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There is an increasing clinical interest in the measure and achievement of minimal

residual disease (MRD) negativity in the bone marrow of Multiple Myeloma (MM) patients,

as defined equally either by Multicolor Flow Cytometry (MFC) or by Next Generation

Sequencing (NGS) technologies. At present, modern technologies allow to detect up

to one on 104 or on 105 or even on 106 cells, depending on their throughput.

MFC approaches, which have been progressively improved up to the so-called Next

Generation Flow (NGF), and NGS, which proved clear advantages over ASO-PCR, can

detect very low levels of residual disease in the BM. These methods are actually almost

superimposable, in terms of MRD detection power, supporting the lack of unanimous

preference for either technique on basis of local availability. However, some technical

issues are still open: the optimal assay to use to detect either phenotype (e.g., next

generation multidimensional flow cytometry, imaging) or genotype aberrations (e.g.,

ASO-RQ PCR, digital droplet PCR, NGS) and their standardization, the sample source

(BM or peripheral blood, PB) and its pre-processing (red-cell lysis vs. Ficoll, fresh vs.

frozen samples, requirement of CD138+ cells enrichment). Overall, MRD negativity is

considered as the most powerful predictor of favorable long-term outcomes in MM and

is likely to represent the major driver of treatment strategies in the near future. In this

manuscript, we reviewed the main pitfalls and caveats of MRD detection within bone

marrow in MM patients after front-line therapy, highlighting the improving of the currently

employed technology and describing alternative methods for MRD testing in MM, such

as liquid biopsy.
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INTRODUCTION

In Multiple Myeloma (MM), the clonal neoplastic plasma cells
(PCs) grow within a microenvironment niche (1, 2), which
provide factors promoting their longevity, either within or out
of bone marrow (BM) (1–3). Since PC-niches can be localized
within the BM, or, less frequently, in the spleen, liver, mucosa-
associated tissues or chronically inflamed tissues (4). MM has
spatial (5) and temporal heterogeneity (6), with a plethora of sub-
clonal mutations carried only by a fraction of the tumor PCs
(7), associated with variable clinical outcomes and responsible
for different evolutions of intramedullary and extramedullary
disease. Therefore, patients might achieve and maintain a
complete serological response, with active and proliferating
plasmacytomas (8).

The clinical course of MM is characterized by the appearance
of a monoclonal protein in serum and/or urine and symptomatic
organ damage such as renal impairment, osteolytic bone lesions,
hypercalcemia, anemia and recurrent infections, together with
high involved/uninvolved serum κ/λ ratio ≥100, more than one
focal lesion on magnetic resonance imaging (MRI), or ≥60%
clonal plasma cells (9).

After treatment, the depth of response is clinically relevant
in all settings of MM patients: newly diagnosed, either eligible
(10) or not (11) to autologous stem cell transplantation, and
relapsed/refractory (12); nevertheless, not all patients require
deep response for long-term control of disease (13).

Recently, the International Myeloma Working Group
(IMWG) has defined a revised criteria of responses for patients
with MM, by including minimal residual disease (MRD) (9)
(Table 1); indeed, several studies (14–30) (Figure 1), also
confirmed by two meta-analysis (16, 30), consistently showed
inferior outcomes in patients remaining MRD-positive, despite
the achievement of complete remission (CR). Data pooled from
5 studies involving 574 patients showed that MRD negativity was
superior to CR for survival prediction, with median progression
free survival (PFS) of 56 months (HR 0.44 (95% CI 0.34–0.56)
and median overall survival (OS) of 112 months (HR 0.47 (95%
CI 0.33–0.67) (16).

According to IMWG criteria, MRD negativity might be
detected within the BM, either by Multicolor Flow Cytometry
(MFC) or by Next Generation Sequencing (NGS) technologies;
this is unless sensitivity reaches at least 10−5, in which case
it is defined as “sustained,” if confirmed minimum of 1 year
apart (9).

Nevertheless, some technical issues are still open
regarding the optimal assay to use to detect either
phenotype (e.g., next generation multidimensional
flow cytometry, imaging) or genotype aberrations (e.g.,
ASO-RQ PCR, digital droplet PCR, NGS) and their
standardization, and the sample source (BM or peripheral
blood, PB) and its pre-processing (red-cell lysis vs.
Ficoll, fresh vs. frozen samples, requirement of CD138+

cells enrichment).
In this paper, we will review the more recent techniques

developed to assess MRD in MM, their limits in sensitivity and
applicability and their application in several clinical contexts.

TABLE 1 | IMWG criteria of response for patients with MM.

Response subCategory Response criteria

Sustained MRD-negative MRD negativity in the marrow (NGF or NGS, or

both) and by imaging as defined below,

confirmed minimum of 1 year apart.

Subsequent evaluations can be used to further

specify the duration of negativity (e.g.,

MRD-negative at 5 years)

Flow MRD-negative Absence of phenotypically aberrant clonal

plasma cells by NGF on bone marrow aspirates

using the EuroFlow standard operation

procedure for MRD detection in multiple

myeloma (or validated equivalent method) with

a minimum sensitivity of 1 in 105 nucleated

cells or higher

Sequencing MRD-negative Absence of clonal plasma cells by NGS on

bone marrow aspirate in which presence of a

clone is defined as less than two identical

sequencing reads obtained after DNA

sequencing of bone marrow aspirates using

the LymphoSIGHT platform (or validated

equivalent method) with a minimum sensitivity

of 1 in 105 nucleated cells or higher

Imaging positive MRD-negative MRD negativity as defined by NGF or NGS plus

disappearance of every area of increased tracer

uptake found at baseline or a preceding

PET/CT or decrease to less mediastinal blood

pool SUV or decrease to less than that of

surrounding normal tissue

MRD, minimal residual disease; NGF, next generation flow; NGS, next generation

sequencing; PET, Positron-emission tomography; CT, computed tomography; SUV,

Standardized Uptake Value.

STATE-OF-THE-ART OF METHODS FOR
RESIDUAL MYELOMA CELLS’ DETECTION
WITHIN THE BONE MARROW

Initially, MRD has been assessed on BM samples by amplifying
the V(D)J clonal rearrangements, first just to gain qualitative
information by polymerase chain reaction (PCR) (22, 27, 31)
using clonal-size based methods (PAGE, GeneScanning) (17, 32),
then by allelic specific oligonucleotide PCR (ASO-RQ-PCR), to
also obtain quantitative information (22, 33, 34).

At present, modern technologies allow the detection of up
to one on 104, or on 105, or even on 106 cells, depending
on their throughput. Both MFC approaches, which have been
progressively improved up to the so-called Next Generation Flow
(35, 36) (NGF), and NGS, which proved clear advantages over
ASO-PCR, can detect very low levels of residual disease in the BM
(Figure 2). These methods are actually almost superimposable, in
terms of MRD detection power (13), supporting both the lack of
unanimous preference for any specific technique, and the IMWG
recommendation to choose one of the two on the basis of local
availability (9, 37).

However, given the spatial heterogeneity and patchy nature of
MM, MRD detection in BM might lead to false negative results,
by underestimating the disease burden due to the presence of
remaining, extra-medullary tumor cells. Indeed, despite a low
rate of recurrence, MRD-neg patients can still relapse or develop
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FIGURE 1 | Median progression free survival based on MFC/ASO-qRT-PCR MRD in selected studies.

FIGURE 2 | MRD assessment by MFC and PCR.

extramedullary disease. Therefore, additional assessments to
detect MRD in PB have been proposed, searching for circulating
tumor cells (CTCs) by MFC or circulating free DNA (cfDNA) by
NGS or including imaging techniques, such as PET and MRI to
capture temporal and spatial genetic heterogeneity.

Due to the temporal heterogeneity of MM, the optimal
time points of MRD detection have not been yet standardized.
Most information arises from clinical trials enrolling newly
diagnosed transplant-eligible MM patients, where MRD has
been assessed after high-dose therapy. Nevertheless, since

the genome is plastic, the amount of MRD could not be
enough informative on the dynamics of disease evolution.
Moreover, few data are available on systematic sequential analysis
throughout the later stages of treatment; therefore, it is so far
not clear how long patients should be followed during the
disease course.

BONE MARROW HEMODILUTION IS THE
MAJOR PITFALL OF SAMPLE
COLLECTION FOR MRD ANALYSIS

High throughput techniques require high amounts of starting
material and sample pre-processing standardized protocols are
required to optimize the procedure across laboratories, in order
to limit the loss of biological material (38).

Since BM aspirates’ hemodilution is the most common
technical pitfall in MRD assessment (39), it is recommended to
evaluate sample cellularity (e.g., by quantification of erythroblasts
>5% and mastocytes by flow cytometry or smear) before
proceeding with MRD evaluation, either by MFC or by NGS.

Overall, the red blood cell lysis (so-called bulk lysis) with
ammonium chloride is considered the optimal pre-analytical
procedure, as compared to the previously employed Ficoll-
hypaque stratification (40).

The immune-magnetic CD138+cells enrichment, which is
commonly performed at diagnosis in most MM patients for
baseline FISH analysis, provides a concentrated source of
neoplastic cells. This increases the possibility to detect the clonal
marker by molecular approaches (33) and overcomes the issue
of bad quality BM aspirates; on the contrary MFC methods
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require whole BM samples, to be able to describe PC in their
cellular context.

Immunomagnetic separation might be replaced by flow-
activated cell sorting (FACS), to warrant recovery of high-
purity cells also from very low infiltrated BM aspirates, with
the advantage to discriminate between normal and clonal PC
sub-clones (3).

Whereas, molecular biology methods might be performed in
batches on stored samples, MFC MRD assessment should be
ideally performed within few hours from BM aspirates, since
CD138 tends to be internalized by PCs. In addition, since
the employment of anti-CD38 therapies might mask CD38 on
PC surface, specific multiepitope CD38 antibodies need to be
employed in patients treated with this kind of therapies (41).

MRD DETECTION BY MULTIPARAMETRIC
FLOW CYTOMETRY (MFC)

The latest IMWG 2016 guidelines suggest using MFC techniques
with EuroFlow standards to identify clonality and aberrant PC
immune phenotype (9, 36, 42–44). The EuroFlow 8-color 2-tube
method uses surface-only staining in 1 tube that consists of
individually added antibodies and a separate tube that uses a 2-
step procedure of surface staining followed by cytoplasmic light
chain staining (36), since permeabilization of PCs can impair
their light scatter properties and the expression of cell surface
antigens (45). The expression of several markers discriminates
normal from neoplastic PCs: CD138 is typically highly expressed
by neoplastic PCs; CD38 and CD45 expression is lower in
neoplastic, as compared to normal PCs; neoplastic PCs lack the
expression of CD19, whereas they strongly express CD56 (46).
Further markers (CD27, CD81, CD200, CD307, and CD117),
might help to discriminate normal from neoplastic PCs and to
identify phenotypes associated with certain outcomes (47, 48): if
the detection of CD27, CD81, and CD117 is not included, there
is the risk of overestimating the number of neoplastic PCs in
any given sample by falsely including normal polyclonal terminal
stage PCs (3, 44, 49, 50). Finally, PCs clonality may be assessed by
evaluating the cytoplasmic immunoglobulin (CyIg)κ vs. CyIgλ
expression (44, 50, 51).

Consensus guidelines suggest a lower limit of detection
(LOD) for MRD in MM-BM of 0.001%, and ideally a limit of
quantification of 0.001%, which requires at least 3 × 106 and 5
× 106 BM cells to be measured, respectively (44, 49, 50).

REPRODUCIBILITY OF MFC-BASED
APPROACHES FOR MRD ASSESSMENT

Despite the major advantages of MFC in MRD detection
including, but not limited to, high-applicability, rapid turn-
around time, intrinsic quality control check, a lack of
requirement of patient baseline sample (differently from ASO-
RT-PCR and NGS), and cost-effectiveness, there are several
caveats for its applicability in clinics, including a lack of
reproducibility and lower sensitivity compared to molecular
techniques that identify patients with poor outcomes. Indeed,

MFC-MRD detection provides limited molecular information
about MM and, since performed on BM-PC, does not give any
information about extramedullary disease (52).

The most common variations that can increase the lack of
reproducibility among different groups include pre-processing
(the quantity and quality of red-cells lysis buffer) and the use
of fluorochromes conjugated to antibodies for each CD marker
with consequent different staining index (15). Some groups, for
example, prefer to avoid tandem dyes like APC-Cy7 and PE-Cy7,
that can degrade due to sample processing (e.g., light, fixation,
exposure to elevated temperatures) and, by emitting in the parent
dye detector (APC or PE), might lead to a false positive count
of events detectable in APC or PE channels. For this reason, the
EuroFlow panel recommends the employment of APC-H7 (from
BD Biosciences) instead of APC-Cy7.

An emerging issue in the field is the MRD monitoring
in patients treated with anti-CD38 therapy, since the antigen
masking. A group recently suggested modifying the EuroFlow
panel using CD138 instead of CD38 for BM-PC detection, in the
SRL-Flow panel (41). However, in SRL-Flow markers associated
with bad outcomes, including CXCR4, CD200, and CD56 are
omitted, and despite that the panel is cheaper than EuroFlow-
NGF, it is not currently recommended for MRD detection.

Since published studies used a different panel design,
fluorochrome conjugates, lysis reagents and sensitivity
thresholds, caution is required while comparing MRD results
deriving from longitudinally collected samples, as evaluated
by different laboratories, especially if unstandardized assays
have been employed: indeed very low levels of residual disease
(e.g., 10−5 or 10−6) are prone to be improperly quantified
(15, 41). For this reason, there are several attempts to standardize
FCM to improve MRD detection as required by current and
future clinical trials. In order to harmonize the use of any given
instrument (e.g., FACSCantoII or Navios) to obtain reliable MRD
values with at least 10−4 threshold (53), a further standardization
process and technological improvement is needed; indeed still
too much discrepancies are frequent at 2.5× 10−5 threshold (53)
or less.

To address the laboratories heterogeneity, in 2014 the College
of American Pathologists (CAP) suggested the inclusion of new
requirements, that each laboratory should include the limit
of detection (LOD) or the lower limit of enumeration for
flow-based MRD assays in the final diagnostic report, and to
document how an MRD assay’s LOD is measured (54). Similarly,
the International Clinical Cytometry Society (ICCS), European
Society for Clinical Cell Analysis (ESCCA), and the Euroflow
Consortium recommend the harmonized use of different
reagents, fluorochromes panels, sample processing, platforms,
LOD and data analysis, to improve the accuracy, sensitivity and
specificity of MFC-MRD detection in MM (15, 44, 50).

OPEN ISSUES OF MFC-BASED
TECHNOLOGIES FOR MRD ASSESSMENT

Several questions concerning the MFC-based MRD assessment
are still under investigation. First, the optimal sample source for
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FIGURE 3 | 6-8-10 color panels used in MFC/MRD detection.

MRD detection (BM vs. PB). Second, the frequency of assessment
and its longitudinal development, which usually includes post-
induction, third and 24th month post-transplant. Third, the
setting of patients, as most studies involved patients evaluated
after first induction and at different timepoints (within 24
months) post-transplant (55, 56). As expected, consolidation and
maintenance can further improve the depth of response and the
frequency of MRD negativity (23, 24, 56–58). However, patients,
who achieved MRD negativity sooner, have better outcomes, as
compared to those who became MRD-neg later, after ASCT (28).
Low MRD levels correlate to longer PFS, with progressive MRD
log-reduction at different timepoints (after either induction,
single or double ASCT) (55, 57). However, controversial results
have been reported in patients with unfavorable cytogenetic
risk, who might either benefit (57–59) or not (46) from MRD
negativity achievement (Supplementary Table 1) (60), even if
these results might be the consequence of different time of MRD
assessment. Indeed, in the MRC (Medical Research Council)
Myeloma IX trial, MFC-MRD negativity, as evaluated at day 100
after ASCT, but not after induction, predicted for longer PFS (58).
Of interest, the same study showed that approximately 1-year of
median OS benefit might be ascertained to each log of MRD level
reduction (61).

Fourth, technological efforts are still required to discriminate
normal from neoplastic PCs, with a sensitivity of at least 10−5.
Indeed, MRD levels between 10−4 and 10−5 and lower than
10−4, both equally and favorably affect patients’ outcome (26,
61). The introduction of second and third generation MFC
technologies, moving from 4- to 8-, or even to 10-colors panel
might considerably improve the sensitivity of MRD evaluation
(26, 61). Figure 3 summarizes the 9-10-colors, second-generation
MCF panels, more frequently employed in the context of large
clinical studies (e.g., clinical studies and/or retrospective real-life
surveys), which might even be implemented in the daily clinical
practice (41, 42, 62, 63).

MRD DETECTION BY CONVENTIONAL
MOLECULAR APPROACHES: ASO-PCR
AND qPCR

Polymerase Chain Reaction (PCR)-based MRD detection
identifies persistent tumor cells through the amplification
of the clonal immunoglobulin heavy-chain gene variable
region (VDJ-IgH) gene rearrangement. In the ASO-PCR
approach, an allele-specific oligonucleotide (ASO) primer,
complementary to a highly variable region such as IgVH
(complementary determinant regions, CDR) associated to
a consensus primer (frequently located within the joining
region) improved feasibility of the approach, achieving good
sensitivity (nearly 1 × 10−5). Nowadays, ASO-PCR is by
far the most widely used technique, either in a qualitative
(22) or in a quantitative way, if primers are coupled to a
fluorescent probe to monitor the amplification in real-time
assays (qRT-PCR) (64, 65).

The sensitivity of MRD detection of quantitative polymerase
chain reaction (qPCR) approach depends on several factors,
including the type of VDJ rearrangement, the dimension and
specificity of the junctional region and the amount of DNA
available for each reaction. Since MRD levels can be reliably
quantified when a relatively high number of pathological
cells is present, hemodilution or insufficient quantity of PCs
in the sample can limit the accuracy and feasibility of the
detection itself.

The high level of somatic hypermutations within the IgH-
CDR, both by causing variable levels of primer annealing
of consensus primers and by impairing the clonal detection
with unpredictable amplification and quantitation of results,
limits ASO-PCR applicability to almost half of patients (23,
64, 66, 67). However, with a better primer and probe selection
(66), or choosing targets other than VDJ-IgH such as kappa
deleted region (KDE) (67), it is possible to improve specificity,

Frontiers in Oncology | www.frontiersin.org 5 August 2019 | Volume 9 | Article 699

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Romano et al. MRD Detection in MM

TABLE 2 | Comparison between different techniques to detect MRD in MM-BM.

Multidimensional flow cytometry (phenotype detection) Molecular techniques (genotype detection)

First

generation

Second and third generation Second

generation

Third

generation

2008 EMN

consensus

(4–6 colors)

Euroflow (6

colors)

2016 ICCS

consensus (8

or more colors)

DURAClone RE

PC (9 colors)

MKSSC32 (10

colors)

ASO-qRT-PCR NGS

Number of cells required 20 × 106

leukocytes

2–5 × 106

leukocytes

5 × 106

leukocytes

20 × 106

leukocytes

500 ng, 1 × 106

PCs for triplicate

analysis

1,400 ng, 2 ×

106 PCs for

triplicate analysis

Theoretical LOD/LOQ 4 × 10e−3 4 × 10e−5/4 ×

10e−6
4 × 10e−4 8 × 10e−6 2 ×

10e−5
2 × 10e−5 (10 ×

106 cells staining

capacity)

10e−4 10e−5

Applicability (% cases) 95 99 95 99 99 50–90 80–90

Pre-treatment evaluation and

sample quality assurance

Required Not required Not required Not required Not required Required Required

Required sample at diagnosis NO NO NO NO NO YES YES

Required fresh sample YES YES YES YES YES NO NO

Turnaround 60–90min 60–90min 60–90min 60–90min 60–90min days days

Cost + ++ ++ ++ ++ + + + ++

Availability Widely available Specialized labs Intermediate Specialized labs

Harmonization YES (EMN) YES (EMN) YES

(ICCS/ESCCA)

Ongoing YES NO

EMN, European Myeloma Network; ASO-qRT-PCR, allele-specific oligonucleotide-quantitative polymerase chain reaction; PC, plasma cells; min, minutes; LOD, limit of detection; LOQ,

limit of quantitation.

sensitivity and applicability of ASO-PCR (Table 2). Overall, lack
of clonality detection, unsuccessful sequencing and suboptimal
PCR amplification are the most common drawbacks (64, 68).

Other qRT-PCR, different from IgH variable regions, such
as FGFR3, have been used in detection of MRD in MM with
promising results (69). Alternatively, the use of digital droplet
PCR (ddPCR) has been proposed and validated to evaluate MRD
in MM (70, 71) with results that were comparable to those
obtained with qRT-ASO-PCR and a greater applicability (71),
since in ddPCR a reference standard curve is not required to
quantitate the disease-related transcript.

MRD DETECTION BY NEXT GENERATION
SEQUENCING (NGS)

Next Generation Sequencing (NGS) technology allows the
processing of millions of sequence-reads in parallel, making this
high throughput the perfect tool for the development of NGS-
based assays for MRD detection. In fact, this technology is not
just used for covering broad genomic regions, but also for the
ultra-deep sequencing of small genomic regions, thus resulting
particularly convenient also for highly sensitive detection of
the MM-associated clonal rearrangements of the IgH gene,
the marker for molecular MRD evaluation. Indeed, the wide
complexity of the IgH gene locus on chromosome 14q32 is
much more manageable by NGS approaches, as compared to the
conventional Sanger sequencing (Table 2). In addition, NGS can
further simultaneously detect other Ig clonal markers, e.g., those
deriving from light chain rearrangements.

The most common NGS approach for Ig sequencing
is amplicon-based: it employs sets of multiple primers
targeting IgH-VDJH, IgHV-leader regions, IgH-DJH and
Igk rearrangements. Over the years, lot of efforts have
been devoted to optimizing primer design, as compared
to the originally employed BIOMED2 (72) ones, in order
to minimize off-target sequencing, which might represent
a major issue of deep sequencing experiments. Currently
available most employed primer sets are mainly included
in commercial kits and their exact genomic location has
not been released; the set-up of a more efficient Ig NGS
assay is currently also the goal of the EuroClonality NGS
consortium (www.EuroClonalityNGS.org), but technical
details have not yet been reported. After amplification, the Ig
library is deeply sequenced, to determine the frequencies of
myeloma-specific clone(s).

Another possible NGS approach is a capture-based assay: it
employs a hybridization panel of probes covering all coding V,
D and J genes of the Ig locus (73). Even if theoretically this
approach might provide a more realistic representation of the
Ig rearrangement, not affected by PCR amplification bias, it has
been less experimented, and few data are so far available with
this approach.

As for ASO-PCR, also for NGS approach the Ig detection
requires two subsequent main experimental phases: (1) the so-
called screening (or clonality ID test), aimed at the definition
of the patient-specific clonal rearrangement(s) characterizing
patients at diagnosis and (2) the actual MRD evaluation in
follow-up samples with low tumor burden.
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PITFALLS OF NGS-BASED APPROACHES
FOR MRD ASSESSMENT

The screening phase mostly benefit from the application of NGS,
since the nature itself of NGS data, by providing both qualitative
and quantitative information, allows accurate and sensitive
estimation of clonal size. By employing sequence alignment bio-
informatic tools, the frequency of identical sequence can be easily
assessed and clonality can be defined, commonly by setting an
arbitrary threshold at 5% frequency. This allows the definition
of a patient-specific marker in virtually all newly diagnosed MM
cases (74–76). In practice, even if the primer sets cover as wider
as possible the Ig locus, the Ig somatic hypermutation within the
targeted primer-binding sites still might remain the major pitfall,
by preventing the primer to bind effectively in a small subset of
myelomas. Another major issue at diagnosis is represented by
sample hemodilution, which might impair the detection of the
clonal rearrangements, as well.

On the other hand, even if in theory the MRD evaluation
in follow-up samples would be simplified by NGS technology,
several pitfalls still raise, mainly concerning the bio-informatic
analysis of sequencing data, as obtained in samples with very
low tumor burden. The goal is to recover the exact clonal
sequence as detected at diagnosis in the follow-up samples,
where it might be present at very low frequency. NGS-based
approaches are supposed to detect MRD levels below 10−5

(i.e., less than one myeloma cells out of 100,000 normal
cells). Nevertheless, since low frequency sequences needs to be
distinguished from the noise of the experimental background,
in order to be as much statistically confident as possible in
detecting the MRD sequence, enough input DNA needs to be
deep enough sequenced. To sequence a high number of samples,
multiple libraries are required, which is technically challenging
and, more importantly, quite expansive. The implementation of
some technical aspects (synthetic immune repertoire as internal
control and optimized PCR primers minimizing the impact of
somatic hyper-mutation on Ig amplification) and the use of
bio-informatic expedients, both represent the peculiarity of the
most commonly employed, commercially available NGS kit for
MRD assessment in MM (clonoSEQ R©, Adaptive Biotechnology),
which has actually overcome most of the technical pitfalls of
MRD evaluation by NGS. By employing the above-mentioned
kit, MRD results are commonly reported as “<10−6,” “from
10−6 to <10−5,” “from 10−5 to <10−4,” and “10−4 or
greater” (https://www.clonoseq.com/now-fda-cleared).

Despite its high performances, costs of this technology are
very high, and therefore inadequate for daily clinical patients’
management and even if no specific MRD recommendations
have been so far included in any international guidelines for the
daily management of MM patients, it might be predictable that
such recommendations will be suggested soon. Therefore, more
affordable NGS assays should be implemented in the clinical
practice, either by forsaking the objective of 10−6 sensitivity in
all evaluations, or by assessing MRD by less expansive, yet highly
sensitive technologies, such as ddPCR. This latter possibility
might be more realistic and easily applicable in the near future.

THE CLINICAL SETTING: ASO-PCR
VS. MFC

The applicability of MFC-MRD might be widely extended to
most MM patients, based on the use of standard disease-
associated markers. In contrast, quantitative real-time PCR
approaches are less applicable, basically due to their patient-
specific features. In addition, flow-MRD incorporate a quality
check for early identification of hemodilution in BM samples,
thus reducing the risk of false-negative MRD results. Thanks
to an increased sensitivity and the reduction of the “limits of
detection” (LOD) and of the “limits of quantification” (LLOQ),
flow-MRD is directly quantitative, whereas qPCR approaches, as
being calibrated to a standard curve, commonly have variable
LOD/LLOQ, according to IGHV variable region gene sequence
(49). However, in few studies, which compared side-by-side MCF
and qPCR, any clear advantage of one method over the other has
been highlighted.

A comparison of NGS, MFC and ASO-PCR MRD methods
has been carried out in 133MM patients in at least very
good partial response (VGPR) after front-line therapy, overall
showing high concordance between the MCF and ASO-PCR.
A longer time to tumor progression and overall survival were
observed in NGS-MRD-neg patients, as compared to those who
were MRD-pos, with the larger advantage in patients with a
deeper response, if patients were stratified by different levels of
MRD (74).

In a smaller study, including 22MM patients in at least
VGPR after VD-based induction followed by ASCT at different
timepoints, ASO-PCR and MFC identified MRD negativity with
75% concordance and both predict PFS at 48 months. Similarly,
MRD negativity assessment by ASO-RQ-PCR (sensitivity, 10−5)
and MFC (sensitivity, from 10−4 to 10−5) was highly concordant
in 73 patients from the RV-MM-EMN-441 and RV-MM-COOP-
0556 phase 3 trials who achieved at least a VGPR after
intensification/consolidation (24).

In 170 patients enrolled in three consecutive Spanish
trials achieving at least partial response after treatment, MFC
and ASO-RQ PCR showed a significant correlation in MRD
quantitation. Also, in this study, patients with <10−4 residual
tumor cells showed longer PFS compared with the rest. Among
patients who achieved at least VGPR, PCR discriminated two
risk groups with different PFS and OS (64). Due to high
technical demands, some authors suggest reserving ASO RQ-
PCR to patients in immunophenotypic remission (66). However,
in the pooled analysis of three large clinical trials of the
PETHEMA/GEM group, including 609 patients eligible or not
to ASCT, patients who were MRD-neg despite a persistent M-
component showed similar PFS and OS to patients with MRD-
neg disease in CR (19). This counterintuitive observation might
be ascribed to late serologic responders or false negatives by
MFC, due to persistent clonal PCs outside the BM or in a
BM area for which the sample obtained was not representative
(14). Consequently, MRD should be tested also in VGPR
patients, since the clearance of monoclonal component does not
overlap with MRD status (14, 28, 56, 58). On the other hand,
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MRD-negativity surpassed the impact of CR on PFS and OS
across the disease spectrum, regardless of the type of treatment or
patient risk group (77). In 460 myeloma patients, who achieved
CR and MRD negativity by MFC, MRD status could predict
response durability without any improvement in OS, probably
for the need of standardization at time of assessment (78) and
requirement of lower LOD.

Taken together, studies in the last years suggest that ASO-
PCR can reach a similar if not even superior sensitivity MFC
(23, 24, 64, 66, 70). Results are usually superimposable, especially
in MRD-pos cases, while in few samples, MRD-neg by MFC, it
is possible to find a PCR positivity (66) and when it is possible
reaching LOD 10−5 (24, 79). Low MRD levels obtained by the
molecular methods reported were always associated with a better
long term PFS and demonstrated that innovative (targeted) drugs
may reduce the tumor burden at unprecedentedly reached very
low, or even undetectable, levels (22). One of the PCR-based
methods advantages over MFC is that it allows the use of DNA
extracted from archival samples (such as BM smears), widening
the possibility to search for MRD in retrospective studies, or
when fresh or cryopreserved cells are not available. Indeed, using
archival material it has been possible to design clonotype-specific
primers in 60% of cases (80).

NGS IN THE CLINICAL SETTING

In MM, MRD has been evaluated by NGS mainly in the
context of clinical trials and most available data have been
produced using the clonoSEQ R© platform, previously known
as LymphoSight R© platform (Sequenta Inc., later acquired by
Adaptive Biotechnologies) (70, 74, 81). This technology, which
has been recently received the FDA approval for marketing
(82), is highly performant both for the definition of clonal
rearrangement at diagnosis (so called Clonality ID test) and
for a sensitive and specific MRD evaluation (10−6 guaranteed
sensitivity), thus perfectly responding to the clinical research
need for early regulatory surrogate end-points for drug approval.

Therefore, until now, only a few groups explored the clinical
relevance of MRD negativity by NGS, especially in patients who
received monoclonal antibodies as part of their treatment.

In the IFM DFCI trial, exploring the role of ASCT and
maintenance in newly diagnosed myeloma patients (224 of 366
patients at the start and 183 of 239 patients after completing
maintenance therapy) treated with lenalidomide, bortezomib,
and dexamethasone (RVD), NGS-MRD negativity (<10−6)
showed the importance of response depth in longer PFS and OS
(83). Differently from similar studies based on ASO-RT-PCR,
survival analyses, limited to the population of patients assessed
before and after maintenance therapy, showed a similar PFS
and OS either for patients who maintained MRD negativity at
both measurements, or for those who became MRD-neg after 12
months of maintenance (83). This could be due to the higher
sensitivity of NGS in identifying MRD-neg patients or to the
treatment itself. Moreover, even using lower LOD there is still a
significant proportion of patients that relapse despite MRD-neg
achievement, highlighting the high complexity of MM biology.

In the PETHEMA experience, the pooled analysis of NDMM
patients who achieved at least VGPR in the GEM 2000 and
GEM05MENOS65 trials, molecular response by deep sequencing
(corresponding to MRD negativity with the sensitivity <10−5),
was associated with significantly longer TTP and was the single
variable with statistical significance in the multivariate model for
TTP (74).

In 45 NDMM patients treated up-front with carfilzomib and
lenalidomide-based (KRd) induction followed by lenalidomide
maintenance confirmed the high-rate of MRD negativity
achievement (84), associated to longer PFS, also in a recent
update presented in abstract form (85). Emerging data from the
same group show that KRd therapy takes 6 cycles to achieveMRD
negativity (86).

In the setting of elderly newly diagnosedMMpatients enrolled
in the ALCYONE trial, there was>3-fold higherMRD-negativity
rate when daratumumab to VMP as a single agent as part of
maintenance, as presented by Dr. Mateos at the last ASH annual
meeting (87). Similar results have been obtained in the POLLUX
and CASTOR trials, in which daratumumab combined with
standard of care improved MRD-neg rates (88–90).

Since continuous improvement of sequencing technologies
will most likely reduce costs and processing times, NGS could
become soon a viable option for routine clinical practice for
prognostication and MRD detection in MM (91). In addition,
patients could also be stratified based on mutational load or
neoantigen load (92), with the advantage to look for new
mutations, with distinct effects on survival and tailored therapy
for each individual patient (8).

FUTURE DIRECTIONS IN MRD
ASSESSMENT: WITHIN THE BM ONLY?

MRD is recognized as the most important prognostic factor
in MM, independent from ISS disease stage, therapy, high-
risk cytogenetics (16, 30, 56), methodology (if able to reach a
sensitivity of at least 10−5). Some authors have proposed MRD
as a surrogate of outcome (PFS and OS) and a new endpoint
to achieve in MM treatment (93), at least in clinical trials
(77, 94), due to the long-term treatment and increased quantity
of high-quality responses with second and third-generation
of novel agents. On the contrary, others consider MRD as
prognostic factor for transplant-eligible newly diagnosed MM
patients (95), worth of standardization and harmonization before
to be largely applied in real life. Since currently available data
have shown prognostic impact but not correlation between
MRD and outcome, due to heterogeneous datasets (study
population, different treatments, different assays, and cut-off),
regulatory agencies still consider MRD as an intermediate
and not main endpoint for ongoing and future clinical trials.
Moreover, the heterogeneity of MM clinical course and patients
(e.g., newly diagnosed vs. relapsed/refractory, transplant eligible
vs. frail) and clinical costs suggest individualizing the MRD
assessment (95). To overcome these and other emerging pitfalls
in the wide applicability of MRD in clinical practice there are
several strategies: liquid biopsy, enumerating circulating tumor
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cells by MCF and the so-called immune positron emission
tomography (PET).

LIQUID BIOPSY AND NGS IN PERIPHERAL
BLOOD

NGS of IgH gene rearrangements is highly sensitive and
allows the identification of small residual sub-clonal populations
throughout the therapeutic treatment, which is not always
possible with MFC or PCR. However, the patchy pattern of BM
infiltration of MM can affect MRD-neg results, irrespectively of
the technique adopted.

Recently it has been suggested that the so-called “liquid
biopsy” might overcome this issue. Liquid biopsy is a non-
invasive strategy for monitoring disease dynamics through the
analysis of circulating cell-free tumor DNA (ctDNA), which is
the fraction of total cell-free DNA (cfDNA) fragments circulating
in the bloodstream that are derived from cancer cells. By
monitoring ctDNA, liquid biopsy might provide information
regarding the genetic landscape of cancer (96).

The role of liquid biopsy as a tool to detect residual cells in
PB of myeloma patients has been first evaluated by two pilot
studies, interrogating ctDNAbyNGS (72, 97). Both studies aimed
at investigating the IgH gene rearrangement within ctDNA, by
means of an amplicon-basedNGS approach based on BIOMED2-
FR1/-FR3 (IgH), -Ig kappa (IGk) or -Ig lambda (IGl) primer
pools, both at diagnosis and after treatment. This approach
proved quite successful at diagnosis, with almost 100% of
cases characterized, whereas it resulted overall controversial on
samples collected from patients in CR. Indeed, while Oberle et al.
showed a high rate of failure in IgH rearrangement detection
on ctDNA samples collected from patients in CR (18/27: 66% of
samples) (72), Biancon et al. was able to monitor the disease in
three time point throughout therapeutic treatment in all patients,
both in the BM aspirated and in the ctDNA, with a sensitivity
of <1 on 105 cells (97). In addition, authors demonstrated a
high correlation between the disease detection at study entry
by 8-color MFC and by ctDNA and the overall amount of
ctDNA at diagnosis was correlated to worse prognosis in term
of PFS (97).

More recently, another group explored the possibility to use
ctDNA to monitor MM disease by adopting the commercially
available clonoSEQ R© NGS kit for MRD assessment (Adaptive
Biotechnology) (98), yet still showing very low consistency
between results, as obtained from paired plasma and BM
samples (49%), especially in patients with very low disease
burden, resulting MRD-pos with BM and MRD-neg with
ctDNA samples. Therefore, with a negative predictive value of
36% and a positive predictive value of 89%, authors stated
that any correlation between ctDNA and BM for MRD by
IgH NGS-only might be highlighted in MM patients, thus
suggesting an overall inefficacy of this approach, as compared
to the standard one, to monitor MRD in MM patients (96).
However, this experimental plan did not take into account that
residual disease clearance might have different dynamics in the
liquid biopsy, as compared to the BM (99), thus impairing

the possibility to monitor residual disease reduction in PB
by the same timepoints as for MRD evaluation in the BM.
Moreover, other technical pitfalls concern the employed NGS
amplicon strategy, which targets DNA fragments longer than
ctDNA ones (on average around 160–180 bp long): indeed,
slightly different NGS strategies might be more sensitive, by
targeting shorter amplicons and by increasing the input amount
of ctDNA as well.

Overall, the possibility to monitor residual disease dynamics
by alternative, non-invasive assays such as liquid biopsy, even
if not yet fully exploited in MM, still seems relevant enough
to justify more efforts in solving technical issues. Indeed, it
has been demonstrated that, since ctDNA—by deriving from
different tumor cells—might recapitulate the genomic landscape
of tumor itself, the detection and monitoring of single nucleotide
variants (SNVs) in ctDNA might allow to extensively monitor
disease dynamics after therapy also in MM patients (99–101).
This approach proved even more sensitivity when more than
one target is monitored and analyzed with specific bio-informatic
tools, able to improve sensitivity for minute quantities of residual
disease (102). Therefore, once validated, the use of ctDNA, either
targeting IgH rearrangements and/or SNVs, might be integrated
in the conventional algorithm for MMmonitoring, together with
indirect immunobiochemical markers (i.e., monoclonal protein)
and imaging techniques (such as PET-CT or WB-MRI), thus
possibly contributing to the utmost definition of residual disease
dynamics in MM.

CIRCULATING TUMOR CELLS IN
PERIPHERAL BLOOD AND FUTURE
DIRECTIONS

Besides ctDNA, liquid biopsy conventionally includes circulating
tumor cells (CTCs), which might be released from BM to PB
due to several, not always recognized reasons (100). Biological
mechanisms inducing PCs to circulate might involve an
increasing independence from adhesion to the niche, suggesting
an association between the increment of CTCs and both the
risk of malignant transformation from MGUS to SMM to
symptomatic MM, and an inferior survival of symptomatic
newly-diagnosed and relapse/refractory MM with high levels of
CTCs (103, 104), as recently reviewed (105).

MFC might be efficiently employed to analyze CTC in
MM. By MFC, it has been shown that circulating neoplastic
PCs are mostly quiescent (arrested in the subG0-G1 phase of
the cell cycle), with a proliferation index (percentage of cells
in S-phase) significantly lower, as compared to that of their
BM counterpart, though with a peculiar clonogenic potential,
therefore possibly representing a unique subset of patient-paired
BM clonal PC (104, 106).

Under physiological conditions, long-living BM PCs
are not driven to circulate in PB; conversely, CTCs are
increased in monoclonal gammopathies, following a circadian
rhythm similar to CD34+ cells (104). The downregulation
of integrins (CD11a/CD11c/CD29/CD49d/CD49e), adhesion
(CD33/CD56/CD117/CD138), and activation molecules
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(CD28/CD38/CD81) typically characterizes circulating
neoplastic PCs (104, 107).

Recently, an automated assay (CELLSEARCH R©, Menarini
Silicon Biosystems Inc.) has been developed, able to isolate and
enumerate the CTCs from the PB of MM patients, based on the
expression of specific antigens (108). This technology showed
that in newly diagnosed MM, CTCs count correlated with other
clinical measures of disease burden at baseline and that it was
reduced after effective treatment.

Like ctDNA, CTCs might provide a simultaneous picture
of both medullary and extramedullary disease (106). Indeed,
in CR patients, MRD evaluation by employing two techniques
(MFC and imaging, either PET or MRI) proved a persistence
of spatially separated clones with residual focal lesions,
detectable in half of first-line patients, associated with shorter
PFS; therefore, double-negative and double-positive features
might be observed, associated with very good and bad PFS,
respectively (109).

CTCs might also be analyzed by molecular approaches (106,
110, 111) and therefore employed as biomarker of response to
therapy (72, 112).

Overall, by mirroring the entire heterogeneity of the tumor,
both ctDNA and CTCs might be used as diagnostic markers and
represent a promise for MM monitoring: being a non-invasive
procedure, liquid biopsy can provide a quick read-out of the
disease state and might complete the molecular profiling of the
tumor, as evaluated on BM PCs.

For the same reason, several groups are investigating imaging
as further tool for MRD detection out of BM. An interesting
technique could be the so-called immune-PET, which detects
targeting of specific antigen by therapeutic antibodies, combining
monoclonal antibodies and positron- to achieve optimal tumor-
to-background activity ratios, as recently reviewed (113). Even
if never tested in MM, this approach has been shown feasible
in metastatic breast cancer candidates to trastuzumab emtansine
(114). For example, an anti-CD38 or anti-BCMA immuno-
PET would allow measurement of target expression also in
extramedullary lesions, limiting misinterpretation due to spatial
heterogeneity and sub-clones branching.

CONCLUSIONS

Over the past 15 years, MM treatment has improved, thanks to
the progressive availability of novel classes of agents targeting
MM sub-clones in their BM microenvironment. These highly
active drugs, combined with each other, have determined a
dramatic increase in the rate and depth of response, up to the
level of MRD-negativity, as detected within “single-site” BM
aspirates, tested by highly performant MFC and/or molecular
biology techniques.

MRD negativity is currently considered as the most powerful
predictor of favorable long-term outcomes in MM and is likely
to represent the major driver of treatment strategies in the
near future.

Therefore, intense research is currently focused both on
improving the currently employed technology and on exploring
alternative methods for MRD testing in MM, major goal being
the development of easy, frequently repeatable and reliable
techniques, possibly able to recapitulate intra-clonal and spatial
heterogeneities characterizingMM, as well. Among others, liquid
biopsy represents one a most promising strategy to overcome the
shortcoming of BM sampling, potentially coupled with imaging
methods, in order to get the most holistic image of the disease
distribution, by exploring the disease dynamics both inside and
outside the BM.
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