fold changes of the

indicated genes among the patients. (B) Bar plot showing the log fold changes of each gene in each patient. *Denotes the genes that is significantly differentially

expressed between colon cancer and normal samples as shown in Table S1 (FDR < 0.05).

in colon cancer cells. We found most of the key enzymes
are significantly up-regulated. For instances, ODC1, SRM, and
SMOX are significantly up-regulated, and the up-regulation of
SAT1 is border line significant (FDR= 0.1). In addition, another
key enzyme, SMS, is appeared in the reporter subnetwork analysis
even though it is not annotated in the microarray data. These
together suggested that polyamine metabolism is essential in
colon cancer.

Validation of Candidate Genes
From the results based on the reconstructed functional GEMs,
six genes (ODC1, SMS, SRM, RRM2, SMOX, and SAT1) were
identified to be playing significant role in causing metabolic

changes. The expression level of five of these genes as deduced
from patient gene expression microarray data is given in Table 1.
For SMS gene we couldn’t find the correct annotation in the
microarray results. We validated the expression levels of these
genes in a subset of 15 patients as well as four colorectal
cancer cell lines. While we observed a general pattern exhibiting
upregulation of ODC1, RRM2, SAT1, SMOX, SMS, and SRM
genes (Figure 3A), heterogeneity among the patient group was
conspicuous (Figure 3B). In addition, we also investigated the
prognostic roles of these genes in TCGA colorectal cancer
cohort and obtained the log-rank P-values from Pathology Atlas
(21). As shown in Figure 4, we found higher expression of
all six genes to be associated with adverse effect on patients.

Frontiers in Oncology | www.frontiersin.org 5 July 2019 | Volume 9 | Article 681

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Reprogramming of Colorectal Cancer Metabolism

FIGURE 4 | Kaplan-Meier plots showing the survival difference between patient groups with high and low RNA expression of each key gene. Blue and pink lines show

the survival of patient group with low and high key gene expression, respectively.

Among the six genes, the adverse effects of ODC1, SRM, SMOX,
and SAT1 exhibited statistical significance (log-rank P < 0.05).
This further confirms their key roles in colorectal cancer. As
shown in Figure 5, in confirmation with patient sample data,
these six genes showed similar expression changes in cell lines.
For instance, the prognostic genes ODC1 and SMOX showed
upregulation in HCT8, HCT116, SW480, and SW620 cell lines.
In addition, SRM was up-regulated in three cell lines, and stayed
unchanged in HCT116. SAT1 exhibited downregulation only in
SW480 cell line. On the other hand, SMS and RRM2 exhibited
heterogeneous expression pattern in cancer cell lines, which is
in agreement to the survival analysis results. All values of gene
expression fold changes in patients as well as cell lines are given
in supplementary data Table S5. In summary, the roles of ODC1,
SMOX, SRM, and SAT seems more important and conserved
according to both in vivo and in vitro analysis.

We also conducted the bioprofiler analysis of the six candidate
genes using Ingenuity pathway analysis software. These analyses
reveal the unknown effect of SMOX, SMS, and SRM genes
in colorectal cancer. Other genes including ODC1 were found
to affect colorectal cancer but no causal relationship has been
reported so far (Table S6).

DISCUSSION

In this report, we have attempted to build genome scale
metabolic model for colorectal cancer and identified key
metabolic pathways altered in a local patient cohort. Further, we
found six genes that could be responsible for these metabolic
changes and studied their functional relevance in association with
colorectal cancer. Finally, we assessed the prognostic significance
of these genes.
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FIGURE 5 | Expression changes of ODC, RRM2, SAT1, SMOX, SMS, and SRM in four cancer cell lines, HCT116, HCT8, SW480, and SW620.

Integrated models have recently been successfully used to
identify driver genes for colorectal cancer (31–33). However, the
patient heterogeneity limits the application of this approach in
the clinic. Hence a personalized approach would be desirable
for developing appropriate therapeutic regimens. We took a
patient wise analysis approach where gene expression profile of
colorectal cancer tumor samples was matched with their own
normal colon tissue. Glutathione (GSH) metabolism is known to
be associated with colorectal cancer pathogenesis. Elevated levels
of glutathione and the enzymes responsible for its production
have been reported in CRC and this is confirmed by our results.
This observation reinforces the hypothesis that rapidly growing
cancer cells are under oxidative stress and need more glutathione
(34, 35). GSH metabolism could be used as an important
biomarker for resistance and treatment response (36). Significant
involvement of glutathione metabolism in our patient cohort
could be reflective of aggressive tumors since most of the patients
were from advanced stages. GSH metabolism could therefore be
utilized as a prognostic marker in CRC patients. In addition,
polyamine metabolism was identified as elevated in colorectal
cancer patients, and it has been associated with tumor growth as
well as immune cell function (37). It has been shown that down-
regulating one of the key driver of polyamine metabolism, IDO1,
could improve the response rate of immunotherapy in cancer
(38). Moreover, Hayes et al. reported that by using a “polyamine-
blocking therapy,” they could reverse immunosuppression in
tumor microenvironment in mice breast cancer model (39).
Therefore, the identified polyamine metabolism related genes,
especially ODC1 and SMOX, should be tested in in vitro and in
vivomodels in future studies since they could be promising gene
target for CRC treatment.

ODC1 gene polymorphism has been reported to reduce
the risk of adenoma recurrence by suppressing synthesis of
colonic mucosal polyamines (40). ODC1 protein has been used
as a biomarker for measuring the efficacy of colecoxib in the
treatment of colorectal cancer. It has also been involved in
familial adenomatous polyposis as a manifestation of APC gene
mutation (41). However, there is no known correlation of altered
ODC1 gene expression levels with CRC.

Our results thus provide added evidence to support the
involvement of ODC1 gene in colorectal cancer progression.
ODC1, SAT1, SMOX, and SRM genes are known to decrease
cell proliferation in several cancer cell lines (42–46). ODC1 and
RRM2 have also been implicated in increased cell proliferation
in different conditions (47–50). However, our study is the first to
report the putative involvement of SAT1, SMOX, SRM, and RR
M2 in colorectal cancer. Sulindac has been reported to induce
SAT1 gene mediated chemo preventive affect in colorectal cancer
in a COX independent mechanism (51). SMS gene is completely
novel in this study with no known prior association with any
type of cancer.

The importance of proline metabolism in helping cancer cells
to grow is being revealed through this report (52). Our study
lends credibility to the putative role of proline metabolism in
cancer progression. However, current literature is scarce and
more definitive studies are needed to substantiate the role of
proline metabolism especially in colorectal cancer. Arginine
deprivation therapy has been proposed to be a promising way to
deal with cancer at metabolic level (53).

Our validation results of expression of six genes in colorectal
patients and cell lines corroborate an interesting aspect of
cancer—heterogeneity. While some patients show expected
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pattern of gene expression, there are others who exhibit a
reverse pattern. These results suggest and support the notion
of personalized medicine especially in colorectal cancer (54).
More studies are needed to generate evidence in favor of
customizing dosage and therapeutic agents in patients based
on their integrated metabolic profile. Integrated evidence from
transcriptomics and metabolomics could be more promising
in terms of accuracy and specificity in the clinic (55, 56).
Evidence is mounting in favor of using multiomics approach
toward finding biomarkers and therapeutic targets especially in
cancer (57, 58).
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