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Persistent infection with human papillomavirus (HPV) initiates ∼5% of all human

cancers, and particularly cervical and oropharyngeal cancers. HPV vaccines prevent

HPV infection, but do not eliminate existing HPV infections. Papillomaviruses induce

hyperproliferation of epithelial cells. In this review we discuss how hyperproliferation

renders epithelial cells less sensitive to immune attack, and impacts upon the efficiency

of the local immune system. These observations have significance for the design of

therapeutic HPV cancer immunotherapies.
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INTRODUCTION

Persistent infections by tumor-associated viruses, such as human papillomaviruses (HPVs),
directly contribute to carcinogenesis through the expression of oncogenes (1). Oncogene proteins
(oncoproteins) are involved in multiple regulation pathways, including, but not limited to
disruption of cell-cycle checkpoints, controlling cell metabolism, modulation of the host immune
response, and the induction of an immunosuppressive environment; features that collectively
promote tumor initiation and survival. Cancer arising from persistence of HPV infection, although
occurring only in a minority of HPV+ individuals, accounts for 4.6% of 14 million new cancer
cases reported worldwide in 2012, and HPV-associated cancers comprise 29.1% of all 2.2 million
infection-related cancers, including nearly 100% of cervical cancers (2, 3). Understanding the
driving role of HPV in cancer development, and especially how persisting infection regulates the
host immune system, is likely the key to developing effective cancer immunotherapies that fully
eliminate virus infection. Moreover, studies of HPV-induced carcinogenesis may provide a general
model for understanding other infectious agents that use similar principles to induce cancer.

EPIDEMIOLOGY OF HPV-RELATED CANCERS

HPV-Related Mucosal Cancers
More than 170 genotypes of HPV have been characterized, classified into 3 genera including Alpha-
papillomavirus (α-HPV), Beta-papillomavirus (β-HPV), and Gamma-papillomavirus (γ-HPV) (4).
However, only α-HPVs have been clearly linked to anogenital cancers, including cervical, anal,
penile, vulvar, and vaginal cancers (5). Cervical cancer is the most common HPV-related cancer,
with an estimated 570,000 new cases and 311,000 deaths in 2018 (2). The majority of cases are
diagnosed in low- andmiddle-income countries (2). Two “high-risk” α-HPVs, HPV16 and HPV18,
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account for ∼70% of cervical cancers in most epidemiological
studies (6). HPV infection is also associated with non-anogenital
cancers, with integrated HPV DNA being detectable in around
60% of oropharyngeal cancers (OPC) (7). Interestingly, although
the incidence of other head and neck cancers has decreased in the
last three decades, the incidence of OPC is increasing worldwide
(7). This might be associated with the increased risk of sexually
acquired oral HPV infection. Notably, if a woman is diagnosed
with HPV+ cervical cancer, her partner has an increased risk
of HPV+ OPC (8). In addition, HPV DNA has been detected
in other cancers of the upper aerodigestive tract. Laryngeal
papillomatosis is caused by low-risk HPV 6 and 11 (9). Despite
the low oncogenic risk, recurrent laryngeal papillomatosis has a
chance to develop into squamous cell carcinoma, which is likely
caused by co-infection with high-risk HPV 16 and 18. A meta-
analysis of 1,435 laryngeal cancers showed that HPV DNA was
detectable in 24% of laryngeal cancers; Both low-risk HPV 6 and
11 and high-risk HPV 16 and 18 were commonly detected in
these cancers (10). Notably, the prevalence of HPV in laryngeal
cancer is highly variable in individual studies. This is largely
due to inadequate sample sizes and differences in HPV detection
methods, which need to be improved in further studies. Similarly,
HPV infection has also been detected in esophageal cancer
and its premalignant lesion, Barrett esophagus (11), despite
that the frequency is highly variable across different studies.
According to the estimation from meta-analysis, HPV infection
is associated with 22.2% of esophageal squamous cell carcinoma,
and with 35.0% of esophageal adenocarcinoma cases (12). The
clinical relevance of HPV infection in treating esophageal cancers
requires further investigation.

HPV-Related Skin Cancers
While this review will primarily focus on the mechanisms
associated with HPV16-associated cancer development in
mucosal tissues, it is acknowledged that some HPVs can also
contribute to cancers in cutaneous sites such as the skin. The
majority of α-HPVs, including HPV16, infect mucosal sites, and
promote cancer particularly at the junction between glandular
and squamous epithelia, whereas β- and γ-HPVs and a small
group of α-HPVs infect cutaneous squamous epithelia (13). DNA
from cutaneous HPVs is commonly found in the skin of healthy
individuals, with more than 40 β-HPV types and 50 γ-HPV types
identified (14). Infection with β- and γ-HPVs can induce various
skin lesions, but it is suggested that only β-HPVs are associated
with induction of cancer (15). Non-Melanoma Skin Cancer
(NMSC) is the most common cutaneous cancer in Caucasians
with an increasing incidence worldwide (16). Exposure to
ultraviolet radiation (UVR) is a major risk factor of NMSC.
However, infection of β-HPVs has been postulated to act as a
co-factor through a “hit-and-run” carcinogenesis hypothesis (17,
18). Unlike α-HPV associated cancers, which require ongoing
HPV gene expression, skin cancers in patients that are genetically
susceptible to HPV-associated skin cancers though mutations
in the EVER1/EVER2 genes do not always continue to express
β-HPV genes (17, 19). Interestingly, β-HPV DNA is found
more commonly in sun-exposed skin (20), implying increased
β-HPV replication with UVR exposure, which may trigger the

transcription of β-HPV DNA (21, 22). In addition, UVR may
induce a local immunosuppressive environment that favors viral
replication (23). Overall, β-HPV DNA is detected in 30–50%
of NMSCs from immunocompetent patients (24), and 90% of
NMSCs from immunosuppressed patients (25, 26). Although β-
HPVs are present at very low viral loads in diseased skin (27),
and are usually considered as a part of microbiota in healthy
human skin (28), the deleterious effects of β-HPVs on the host
DNA repair pathway and cell cycle regulation responding to UV
exposure has been recently studied and reviewed (18). It remains
to be discovered whether there is a bona fide etiological role of
β-HPVs in NMSC initiation.

BASICS OF HPV BIOLOGY

HPV Genome and Life Cycle
HPVs are small, double-stranded DNA viruses. Their genome
contains ∼8,000 base pairs which form eight or nine open
reading frames (29) that are designated as early (E) or late
(L). The early genes, which encode the viral proteins E1–E7,
have multiple roles in viral genome replication, cell cycle entry,
immune modulation, and virus release. Their expression occurs
throughout the viral life cycle but reduces during later stages
of infection. In contrast, the late genes, which encode the viral
capsid proteins L1 and L2, are highly expressed during later stages
of infection (30).

HPVs exclusively infect human epithelial cells, and more
specifically, basal keratinocytes. It has been suggested that
infection requires epithelial wounding to allow viral access to
the basal lamina, where basal keratinocytes are located (30, 31).
Virus entry is initiated by the L1 and L2 proteins (32–35). After
entering into basal keratinocytes, the viral genome is transported
into the nucleus and is maintained as episomal DNA (36). The
life cycle of HPV can be divided into a non-productive and
a productive stage. In the non-productive stage, viral episomal
DNA is amplified to 50–100 copies per cell in the nucleus of
proliferative basal cells (37). Viral gene expression is minimal
during this stage. The infected basal cells then leave the cell
cycle and enter into the differentiation process, during which
HPV begins its productive stage. In this stage, HPV significantly
increases its DNA amplification and gene expression activity
(38). In order to utilize the host’s DNA replication machinery,
which is suppressed in differentiating cells, HPV expresses the
E1 helicase protein to facilitate access to single stranded viral
DNA for replication, and the E6 and E7 oncoproteins to delay
cell differentiation. E6 protein forms a complex with tumor
suppressor protein p53 and recruits ubiquitination enzymes to
degrade p53, preventing premature cell death. E7 protein on the
other hand, disrupts the binding between retinoblastoma (Rb)
protein and the E2F transcription factor, allowing the release
of E2F to activate transcription of S-phase promoting genes in
the host cells. The combination of E6 and E7 protein expression
overrides cell cycle checkpoints and therefore allows HPV to
replicate (39, 40). In the upper layers of the epithelium, HPV copy
number is markedly increased up to thousands per cell. Viral
capsid proteins are synthesized and assembled in the terminally
differentiated cells. The assembled capsid proteins form a coat
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that encapsulates viral genomes, and HPV is then shed from
differentiated infected epithelial cells (30, 41).

HPV Pathogenesis
HPV-associated carcinogenesis has been extensively studied in
the human genital tract, where around 30 strains are known
to cause infection. These HPVs can be divided into “high-risk”
genotypes (e.g., HPV16 and 18) that are associated with genital
cancers, and “low-risk” genotypes (e.g., HPV6 and 11) that are
typically found within genital warts or normal genital epithelium
(30). HPV infections of the genital tract are sexually transmitted,
and most individuals that partake in sexual activity will become
infected by at least one genital HPV type in their lifetime. High
risk HPV infection in the female genital tract initially causes
low-grade squamous intraepithelial lesions (LSIL), also known as
cervical intraepithelial neoplasia grade 1 (CIN 1). These lesions,
within which viral replication occurs, show only mild dysplastic
changes. They are usually cleared by the immune system within
1 year (42). However, if lesions persist, they may progress into
high-grade squamous intraepithelial lesions (HSIL), also known
as CIN 2 (moderate dysplasia) or CIN 3 (severe dysplasia and
carcinoma in situ) (42, 43). When patients present with HSIL
in the cervix and are left untreated, the risk of progression to
cervical cancer is substantially escalated. It has been estimated
that HSILs can persist for several decades before progressing to
cervical cancer. The risk for developing invasive cervical cancers
in HSIL patients is ∼20% at 5 years, and increases to 50% at 30
years (42, 44).

Persistent infection by high-risk HPVs is the greatest risk
factor for cervical cancer development (42, 45). This is largely
due to the complementary function of high-risk E6 and E7
oncoproteins in infected cells. While low-risk HPVs also produce
E6 and E7 proteins, these interact with cellular proteins in
different ways compared with high-risk E6 and E7 proteins.
Both low- and high-risk E6 proteins are able to bind with
p53. However, only high-risk E6 proteins contact with the core
domain of p53, which is essential to recruit ubiquitin ligase and
mark p53 for degradation (46). Similarly, both low- and high-
risk E7 proteins are capable of interacting with tumor suppressor
Rb proteins. However, high-risk E7 proteins have a much higher
affinity for Rb compared to low-risk E7 proteins, and it has been
suggested that this high affinity is essential to disrupt interactions
between Rb and E2F (47). Overall, high-risk E6 and E7 proteins
are highly effective at disrupting cell-cycle checkpoints. This
results in genomic instability and high risk of transformation in
infected cells that combine to drive cervical cancer progression.

The integration of high-risk HPV genomes into the host
genome is another key event for HPV-associated carcinogenesis.
It has been suggested that high-risk, but not low-risk, HPV E6
and E7 proteins facilitate HPV DNA integration into the host
genome (48). This could be a consequence of the increased
chromosome rearrangement events in high risk E6- and E7-
expressing cells. In addition, high-risk E6 and E7 proteins may
have increased potential to directly disrupt normal DNA repair
pathways (48). High-risk HPV genome integration may lead
to deletion and/or mutation of both host and viral genes (49–
52). Notably, the HPV16 E1 or E2 open reading frame is often

disrupted during genome integration (53). The expression of E1
and E2 genes in the early phase of infection play essential roles
in negatively regulating the expression of E6 and E7 genes. The
disruption of E1 and E2 genes will therefore lead to loss of control
of E6 and E7 expression, which further promotes the progression
to cancer.

In summary, pathogenesis of high-risk and low-risk HPVs
fundamentally differs. Low-risk HPVs have evolved a life cycle
that is characterized by rapid production of virus progeny
and formation of large productive lesions to maximize their
transmission to a new host. Low-risk HPV E6 and E7 proteins
play critical roles during viral life cycle, but they exhibit
low transforming activities and do not contribute to genomic
instability. In contrast, high-risk HPVs have evolved to maintain
a low copy number in infected cells and can persist for decades,
without causing clinical disease. The transforming capacity of
high-risk HPVs reflects their need for persistence in non-
cycling, differentiated epithelial cells. Moreover, transformed
cells may impact the local immune environment and increase
the likelihood that high-risk HPVs will escape from immune
attack. Relevant immune evasion mechanisms are discussed in
the following sections.

IMMUNE EVASION MECHANISMS OF HPV
IN KERATINOCYTES

Most individuals will clear HPV-associated lesions within 1–2
years (42, 43), indicating that the host immune system is capable
of controlling HPV infection. On the other hand, despite the
onset of an immune response, HPV-associated lesions can persist
for months if not years before regression (54). Furthermore,
there is also a delay of 6–12 months before anti-HPV antibodies
can be detected in infected individuals (55). This indicates that
HPVs employ intrinsic mechanisms to reduce the efficiency of
host immune surveillance, which may increase the susceptibility
toward persistent HPV infection when individuals are exposed to
additional risk factors. For example, immunosuppressed patients,
such as renal transplant recipients (56, 57) and patients infected
with human immunodeficiency virus (HIV) (58), have a higher
prevalence of persistent HPV infection. Individuals with certain
major histocompatibility complex (MHC) alleles (e.g., HLA-
DQB1∗0602 and HLA-DRB1∗1501) are also more susceptible
to persistent HPV infection and have an increased risk of
developing cervical cancer (59).While the biological mechanisms
underlying the protective and risk associations between the HLA
alleles, HPV antigens and HPV-related cervical cancer remains
to be discovered, it could be conceivably linked that HPV
antigens presented by MHC molecules have variable affinities,
which may or may not be immunogenic enough to result in
effective priming of HPV-specific immune cells in protected vs.
at risk individuals. Moreover, other coincidental factors, such as
unpredictable DNA replication errors associated with persistent
HPV infection, are likely to initiate progression from chronic
inflammation into cancers.

HPV can also evade immune detection via minimization of
antigen production during the vegetative virus life cycle. In
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the early phase of infection, HPVs express a low abundance of
proteins, which are promptly translocated to the cell nucleus
(60), thus minimizing presentation to the host immune system.
In the late phase of infection, HPVs increase the expression
of highly immunogenic capsid proteins (61), however, these
proteins are shed off quickly from the outer layer of the
epithelium, which has a low density of antigen presenting cells.
These are referred to as passive immune evasion strategies. In
addition, HPVs utilize aggressive immune evasion strategies,
determined by the expression of HPV oncoproteins E6 and E7.
As will be discussed below, these oncoproteins take advantage
of their high binding affinity to cellular immune regulator
proteins, to block immune-related gene expression and immune
signaling pathways in infected keratinocytes (Figures 1A–D).
The impairment of immune responses in infected cells affects
their capacity to alert regional immune cells, resulting in
an overall immunosuppressive environment that promotes
cancer development.

High-Risk HPV Oncoproteins Impair the
Immune Alarm Function of Keratinocytes
The immune-modulatory role of high risk HPV proteins
has been established mainly through the in vitro analysis of
HPV oncogene-expression in keratinocytes. Keratinocytes act as
immune sentinels and express pathogen recognition receptors
(PRRs), which recognize pathogen-associated molecular patterns
presented by the virus (62). For example, Toll-like receptor 9
(TLR9) can specifically recognize viral double-stranded DNA
molecules and trigger downstream inflammatory signaling
cascades (62). HPV oncoproteins use several strategies to
suppress TLR9 expression in keratinocytes (Figure 1A). HPV38
E7 recruits histone modifying enzyme EZH2 to the TLR9
promoter region, resulting in histone methylation and repression
of TLR9 transcription (63). Similarly, HPV16 E7 can recruit
histone deacetylase HDAC1 and histone demethylase JARID1B
to the regulatory region of the TLR9 promoter, leading to
downregulation of TLR9 expression (64). In addition to TLR9,
viral DNA can be detected by the cytosolic DNA sensor, cyclic
guanosine monophosphate (GMP)-adenosine monophosphate
(AMP) synthase (cGAS). Viral recognition via cGAS activates
downstream signaling through the adapter protein STING.
HPV18 E7 has been recently found to bind and block
STING via its LXCXE motif (Figure 1A), leading to the
reduced production of pro-inflammatory cytokines in the
keratinocyte (65).

A few studies have attempted to address the association
between TLR9 expression and cervical cancer in humans but
there is a lack of consensus in the literature. For example, cervical
epithelial cells expressing high level of TLR9 were found to be
less susceptible to HPV infection compared to those with low
TLR9 expression (66). In contrast, high TLR9 expression was
reported in cervical cancer patients in other studies (67, 68).
It is plausible that TLR9 plays dual roles in shaping the initial
host response at the earliest point of HPV infection, whilst also
driving tumor-associated inflammation during the chronic stage
of HPV infection, thereby contributing to cancer development.

The association between the cGAS-STING pathway and HPV-
associated cancers has been under-studied to date. However,
a recent study revealed that a special form of polymorphism
in the cGAS gene is associated with genetic susceptibility to
cervical precancerous lesions including LSILs and HSILs (69).
This implies the contribution of cGAS-STING pathway in HPV
clearance in infected individuals.

Upon viral recognition, PRRs transduce intracellular signals to
initiate the production of pro-inflammatory cytokines including
type I Interferons (IFNs), mainly IFNα and IFNβ. The success
of PRR signal transduction cascades requires the activation
of TNF-receptor-associated factor (TRAF) and subsequent
phosphorylation of interferon regulatory transcription factor
(IRF). Phosphorylated IRFs dimerize and translocate to the
nucleus in which point the production of type I IFNs is initiated
(70). In vitro studies have shown that HPV oncoproteins interfere
at several points in this signaling cascade (Figure 1B). For
example, HPV16 E6 can bind to IRF3 and therefore prevent
its transcriptional activity in the nucleus (71), while HPV16 E7
blocks IFNβ transcription by binding to IRF1 and recruiting
histone deacetylases to the IFNβ promotor site (72). In addition,
HPVs also upregulate the deubiquitinating enzyme Ubiquitin
C-Terminal Hydrolase L1 (UCHL1) to deubiquitinate K63-
linked polyubiquitin chains from TNF-receptor-associated factor
3 (TRAF3), resulting in the inhibition of TRAF3 activation (73).
The production of type I IFNs can act as positive feedback loop to
enhance IFN-stimulated gene expression in the keratinocyte itself
as well as in neighboring cells through IFN-α/β receptor (IFNAR)
signaling pathways (70). In vitro studies have also revealed
that HPV oncoproteins use several strategies to interfere with
IFN-receptor pathways (Figure 1B). They can bind to tyrosine
kinase 2 (TYK2) to hamper phosphorylation of STAT1 and
STAT2 (74), the transcription factors which are required for
IFN-stimulated gene transcription. In addition, high-risk HPV
E6 directly impairs STAT1 transcription and translation (75–
77), whereas E7 interacts with IRF9, preventing IRF9 binding
to phosphorylated STAT1 and STAT2 and forming a complex
for nucleus translocation (78, 79). This may explain why clinical
studies in the past few decades have highlighted the limited effect
of IFN therapy in the treatment of HPV genital infections (80).
Interestingly, the response rate to IFNα in patients with low-risk
HPV infection is higher than those with high-risk HPV infection
(81), and biopsy samples derived from cervical cancer patients
showed downregulation of type I IFN expression compared with
tissue from normal individuals (82). This suggests that high-
risk HPVs are more efficient at promoting host resistance to
IFN signaling.

The downregulation of NF-κB pathway is another critical,
but perplexing, strategy used by HPV oncoproteins for immune
evasion (Figure 1C). NF-κB play a key role in immune
surveillance by promoting the cellular expression of genes
involved in antigen presentation, IFNs, β-defensines, and
cytokine production (83). There is evidence supporting HPV16
E6 and E7 inhibition of NF-κB activity in keratinocytes cultured
from the human cervical transformation zone, in which most
cervical cancers arise (84). Furthermore, high-risk HPV-infected
keratinocytes upregulate UCHL1, which effectively suppresses
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FIGURE 1 | The key intrinsic immune evasion mechanisms exploited by HPV oncoproteins in keratinocytes (KCs). (A) High-risk HPV E6 and E7 recruit histone

modifying enzymes (EZH2, HDAC1, and JARID1B) and DNA methylation enzyme (DNMT1) to suppress TLR9 and CXCL14 transcription. E6 and E7 also bind to the

adapter protein STING and ubiquitin ligase E6-AP, leading to downregulation of cGAS–STING cytosolic DNA sensing system and degradation of pro-IL-1β. (B)

High-risk HPV E6 and E7 block pathogen recognition receptors (PRR) signal transduction cascades by upregulating the deubiquitinating enzyme Ubiquitin C-Terminal

Hydrolase L1 (UCHL1) to inhibit TNF-receptor-associated factor 3 (TRAF3) activation, and by binding to interferon regulatory transcription factor (IRF) to prevent its

transcriptional activity in the nucleus. E6 an E7 also interfere with IFN-α/β receptor (IFNAR) signaling pathway by binding to tyrosine kinase 2 (TYK2) to hamper

phosphorylation of STAT1 and STAT2, and by interacting with IRF9 to prevent its binding to phosphorylated STAT1 and STAT2 for activating IFN-stimulated genes. (C)

High-risk HPV E6 and E7 prevent the nuclear translocation of NF-κB via upregulation of UCHL1. E6 and E7 are also capable of binding to P300/CBP-associated

factor (PCAF), a coactivator of NF-κB in the nucleus, thereby downregulating the NF-κB signaling pathway. (D) High-risk HPV E7 can interact with the major

histocompatibility complex (MHC) I promoter, leading to repression of MHC I, LMP2, and TAP1 gene. In contrast, E5 reduces MHC I and CD1d expression by blocking

the transport of MHC I and CD1d proteins to the cell surface via its interactions with host proteins in the Golgi complex and ER.

downstream anti-viral responses such as production of type
1 IFNs, as well as suppression of p65 phosphorylation, and
thereby nuclear translocation of p65, via degradation of NEMO,
a regulatory subunit of the inhibitor of kappaB kinase (IKK)
complex, and via promoting stabilization of IκBα, an inhibitor
of the NF-κB complexes (73). Additionally, high-risk HPV E6

and E7 are capable of binding to coactivators of NF-κB in the
nucleus, thereby downregulating the NF-κB signaling pathway
(85–87). Overall, NF-kB downregulation results in impaired
anti-HPV activity in the infected keratinocytes, promoting
persistence of HPV infection. However, the NF-κB pathway is
paradoxically highly activated in HSILs and cervical cancers
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(88), suggesting that NF-κB also plays a tumor-promoting
role during cervical carcinogenesis. Given that high-risk HPV
E6 and E7 inhibited NF-κB pathway, activation of NF-kB in
HSILs and cervical cancers is likely to be mediated by signals
derived from the local protumorigenic microenvironment,
such as tumor-associated inflammatory cells and fibroblasts
(83). It is proposed that high NF-kB activity contributes to
carcinogenesis by variety of mechanisms. Firstly, NF-kB pathway
can stimulate expression of protumorigenic genes involved in
cell proliferation, immortalization, vascular endothelial growth
factor (VEGF)-dependent angiogenesis and metastasis (83). On
the other hand, during chronic stage of HPV infection, the
pro-inflammatory role of NF-kB pathway can inhibit tumor
growth, but also promote more aggressive tumors which escape
immune destruction, a process called cancer immunoediting
(89). In this context, the protumorigenic role of NF-kB activity
becomes dominant.

Using similar strategies, HPVs are capable of regulating
multiple other immune signaling pathways in keratinocytes.
Recently, the production of interleukin (IL) 1-β in keratinocytes
has also been found to be downregulated by HPV oncoproteins.
HPV16 E6 forms a complex with ubiquitin ligase E6-AP and the
tumor suppressor p53, leading to the degradation of pro-IL-1β
and impairment of IL-1β formation (90) (Figure 1A). Indeed,
clinical studies of human biopsy samples revealed a progressive
loss of IL-1β gene and protein expression from normal
epithelium to CIN lesions, and from CINs to cervical tumors
(90). In addition to IL-1β suppression, HPV oncoproteins were
also found to associate with DNA methyltransferase 1(DNMT1),
leading to hyper-methylation of the CXCL14 promoter (91)
(Figure 1A). Downregulation of CXCL14 has also been observed
in HPV-associated cancers (91). It has been suggested that
CXCL14 may play important roles in angiogenesis inhibition
(92) and in promoting the recruitment of antigen-presenting
cells (APCs), natural killer (NK) cells, and T cells (93), thereby
preventing HPV-associated cancer progression.

High-Risk HPV Oncoproteins Prevent
Keratinocytes From Being Recognized by
Adaptive Immunity
Killing of infected cells by antigen-specific cytotoxic T
lymphocytes (CTLs) is a highly effective and specific mechanism
to eliminate virus infection in the host. CTL-mediated killing
is dependent on the presentation of pathogen-derived peptides
by MHC class I molecules on the surface of keratinocytes.
It has been reported that around 30% of cervical cancers
have reduced MHC I expression (94, 95). Downregulation of
MHC I in these cancers also correlates with reduced levels of
transporter associated with antigen processing (TAP), a protein
complex that transports cytosolic peptides into the endoplasmic
reticulum (ER) (96). Interestingly, the expression of MHC II
molecules is frequently upregulated in cervical tumor cells
(96, 97). This suggests a potential interaction between neoplastic
keratinocytes and HPV-specific CD4+ T cells, which may
promote tumor progression.

Several mechanisms may combine to lead to MHC I
downregulation following HPV infection (Figure 1D). For

example, high-risk HPV E7 can interact with the RXR-beta
binding motif of the MHC I promoter and recruit histone
deacetylases to the promoter site, leading to repression of MHC
I gene expression (98–102). Using similar strategies, E7 represses
expression of antigen processing machinery components LMP2
and TAP1 (98, 99), leading to impairment of peptide production
and transportation in infected cells. In contrast to E7, E5
reduces MHC I expression by blocking the transport of MHC
I to the cell surface via its interactions with host proteins in
the Golgi complex and ER (103–105). E5 also downregulates
the surface expression of CD1d molecules on keratinocytes
(106) (Figure 1D). The loss of CD1d has been observed in
cervical cancer lesions (106). CD1d is an antigen presenting
molecule essential for the activation of natural killer T (NKT)
cells. The loss of CD1d may downregulate NKT cell-mediated
anti-viral responses, which is likely to impact upon the very
early stages of immune activation following HPV infection.
However, downregulation of CD1d in cervical cancer lesions may
not be mediated by E5, as E5 expression is often inactivated
in tumor cells as a consequence of viral genome integration.
Therefore, other mechanisms may play important roles and need
further clarification.

Overall, there is accumulating evidence that HPV
oncoproteins target multiple immune-associated pathways
in keratinocytes. The disruption of these pathways collectively
promote the immune evasion of HPV in the early stage of
infection, and will induce susceptibility toward persistence of
HPV infection and progression to HPV-associated cancers. As
will be discussed further below, the impairment of multiple
immune-associated pathways in keratinocytes may lead to
inefficient activation and function of other immune components,
resulting in a compromised immune response network
against HPV.

IMMUNE EVASION OF HPV BY
MODULATING THE IMMUNE NETWORK

Impaired Function of the Innate
Leukocytes in HPV-Associated Cancers
In addition to keratinocytes, the innate immune system
also includes bone marrow-derived leukocytes. These innate
leukocytes are recruited to the peripheral tissues and activated
in response to signals derived from local microenvironments.
Together with keratinocytes, they promote a cytokine-mediated
pro-inflammatory environment, which is essential in triggering
the adaptive immune response to eliminate infected cells.
In HPV-associated cancers, however, many of these innate
leukocytes were observed to display compromised or regulatory
functions. They act as one of the major factors leading to an
inefficient adaptive immune response and eventually immune
evasion by HPV.

Professional Antigen Presenting Cells
Langerhans cells (LCs) are specialized APCs resident in the
epidermis as a part of immune sentinels. Upon antigen
recognition, their migration to secondary lymphoid tissues
enables the priming of adaptive immune cells. Interference with
LC trafficking in and out of the epidermis can therefore assist
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FIGURE 2 | Crosstalk between keratinocytes (KCs) and immune cells orchestrates immunosuppression in HPV-associated tumor microenvironment. (A)

Downregulation of the chemokine CCL20 and cell adhesion molecule E-cadherin in HPV-infected KCs reduces Langerhans cells (LCs) infiltration in HPV-associated

tumor. LCs and migratory dendritic cells (DCs) in tumor microenvironment also display immature or regulatory phenotypes and have reduced migratory capacity to

secondary lymphoid tissue, characterized by downregulation of MHC II, CD80, CD86, and the chemokine receptor CCR7, and upregulation of indoleamine 2,

3-dioxygenase 1 (IDO1). This is probably mediated by tumor cell-derived immunosuppressive factors, such as IL-10, TGF-β, IL-6, and prostaglandin E2 (PGE2). (B)

Upregulation of tumor-derived factors and downregulation of type I IFNs in HPV-associated tumor suppress NK cell activation and its killing capacity against tumor

cells. On the other hand, downregulation of CD1d on KCs dampens NKT cell activity. CD1dhi myeloid cells in tumor environment might contribute to an alternative

source of CD1d, leading to the activation of immunosuppressive IFN-γ-producing NKT cells. (C) The accumulation of tumor-associated macrophages (TAMs) and

myeloid-derived suppressor cells (MDSCs) is mediated by a variety of tumor-derived factors, such as the chemokine CCL2, macrophage colony-stimulating factor

(M-CSF), IL10, TGF-β, IL6 and PGE2. Additionally, Th2-associated cytokines promote TAM differentiation by inducing a phenotypic switch from M1 to M2. TAMs

produce Th2-associated cytokines to promote Th2 cell differentiation, and secret the chemokine CCL22 to recruit Tregs. Similarly, MDSCs inhibit the effector immune

response by producing a broad range of suppressive molecules, such as arginase 1 (Arg-1), inducible nitric oxide synthase (iNOS), IDO, reactive oxygen species

(ROS), IL10, TGF-β, and PD-L1. (D) Tumor-derived factors promote the accumulation of Tregs and a shift from a Th1 toward a Th2 response in local

microenvironment. In addition, the recruitment of Th17 cells is increased by CCL20 secretion in cancer-associated fibroblasts (CAFs). Collectively, these modulated

responses might in part contribute to downregulation of CTL responses.

in immune evasion by HPV (Figure 2A). In HPV-associated
cancers, low infiltration of LCs in tumors have been associated
with disease severity in HPV16+ cervical and head and neck
cancer lesions (107–109). This is possibly due to downregulation
of CCL20, a chemokine which attracts LC to sites of
inflammation (110). HPV16 E6 and E7 expression promote
CCL20 downregulation, which is thought to be achieved through

the capacity of E6 and E7 to inhibit the NF-κB signaling
pathway (111). In addition, HPV-associated tumors have reduced
expression of E-cadherin compared to healthy epidermis (112).
E-cadherin is an adhesive molecule that allows LCs to remain in
the epidermis to enable viral antigen uptake (112). It has been
suggested that HPV16 E7 is responsible for suppression of E-
cadherin expression by inducing methylation of the E-cadherin
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promoter (113). Similarly, CCR7 expression on migratory
dendritic cells (DCs) is downregulated in HPV-associated tumors
(114), resulting in a reduction of DC homing to secondary
lymphoid tissue (115). Altogether, these data imply impairment
of LC trafficking in HPV-infected epithelium. The loss of LC
presenting viral antigen might partially contribute to the poor
priming of effector T cells. Targeting LC trafficking therefore
warrants closer study to define whether therapeutic intervention
would restore anti-HPV immune responses in patients with
HPV-associated cancers.

In addition to impacted trafficking, APCs also display
immature phenotypes in HPV-infected epithelium, characterized
by downregulation of cell surface MHC molecules and co-
stimulatory molecules including CD80 and CD86 (116).
Downregulation of these molecules reduces the capacity
of DCs to prime antigen-specific T cells (Figure 2A). DC
maturation is inhibited in many cancers, as a consequence
of secretion of tumor cell-derived immunosuppressive factors,
such as IL-10, transforming growth factor (TGF)-β, IL-6,
prostaglandin E2 (PGE2) and granulocyte-macrophage colony-
stimulating factor (GM-CSF) (117–119). Indeed, these factors
have been demonstrated to be important modulators for the
establishment of an immunosuppressive environment in HPV-
associated cancers (120, 121). Further studies are needed to
investigate the impact of these factors on DC maturation in
HPV-infected epithelium. Notably, several studies have tested
whether promoting LC maturation may have potential as a
therapeutic strategy to combat HPV infection. For example,
Polyinosinic:polycytidylic acid (Poly I:C) and the cell-derived
cytokine-based biologic IRX-2 are two immunostimulants that
were able to upregulate MHC and costimulatory molecule
expression on LCs pre-exposed to HPV16. Furthermore, Poly
I:C and IRX-2 were also shown to enhance LC migration to
secondary lymphoid tissues by upregulating CCR7 expression
on LCs. These modulating effects allowed LCs to restore their
capacity to induce CD8+ T cell immune responses against
HPV16-derived peptides (122, 123). Current studies are further
evaluating the translational potential of Poly I:C or IRX-2 in
treating HPV-associated cancers.

Recently, a regulatory APC has been identified in mouse
skin transgenic for HPV16 E7. These regulatory cells were
found in the dermis and expressed high level of indoleamine
2, 3-dioxygenase 1(IDO1) (124). This is consistent with clinical
observations that HPV+ cervical lesions have a high level of
IDO1 expression (125). IDO1 is an enzyme that negatively
regulates anti-tumor immunity (126). HPV16 E7-transgenic
mouse skin with infiltrating dermal IDO1hi APCs was not
rejected when grafted onto non-transgenic recipient mice,
whereas the inhibition of IDO1 promoted rejection (124). This
implies that IDO1 produced from these APCs might contribute
to immune tolerance in HPV16 E7-expressing skin. Further
studies are necessary to investigate the origin and function of
these IDO1hi APCs. It is likely that they are capable of competing
with other immunogenic APC populations for T cell priming,
leading to the induction of both anergic T cells and regulatory
T cells (Tregs) (Figure 2A).

NK and NKT Cells
NK cells are innate immune cells that can recognize and kill
virus-infected cells which have down-regulated surface MHC
I molecules and are resistant to CTL-mediated killing. The
activity of NK cells was impaired in patients with persistent HPV
infection and cervical cancer, as evidenced by the downregulation
of several NK-activating receptors including NKp30, NKp44,
NKp46, and NKG2D (127). Furthermore, recent studies indicate
that the impairment of NK cell activity in HPV+ cervical
lesions is mediated by the upregulation of tumor-derived
immune checkpoint molecules such as IDO (128, 129). As
discussed above, IDO+ DCs can be found within persisting
HPV16 E7 expression in skin. IDO expression within the tumor
environment is also reported to be upregulated by activated
macrophages, and APC, as well as tumor cells (130). This
suggests that these cells may interfere with NK cell activity in
HPV+ cervical lesions. In addition, upregulation of IL-10 and
downregulation of type I IFNs in HPV+ lesions was found
to suppress NK cell differentiation and activation (131, 132).
Altogether, these findings suggest the important role for tumor-
induced immunosuppressive factors in modulating NK cell
activity in the tumor environment (Figure 2B).

NKT cells are a subset of T cells that share properties of both
T cells and NK cells. The best characterized NKT cell expresses
a semi-invariant TCR and releases high amounts of pro-
inflammatory cytokines upon recognition of CD1d molecules,
which present lipid antigens on the surface of APCs and tumor
cells (133). For these reasons, NKT cells are often regarded as
innate immune cells. There are a few studies addressing the role
of NKT cells in HPV+ precancerous and cervical cancer lesions.
CD1d is downregulated in HPV16-infected cells in vivo and in
vitro as a result of HPV16 E5 expression (106), which might
help HPV-infected cells evade protective NKT cell activity (134).
On the other hand, the immunosuppressive role of NKT cells
has been described in the HPV16 E7 transgenic mouse model
(135, 136). Infiltration of NKT cells was observed in grafted
HPV16 E7-transgenic mouse skin but not in non-transgenic
skin. These NKT cells were characterized by high levels of IFN-
γ production, which was shown to suppress the proliferation
and cytotoxicity of CD8T cells, thereby inhibiting HPV16 E7-
expressing skin graft rejection. In human studies of HPV+

high-grade lesions, the accumulation of IFN-γ-producing NKT
cells has also been observed (137). This implies that IFN-γ-
producing NKT cells are paradoxically immunosuppressive and
may contribute to HPV-associated carcinogenesis (Figure 2B).
On further exploration of the origin and function of these NKT
cells, a population of CD11c+ F4/80hi CD1dhi myeloid cells was
observed to be recruited into grafted E7 transgenic skin (135,
136). Given that CD1d expression is downregulated in HPV-
infected keratinocytes, it is possible that these CD1dhi myeloid
cells contribute to an alternative source of CD1d which leads
to the activation of immunosuppressive NKT cells in the local
tissue environment (Figure 2B). Moreover, IFN-γ is known as
an inducer of IDO1 expression (124). Therefore, increased IDO1
expression observed in the HPV-associated tumor environment
might be induced by IFN-γ-producing NKT cells, resulting in
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a feed-forward loop of immunosuppression. Interestingly, the
regulatory IDO1hi DCs found in HPV16 E7-transgenic mouse
skin expressed a high level of IFN-γ receptor (135, 136). This
further supports a potential interaction between NKT cells and
DCs in promoting HPV-associated immunosuppression.

Regulatory Innate Leukocytes
Regulatory innate leukocytes are naturally found at inflammatory
sites and act as a negative feedback control for effector
immune responses. In a virus-associated tumor environment, the
recruitment of these regulatory cells is often increased, which can
enhance viral immune evasion. Tumor-associated macrophages
(TAMs), for example, frequently present with a M2-polarized
phenotype, and the presence of TAMs has been correlated with
tumor progression and poor prognosis in cervical cancer patients
(138, 139). High grade HPV+ cervical lesions were characterized
by increased macrophage infiltration, in which TAMs were found
to be the predominant macrophage population (139, 140). The
underlying mechanism for the recruitment of TAMs in HPV-
associated lesions is not fully understood (Figure 2C). It has
been suggested that TAMs differentiate from monocyte-derived
macrophages following exposure to a variety of tumor cell-
derived soluble factors. These factors include the chemokine
CCL2 and the macrophage colony-stimulating factor (M-CSF),
and several immunosuppressive modulators such as TGF-β,
IL-10, IL-6, and PGE2 (141), which have been found to be
upregulated inHPV-associated tumors. In addition to tumor cell-
derived factors, T helper 2 (Th2) cytokines such as IL-4, IL-10,
and IL-13 also promote the differentiation of TAMs, whereas
Th1 cytokines have an inhibitory role (142). Interestingly, it has
been suggested that the interaction between Th1 cells and TAMs
can induce the repolarization of TAMs into M1 macrophages,
an anti-tumor type of macrophage (143). This reveals the
functional plasticity of macrophages in response to different
local environmental factors. Blockade of TAM differentiation
and targeting of macrophage polarization to an anti-tumor
phenotype are potential therapeutic options for treatment of
HPV-associated cancers.

Mechanisms of TAM-induced immune suppression inHPV+-
associated cancers are not clearly understood (Figure 2C). It
is assumed that the M2 polarization of macrophages leads to
insufficient production of IL-12, a T cell-stimulating factor that
is predominantly produced by M1 macrophages (144). IL-12
is required for the survival, differentiation and function of
CTLs, Th1 cells and NK cells. Moreover, TAMs predominantly
produce Th2-related cytokines such as IL-4, IL-10, and IL-13
(144), which promote Th2 cell polarization. The generation of
Th2 cells forms a positive feedback loop to further stimulate
TAM polarization and inhibit the response of other effector
immune cells. In addition, TAMs play important roles in the
recruitment of Tregs via M2-derived chemokines such as CCL22
(144). Treg activity can be further stimulated and maintained
by high levels of IL-10 produced by TAMs. IL-10 may also
promote the differentiation of naive CD4+ T cells toward Tregs
and downregulate the function of DCs (144). Whether these
mechanisms mediate immune suppression in HPV-associated
cancers warrants further investigation.

Another example of regulatory innate leukocytes is myeloid-
derived suppressor cells (MDSCs), which are a heterogeneous
population of immature myeloid cells that consist of immature
granulocytes, macrophages, and DCs with immunosuppressive
functions. An increased frequency of MDSCs is associated with
progression of different types of tumors (145). In studies of HPV-
associated cancers, MDSCs were found in both blood and tumors
in patients and were associated with a poor prognosis (146).
Depletion of MDSCs in an HPV16-associated mouse tumor
model enhanced the anti-tumor protection of a therapeutic
vaccine targeting HPV16 E7 (147). The mechanisms underlying
the expansion and activation of MDSCs in HPV-associated
cancers remain unclear. Similar to TAMs, it is likely that MDSCs
are stimulated by a variety of soluble factors, such as GM-
CSF, VEGF, TNF-α, PGE2, IL-1β, IL-6, and IL-10, which are
secreted by tumor and infiltrating immune cells, as well as tumor-
associated fibroblasts (148) (Figure 2C). MDSCs can produce
a broad range of suppressive molecules to inhibit the effector
immune response (Figure 2C). They produce arginase 1 (Arg-
1), inducible nitric oxide synthase (iNOS), IDO, reactive oxygen
species (ROS) and immunosuppressive cytokines such as TGF-
β and IL-10 (148). These molecules can act in either direct or
indirect ways to inhibit survival and proliferation of effector T
cells, inhibit NK cell function, and promote the recruitment and
induction of Tregs. It has also been recently found that MDSCs
upregulate PD-L1 expression (148), which can bind to PD-1 on
the surface of effector T cells to suppress their activation. Due to
the relevance of MDSCs in HPV-related carcinogenesis, several
therapeutic approaches aiming to inhibit MDSC activity and
recruitment are currently being tested in preclinical and clinical
studies, and have shown beneficial effects in tumor growth
inhibition and prolongation of survival (145, 149–152).

Overall, it is suggested that local microenvironment shaped by
HPV infection plays a major role in modulating the phenotype
and function of innate immune cells. These innate immune cells
further produce mediators acting as a vicious cycle to maintain
local immunosuppression. The connection among different
innate immune cells plays an essential role in further regulating
the adaptive immune response, which will be discussed below.

Deregulation of Adaptive Immune
Responses in HPV-Associated Cancers
CD8+ and CD4+ Effector T Cells
By interaction with mature APCs, naive CD8+ T cells can
differentiate into CTLs which migrate to sites of infection
to kill virus-infected cells. Infiltration of CD8+ T cells has
been observed in HPV-associated tumors, yet they do not
appear to prevent tumor growth (153). A mechanism by
which the CTL response is inhibited might be associated with
impairment of APC trafficking and maturation, as discussed
above (Figure 2A). Enhanced CTL responses following DC
maturation has been demonstrated in HPV16 E6 and E7-related
mouse tumor models (154). Other factors might also be involved
in the inhibition of CTL responses. For example, HPV-infected
keratinocytes downregulate their surface MHC I expression
(Figure 1D), thereby preventing CTL recognition (96, 155–157).
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Further studies on these possible mechanisms may unravel their
contribution to HPV-induced immunosuppression.

In addition to a CTL response, a robust CD4+ T cell response
is needed for the effective clearance of HPV. Patients with
regressed HPV+ cervical lesions exhibited significantly higher
HPV16 E6 and E7-specific CD4+ T cell responses compared to
those with persistent CIN 1, 2, or 3 lesions (158, 159). Upon
activation, naive CD4+ T cells have the potential to differentiate
into various Th effector lineages, depending on which signals
they receive from the local inflammatory environment. An
anti-viral immune response requires a Th1 response, which is
characterized by the secretion of the pro-inflammatory cytokines
IFN-γ and IL-2 (160, 161). A lack of a Th1 response has been
associated with persistent HPV infection and the development
of high-grade disease (162–165). Interestingly, recent studies
found that patients with high grade HPV+ cervical lesions had
an increased Th2 response, characterized by the secretion of
pro-tumorigenic cytokines such as IL-6, IL-8, and IL-10 (163).
The shift from a Th1 toward a Th2 response might be, in part,
responsible for HPV-immune evasion in the tumor environment
(Figure 2D). Additionally, an IL-17-associated Th17 response
has been recently described in patients with high grade HPV+

cervical lesions (166). A Th17 response is considered pro-
inflammatory in the context of immune responses against
extracellular pathogens but was found to be pro-tumorigenic
in HPV-associated cancers. Furthermore, an increase of Th17
cell infiltration in HPV+ cervical lesions was associated with
progression to invasive cervical cancer (167). The recruitment
of Th17 cells may be mediated by tumor-derived chemokines.
In the HPV16 E7 transgenic mouse model, the upregulation of
a spectrum of chemokines was observed in E7 transgenic skin
as a consequence of hyperproliferation, and chemokine receptor
CXCR3was found to promote T cell infiltration of skin. However,
despite CXCR3 expression, T cells are ineffective in rejecting E7
transgenic skin when grafted onto non-transgenic mice (168).
It is likely that Th17 cells in HPV+ cervical lesions play a
similar role to these CXCR3+ T cells. Furthermore, a recent
study suggests that the recruitment of Th17 cells is mediated
by stromal tumor-associated fibroblasts (166). This observation
provides new insights into the immune-modulating function of
stromal cells in HPV-related carcinogenesis (Figure 2D). Finally,
the recruitment of immunosuppressive cells such as Tregs was
also observed in HPV+ cervical lesions and may further inhibit
CTL function (169); Tregs will be discussed further below.

Regulatory T Cells
In persistent viral infections, the recruitment and activation of
Tregs can promote viral immune evasion and contribute to
disease pathogenesis. A few studies have analyzed Tregs in blood
and tumors from high-risk HPV+ subjects, and revealed that
patients with persistent HPV16 infection have a significantly
higher CD4+ CD25+ Foxp3+ Treg frequency compared to those
who have cleared the infection (159, 170). In addition, E6 and
E7-specific Tregs were detected in both HPV-associated cervical
tumors and tumor draining lymph nodes (171, 172). These
HPV-specific Tregs were capable of suppressing proliferation

and cytokine production from activated T cells in vitro upon
stimulation with cognate HPV antigens.

Just how HPVs trigger the activation and expansion of Tregs
is not clearly understood. Multiple factors in the local immune
environment may act together (Figure 2D). Generally, the Treg
response may be a result of the expansion of existing natural
Tregs that are cross-reactive between self and HPV antigens. For
example, the HPV16 E7 protein shares similarity with several
human proteins such as retinoblastoma binding protein 1 (RBP-
1) and XP-G complementing protein (XPGC) (173). Natural
Tregs with self-reactivity to these self-proteins might be activated
during HPV16 infection. Alternatively, natural Tregs can be
stimulated in a non-specific way via their recognition of virus-
associated molecular patterns as well as certain host products
derived from damaged cells, such as heat shock proteins and
β-defensins (174–176). Moreover, the Treg response may be a
result of the expansion of induced Tregs that originate from
either naive or differentiated CD4+ T cells. This usually requires
T cell recognition of antigen presented by DCs in the presence
of additional host-derived cytokines, such as TGF-β, IL-10, and
IL-2 (177, 178). These cytokines are known to be upregulated in
the HPV-associated tumor environment, where they are derived
from a variety of local suppressive immune cells including TAMs,
MDSCs, and Th2 cells, as discussed above. Furthermore, the
induction of Tregs may be mediated by regulatory subsets of
DCs (179, 180). Recent findings have suggested the presence of
a regulatory type of APC in the dermal environment of HPV16
E7 transgenic mouse skin (124). The role of this DC subset in the
induction of Tregs however, remains to be defined.

Immune suppression by Tregs is dependent on a variety
of direct and indirect mechanisms. For example, Tregs can
directly kill effector T cells via Fas-Fas ligand interactions
(181) or via delivery of granzyme B and perforin (182). LAG-
3 and CTLA-4 expressed on the surface of Tregs bind to
MHC II and co-stimulatory molecules CD80/86, respectively,
inhibiting the maturation of DCs and conditioning DCs to
express regulatory molecules such as IDO (183, 184). In addition
to direct contact-mediated inhibition, Tregs also elicit non-
specific immunosuppressive effects by releasing a range of soluble
mediators including the cytokines IL-10, TGF-β, and IL-35 (185–
187). These cytokines are involved in inhibiting the proliferation
and function of effector T cells and the maturation of DCs,
as well as in inhibiting the pro-inflammatory activity of other
innate immune cells. Moreover, Tregs express high levels of
CD25, an essential component of the high affinity IL-2 receptor.
This allows Tregs to compete with other activated T cells for
the bioavailability of IL-2, thereby suppressing T cell survival
and proliferation (188). Altogether, the mechanisms involved in
Treg-mediated suppression are complex, and may vary between
different stages of viral infection and the sites in which the
immune response occurs. Our current understanding of Treg
functionality is mainly established by in vitro studies. It is still
unclear whether Tregs use the same mechanisms in vivo, and
whether these mechanisms are applied by Tregs in the context
of HPV-associated cancers.

Overall, infiltration of both CD8+ and CD4+ T cells has
been observed in HPV-associated tumors, yet they are considered

Frontiers in Oncology | www.frontiersin.org 10 August 2019 | Volume 9 | Article 682

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhou et al. Immune Evasion Strategies of HPV

to be inefficient to eliminate HPV infected cells. Underlying
mechanisms of their failure to eliminate HPV are not fully
understood. However, current studies have indicated a shift
from a Th1 toward a Th2 response in persistent HPV+ cervical
lesions. In addition, patients with high grade HPV+ cervical
lesions exhibit higher Th17 and Treg responses compared
to those with regressed lesions. Collectively, these modulated
immune responses might in part contribute to downregulation
of CTL responses, and consequently HPV-immune evasion in the
tumor environment.

The Development of Immunotherapy for
HPV-Associated Cancers
In the past few decades, there have been great advances in
our understanding of the nature of HPV infection and its
interaction with the host immune system. Based on these
discoveries, different strategies have been trialed to prevent
or treat HPV-associated diseases. HPV prophylactic vaccines
and cervical screening have been introduced into prevention
programs in many countries, which have been proven to be
nearly 100% effective at preventing HPV-infection and HPV-
associated cervical disease (189). However, prophylactic vaccines
have limited utility in the treatment of existing HPV infections.
For patients with pre-existing HPV-associated cancers, surgical
removal with concomitant chemo- and/or radiotherapy remain
the first choice of therapeutic intervention (190). However,
several novel treatment options are becoming available to treat
patients with more advanced disease (191). Immunotherapies are
the most attractive among these novel treatment options, since
they have potential to target persistent HPV infection in patients,
which is the primary cause of disease.

Current Status of Immunotherapies
Against HPV
Current HPV prophylactic vaccines activate host immunity
by stimulating the production of antibodies that specifically
target HPV capsid proteins (192). However, these vaccines are
incapable of eliminating HPV-infected cells, as capsid proteins
are only present either before viral entry, or in the terminally
differentiated epithelium. A therapeutic vaccine is therefore
needed to elicit cell-mediated immune responses against viral
antigens that are constitutively expressed in infected cells.
Candidate viral targets that have been investigated include HPV
early proteins such as E1, E2, E6, and E7 (193). To achieve the
desired therapeutic outcome, therapeutic vaccines that deliver the
viral antigens in several forms have been proposed and tested.
These include live vector vaccines that use live attenuated bacteria
or virus to deliver a recombinant vector expressing HPV antigens
(194, 195). DNA vaccines are another powerful and economical
vaccine platform. They consist of a DNA plasmid containing
HPV genes of interest, which can be introduced to patients
either via intramuscular or intradermal injections (196). Vaccines
can also be made up of a mixture of HPV peptides which are
known to be highly immunogenic (197), or recombinant HPV
proteins that contain all potential antigenic epitopes (198, 199).
Another attractive form of vaccine is a cell-based vaccine where,

for example, autologous DCs derived from patients are cultured
in vitro and stimulated with HPV peptides or proteins. These
DCs are then transferred back to patients in order to present
HPV antigens more efficiently to induce CTL responses (200).
Many of these therapeutic vaccines have been tested for the
treatment of HPV-associated diseases, although they have not
demonstrated clinical success (201, 202). One of the concerns is
that the induction and generation of HPV-specific CTLs alone
by therapeutic vaccines might not be sufficient to eliminate HPV
infected cells in patients with advanced diseases. This is probably
because HPV-associated diseases employ multiple mechanisms
to suppressive the immune system, as discussed above. Thus,
an effective immunotherapeutic regimen for HPV patients will
require a multi-pronged approach and deeper understanding of
the underlying immunology.

Therapeutic vaccines are highly antigen-specific and therefore
limited by their coverage of viral antigens and strains in each
individual patient. An alternative option to stimulate immunity is
the use of non-specific immune modulators that can potentially
mediate positive anti-HPV immune responses regardless of HPV
type. In many persistent viral infections and cancers, immune
checkpoint molecules are over-expressed, leading to the lack
of sufficient T cell responses for viral elimination. In some
HPV-associated lesions and cancers, PD-1 expression on T
cells was found to be significantly increased, compared with
healthy controls (203, 204). Thus, it is reasonable to assume
that the use of immune checkpoint inhibitors may improve
anti-HPV immunity. Immune checkpoint inhibitors for clinical
use, such as anti-CTLA-4 antibody (Ipilimumab) and human
anti-PD-1 antibody (Pembrolizumab and Nivolumab), have been
approved by U.S. Food and Drug Administration (FDA) to
treat advanced melanoma patients (205). Multiple clinical trials
have been designed and are being conducted on HPV-associated
cancers (91).

Immune checkpoint inhibitors are designed to reduce the
inhibitory signals in the tumor environment, while non-specific
immune stimulants are used to augment the activation signals
of immune cells. One example is the use of TLR agonists.
TLR agonists are agents that mimic viral molecular patterns
and therefore have the potential to boost TLR activation. For
instance, Poly I:C mimics the structure of viral double stranded
RNA, thus is an alternative stimulant of TLR3. The use of
Poly I:C as a TLR3 agonist has been shown to activate DCs
and promote E7-specific CTL responses in mice immunized
with a HPV vaccine (206). Similar observations have also
been shown in studies of TLR7 or TLR8 agonists (207), and
Imiquimod (Aldara), a TLR7 agonist, is currently marketed for
the treatment of anogenital warts caused by HPV (208). These
results suggest that TLR agonists have potential to augment the
DC response to viral antigens, thus promoting the activation of
anti-HPV immunity.

Future Prospects for the Immunotherapy
of HPV-Associated Cancers
It is anticipated that the combination of different
immunotherapeutic approaches will have the potential
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to overcome multiple barriers in HPV-mediated
immunosuppression and thus restore an effective immune
response to eliminate HPV-associated tumors. Some
chemotherapeutic agents are good candidates to synergize with
therapeutic vaccines, since they have immune-modulating effects
through the enhancement of DC antigen presenting capability
(209), the reduction of Treg numbers (210), and the depletion
of circulating myeloid cells (211). In addition, the combination
of therapeutic vaccines with immuno-regulatory antibodies or
TLR agonists is being considered as a next-step therapeutic
strategy (206). Moreover, to target immunosuppression in a
more specific way, a new investigational vaccine strategy using
the T-win R© technology has been recently described (212). These
vaccines comprise long peptide epitopes derived from selected
immunosuppressive molecules, such as metabolic enzymes (IDO
and Arg-1), PD-L1, and the chemokine CCL22. It is expected
that these vaccines will be able to activate endogenous T cells to
directly target regulatory immune cells that highly express these
immunosuppressive molecules. The T-win R© technology could
synergize with current therapeutic vaccines in development, the
potential of which has been tested in various mouse melanoma
models (212). Several of these vaccines have been tested in phase
I clinical trials and proved safe (212). They may prove to be a
good immunotherapeutic choices for HPV-associated cancers in
the future.

To support the development of immunotherapy, access to
better research tools are needed. Recently, the development
of high-throughput single-cell RNA sequencing techniques
have allowed researchers to characterize the heterogeneity and
interconnection among tumor cells, stromal cells, and immune
cells within the tumor environment (213, 214). The analysis
of gene expression profiles at single-cell resolution may also
help identify new immunotherapeutic targets. To what extent
this technique can help us understand immune evasion by
HPV in the tumor environment will be an exciting topic over
the next few years. To complement these research efforts, a
mouse HPV-associated tumor model that more closely mimics
human carcinogenesis needs to be developed. Current preclinical
studies of therapeutic HPV vaccines are usually performed in
mouse models inoculated with syngeneic tumor cells engineered
to express HPV proteins, such as TC-1 cells (215). It is
noted that TC-1 tumor progression and the associated immune
environment might be different from those observed in human
patients. Alternatively, mouse models that consistently express
HPV16 oncoproteins on basal keratinocytes can better mimic
the persistent high-risk HPV-related HSILs. For example, mice
expressing the HPV16 E7 driven by keratin 14 promoter
(K14E7) recapitulate the cellular and molecular profiles of
HSILs in human subjects (216, 217), and therefore may be
an appropriate model for studying the immune modulation by
HPV oncoprotein and for developing and testing therapeutic
vaccines. However, it has to be acknowledged that K14E7
transgenic models are not identical to HPV infection in humans,
due to the lack of natural infection events. Moreover, these
mouse models limit the choice of immune epitopes, and

therefore might not be used to test those epitopes found
exclusively in human patients. Recently, MHC-humanized
mouse HPV tumor models have been developed (218), which
could potentially be used as new vaccine testing platforms in
the future. Nevertheless, the limitation of these humanized
mouse models still exists as they are not able to mimic the
entire human immune system. It is important to understand
these limitations when interpreting data from these mouse
models. This will avoid overestimating the immunogenicity and
protective efficacy of therapeutic vaccines and therefore increase
their translational success.

CONCLUSION

HPV infection accounts for 30% of infection-related cancers
worldwide and nearly 100% of cervical cancers in women. The
causative role of HPVs has also been demonstrated in most
anogenital cancers, whereas the potential etiological role of
HPVs in non-anogenital cancers and skin cancers remains to be
defined. The major risk factor for HPV-associated carcinogenesis
is persistent infection of high-risk HPVs and their expression
of E6 and E7 oncoproteins. These oncoproteins play essential
roles in inducing cell immortalization. Moreover, they are able
to modulate the host immune response by blocking immune-
related gene expression and immune signaling pathways, as
well as antigen presentation machinery in infected keratinocytes.
The impairment of immune functions in keratinocytes further
affects their communication with immune cells. This results
in suppression of the overall anti-HPV immune response,
characterized by inhibition of effector immune responses
and enhancement of regulatory immune responses. Further
studies are needed to understand the detailed mechanisms
surrounding the crosstalk between cancer cells and different
immune cells in the HPV-associated tumor environment.
A better understanding of these interactions will help us
develop new therapeutic strategies to overcome multiple barriers
in HPV-mediated immunosuppression and synergize with
current investigational therapeutic vaccines for treatment of
HPV-associated cancers.
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