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Growing evidence has demonstrated that epigenetic dysregulation is a common

pathological feature in human cancer cells. Global alterations in the epigenetic landscape

are prevalent in malignant cells across different solid tumors including, prostate cancer,

non-small-cell lung cancer, renal cell carcinoma, and in haemopoietic malignancy. In

particular, DNA hypomethylation and histone hypoacetylation have been observed in

acute myeloid leukemia (AML) patient blasts, with histone methylation being an emerging

area of study. Histone 3 lysine 9 trimethylation (H3K9me3) is a post-translational

modification known to be involved in the regulation of a broad range of biological

processes, including the formation of transcriptionally silent heterochromatin. Following

the observation of its aberrant methylation status in hematological malignancy and

several other cancer phenotypes, recent studies have associated H3K9me3 levels with

patient outcome and highlighted keymolecular mechanisms linking H3K9me3 profile with

AML etiology in a number of large-scale meta-analysis. Consequently, the development

and application of small molecule inhibitors which target the histone methyltransferases

or demethylase enzymes known to participate in the oncogenic regulation of H3K9me3 in

AML represents an advancing area of ongoing study. Here, we provide a comprehensive

review on how this particular epigenetic mark is regulated within cells and its emerging

role as a potential therapeutic target in AML, along with an update on the current research

into advancing the generation of more potent and selective inhibitors against known

H3K9 methyltransferases and demethylases.

Keywords: acutemyeloid leukemia (AML), Leukaemic stem cell (LSC), Histone 3 lysine 9 trimethylation (H3K9me3),

lysine specific demethylase (KDM), heterochromatin, gene suppression

BACKGROUND

The normal process of haematopoietic progression involves the differentiation and self-renewal of
haematopoietic stem cells (HSC), as a hierarchical tree the development and progression of blood
cells has become a model organism for the study of how the epigenetic landscape changes with cell
commitment and ultimately its involvement in cell fate decision making. The precisely controlled
expression of lineage specific genes is crucial for the proliferation and differentiation essential
for normal development, whereas aberrant transcriptional regulation can result in malignant
transformation and oncogenic progression.
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The regulation of gene transcription is a tightly controlled
process in which DNA associated with a number of transcription
factors and histone proteins forms the structure of chromatin,
each component playing a role in regulating the gene expression
landscape. Epigenetics concerns modification to the marks
associates with the DNA and histones which are not mutations
but rather alter the structure of the chromatin making genes
more or less accessible whilst also recruiting proteins which
serve to alter the chromatin structure and promote transcription
(1). In 1962, two decades after the coining of the epigenome
by Conrad Waddington in 1942 (2), histone methylation was
first postulated to be involved with gene expression (3). Over
50 years on and considerable progress has been made in
understanding the role of methylated histones. A collection
of studies within the first decade of the twenty-first century
presented a turning point for our understanding of histone
methylation, transforming it from a static histone modification
to a dynamic mark whose abundance could be externally altered.
Whilst the first methyltransferase SUV39H1 was identified at the
turn of the century (4) and hinted that histone methylation was
dynamic, it was arguably the subsequent discovery of the first
histone demethylase (5) that shifted our perspective of histone
methylation. This discovery revealed that the marks were not
permanent and paved the way for future studies concerning the
regulation of specific methylated histones and their impact on
normal tissue development and oncogenic transformation.

Acute Myeloid Leukemia (AML) is an aggressive
hematological malignancy characterized by disruption of
the normal process of haematopoietic progression involving
the differentiation and self-renewal of HSC. These lead to
the uncontrolled proliferation of dominant Leukaemic stem
cell (LSC) clones and the accumulation of immature myeloid
blasts. Originally AML was thought to progress through the
two-hit hypothesis in which the acquisition of a type 1 mutation
results in an increased rate of proliferation and resistance
to apoptosis in collaboration with a type 2 mutation which
blocks differentiation (6). With increasing understanding of the
epigenome, a third subgroup has been added featuring aberrant
epigenetic regulation (7). Genome-wide and candidate gene
association studies have highlighted mutations associated with
over 70% of de novo AML occurring in genes encoding for
epigenetic regulators (8–12), further highlighting the crucial role
that epigenetic modifications plays in hematological malignancy.

Moreover, in primary cell sample analysis on comparison of
AML samples with normal CD34+ stem and progenitor cells and
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of variegation, enhancer of zeste and trithorax; TGFβ, Transforming Growth

Factor beta; MECOM, MDS1 and EVI1 Complex Locus Protein; BCL11B, B-cell

lymphoma/leukemia 11B; HDAC, Histone Deacetylases; SETDB1, SET domain,

bifurcated 1; SETDB2, SET domain, bifurcated 2; MLL, Mixed Lineage Leukemia;
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white blood cells as controls, a preferential decrease in H3K9me3
at core promotor regions is observed in AML blasts, this
fundamentally has causal transcription factor changes recruiting
varying histone modifying enzymes and altering the chromatin
structure (13). Over 2000 loci differed between the sample
groups with ∼20% of these with a higher than 2-fold change.
Fundamentally the changes observed could be significantly
centered on the region from −300 to the transcriptional start
site and clearly allowed the separation of distinct sample groups
(13). By investigating how these enzymes become deregulated in
AML and identifying ways to target these, new avenues begin
to emerge for possible treatment options to complement the
mainstay chemotherapy strategy. In this review, we draw our
attention to one particular epigenetic mark, the trimethylation
of lysine 9 residues on histone 3 (H3K9me3) which is highly
regulated in the normal HSC differentiation and self-renewal
alongside the establishment of pre-LSCs (14). A wide range
of enzymes are involved in its establishment, recognition, and
removal, representing promising therapeutic targets in AML.

MAIN TEXT

Role of H3K9me3 in Normal
Haematopoiesis and Malignancy
H3K9me3 has a role not only in malignancy but in normal
cellular development, acting as a repressor of lineage
inappropriate genes and maintaining early cell integrity
and genomic stability. In the early 2000’s a number of groups
provided evidence of its importance in interacting with the
evolutionarily conserved amino terminal chromodomain
of heterochromatin protein 1 (HP1), a hallmark of
heterochromatin, thereby recruiting it to specific chromatin
loci (15–17). Heterochromatin is a unique form of chromatin
architecture defined as condensed and transcriptionally silent
(18). Crucially, HP1 can cause deposition of further H3K9me3
through the recruitment of the methyltransferase SUV39H1 (19)
leading to propagation of H3K9me3 across DNA and permitting
the establishment of large domains of heterochromatin
(20). Fundamental for cell integrity and maintenance, large
constitutive heterochromatin facilitated by H3K9me3 maintains
repetitive gene clusters and regulatory factors and prevents the
unwanted recombination and introduction of mutations. In
mouse models, reducing or knocking out the fundamental H3
methyltransferases cause lethality to the embryos at different
stages of development (21). By binding with HP1 protein,
H3K9me3 recruits further epigenetic modifications which
contribute to the maintenance of the heterochromatin (22).
However, in facilitative heterochromatin accessing the genes
is fundamental for the changing cellular landscape when the
cell is forced to adapt, for this reason the mark and subsequent
tightly bound heterochromatin must be closely regulated (23).
This has been explored through the use of several models
which detail the reactions kinetics (24, 25). To date, roles for
H3K9me3 have been discovered in regulating apoptosis (26, 27),
autophagy (28), development (29, 30), DNA repair (31–35),
splicing (36–38), self-renewal (39, 40), transcriptional elongation
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(41), viral latency (42–44), imprinting (45), aging (46), and cell
identity (47).

The role of H3K9me3 within cells is still being explored and
has proved to be multi-faceted and intricate in a wide-range
of cellular processes, which consequently highlight an extended
network ofmechanismswhich contribute to its accumulation and
subsequent genomic stability. H3K9me3 has been implicated in
recent years with the progression of pancreatic metastasis, with
the somatic mutation burden remaining primarily unchanged
within the metastasis a global change is observed in H3K9
methylation status giving a selective advantage and an increased
capacity to survive and resist treatment to the metastatic site (48).
In AML alterations of H3K9 methylation at promoter regions
are associated with an inactivation of tumor suppressor genes
and a blockage in differentiation and deregulated proliferation
(49, 50). Given the reversible nature of H3K9 trimethylation, this
represents an attractive therapeutic target in AML.

The Association of H3K9me3 With
Transcriptional Activation
The modifications of histones must not be thought of alone but
as a small part of a bigger picture of regulation. Chromatin is
not an open and closed book as once was thought but is subject
to a number of regulatory factors and enzymes which together
influence the outlook. Histone modifications can influence the
chromatin structure without direct chromatin access changes
(51).An alternative approach to investigating the histone code has
identified an opposing role for H3K9me3 in AML. Some evidence
postulates a role for H3K9me3 as associated with activation either
as a solo mark by selectively interacting with RNA polymerase
II to promote mRNA elongation and transcriptional activation
or through a specific histone code co-localizing on fundamental
genes with activating histone marks H3K9ac and H3K4me2
(52, 53). Similarly, H3K9me3’s binding capacity for HP1 can
also be questioned as to its mechanism and consequence. HP1
protein exists in three forms α,β, and γ. By binding the α and β

subtypes the classical heterochromatin transcriptional repression
phenotype is observed but when the mark can be co-localized
with the third form HP1γ with 1 kb of the transcriptional
start site (TSS) there is RNA polymerase II induced mRNA
elongation promoting gene activation which is rapidly lost upon
transcriptional termination. This is most clearly seen during
the constitutive expression of GAPDH observed with a firm
H3K9me3 HP1γ binding phenotype at its TSS (41).

Regulatory Mechanisms of H3K9me3
The dynamic nature of H3K9me3 highlights the number of
enzymes which are involved in its regulation. A tightly controlled
collection of readers, writers, and erasers of this histone mark
establish and maintain transcriptional landscape however small
changes in these enzymes can also consequently contribute to
disease (Figure 1; Table 1).

Writers of H3K9me3 Modifications

SUV39H1

SUV39H1 and SUV39H2 were the earliest methyltransferases
identified. Of initial interest due to their respective homologs

in model organisms, D. melanogaster and S. pombe, being
associated with position effect variegation (PEV) which leads
to the relocation of genes into regions of heterochromatin
and subsequent transcriptional silencing. Sharing a 59%
sequence identity, belonging to the Su (var) gene family and
specifically methylating H3K9 (4, 84), these methyltransferases
possess two evolutionarily conserved domains, the N-terminal
chromo domain (CD) and the C-terminal suppressor of
variegation, enhancer of zeste and trithorax (SET) domain.
The methyltransferase catalytic activity of the SET domain
was elucidated using an in vitro systematic approach, whereby
truncated versions of SUV39H1 were tested to observe which
conserved regions were required to successfully methylate
free histone. This approach also identified H3K9 as the
transferases main substrate (4), other studies have shown that
by genetically reducing the levels of SUV39H1 there is an
observed decrease in global H3K9 methylation (85, 86). Opposed
to this but still fundamental for activity the N terminus
chromodomain facilitates recruitment of the transferases by
binding trimethylated H3K9 and allows the establishment of
broad heterochromatin domains due to the successive local
spreading of H3K9me3 (25). Interestingly, the spreading mode
of H3K9me3 due to SUV39H1 has been explored further,
utilizing innovative in vitro synthetic chromatin which closely
resembles natural chromatin demonstrating that SUV39H1 first
binds its target H3K9 and then engages with the chromatin
through a second zinc finger like-domain which acts to enhance
its catalytic activity (87). Shirai et al. have also revealed that
the CD of SUV39H1 is able to efficiently bind RNA in an
H3K9me3 independent manner and that this contributes to
efficient recruitment to chromatin (20, 88).

Alongside its role in normal stability SUV39H1 was also the
first histone lysine methyltransferase to have its role in AML
pathology characterized. One major pathway implicated in the
progression of AML and a significant pathway in the regulatory
function of SUV39H1 is the acquired resistance to Transforming
Growth Factor beta (TGFβ). TGFβ is a signaling pathway
frequently deregulated in haematopoietic malignancies with
anti-proliferative and differentiation signaling demonstrated to
directly arrest growth and inhibit colony formation in the
leukaemic stem cell population. Thought to be due to a reduction
in receptors on the cell surface as opposed to a mutation,
resistance to TGFβ signaling is commonly observed in AML
phenotypes (54, 89, 90). MDS1 and EVI1 Complex Locus Protein
(MECOM), a potent proto-oncogene known to be involved in
stem cell self-renewal and leukaemogenesis physically interacts
with the SUV39H1 histone methyltransferase and has been
implicated in disease progression of AML in around 5% of
cases and its expression negatively correlates with survival in
AML. Despite EVI1 not being essential for the methylation
functions of the SUV39H1 molecules, this co-localization is
necessary for transcriptional repression of the TGFβ pathway
associated with the EVI1 AML phenotype. Similarly, the activity
of EVI1 requires co-activation of the HOXA9 gene to drive
leukaemogenesis, a gene which has been investigated with respect
to the demethylase enzyme family and target genes (57–60).
Targets of the TGFβ pathways are frequently deregulated in AML.
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FIGURE 1 | Schematic depicting the current paradigm of H3K9me3 regulation and its influence on transcription by the antagonistic activity of various histone lysine

methyltransferases and the KDM4 family of histone lysine specific demethylases ©Created with Biorender.com.

TABLE 1 | Representative summary of enzymes involved in the regulation of H3K9 methylaton—their target state, function, and role in the development of disease.

Enzyme Role Target

SUV39H1 Methyltransferase H3K9me3 Relocation of genes into heterochromatin and transcriptional silencing (4)

Involved with resistance to TGFβ signaling in AML (54)

Deregulation of direct TGFβ targets p21 and p15—inhibiting cell cycle arrest through constitutive

H3K9me3 (55, 56)

Physical Interaction with proto—oncogenes (57–60)

Creates a binding site for HP1 gene silencing, also allowing DNA methylation (61)

SETDB1/2 Methyltransferase H3K9me3 Major role in preventing immune presentation through heterochromatin formation—allowing evasion

of immune response (62–65)

Functions through PAF 1 pathway regulating fundamental leukaemogenesis genes via Wnt

Signaling (66)

KDM4 Demethylase H3K9me3 Direct role to disrupt the cellular proliferation equilibrium, genomic instability and replication

acceleration due to an increased accessibility to chromatin, risking the introduction of further

mutations (67–69). Indirect disruption due to downstream targets of aberrant methylation for

examples I3ra and JAK Stat pathway (69, 70)

PRC Complex Reader Complex H3K9me2/3 Involved in reading and regulation of epigenetic modification, depletion of members of the complex

result in overall decrease in H3K9me3 and a subsequent relocation and change in HP1 stability (71)

UHRF1 Regulator H3K9me

1/2/3

Regulates the interaction of H3K9 methylation modifications with DNA methylation

G9a/GLP Methyltransferase H3K9me2 Involved in transcriptional silencing, essential for embryonic development, and restriction of lineage

during haematopoietic development

LSD1 Demethylase H3K9me3 Known to demethylate H3K9me3 in an androgen receptor mediated manner, identified in androgen

dependent prostate cancer affecting transcription. Also has known interactions with fundamental

demethylases KDM4B/C (72–77)

PRDM Family Methyltransferase H3K9me2 Varying roles both directly and indirectly mainly against H3K9me2 through the G9a mediated

pathway. PRDM9 functions during meiosis to identify and recruit methyltransferases during double

strand break repair (78–81). PRDM14 and PRMD2 function in an indirect manner whilst PRDM8 has

a methyltransferase activity identified (82, 83)

For example, p15 and p21, major tumor suppressors and targets
of TGFβ are silenced in AML by pathways involving SUV39H1,
giving the leukaemic cells an advantage to proliferate. The gene
repression of p15 locus observed in AML is reliant upon several
differential epigenetic marks. Aberrant di-methylation of H3K9
on the promoter region of p15 in AML is dependent upon DNA

methylation at the promoter region and a specific acetylation
pattern on H3K9. A constitutive level of H3K9me3 is required
to repress p15 and establish an AML phenotype.

Similarly, an aberrant epigenetic regulation landscape is
observed in AML when the expression of p21 is altered,
through the action of SUV39H1. Although not carried out on
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haematopoietic cell lines, Cherrier et al. studied the interaction of
SUV39H1 with CTIP2 also known as B-cell lymphoma/leukemia
11B (BCL11B). By increasing H3K9me3 so reducing p21 gene
expression, this SUV39H1/CTIP2 complex allows proliferation
of leukaemic cells and their failure to undergo apoptosis. BCL11B
has been shown to be aberrantly expressed in AML (91, 92).
By inhibiting the SUV39H1 induced H3K9me3, p21 facilitated
cell cycle arrest can be initiated. p15 and p21 post-translational
histone modifications can be restored to normal using an
SUV39H1 inhibitor such as chaetocin, which will be discussed
in more detail later in this review (55, 56, 61, 93). SUV39H1
dependent methylation of H3K9 creates an enhanced binding
site for the HP1 protein, a known gene silencing and enhanced
heterochromatin associated protein. This results in an inhibition
of gene transcription (61, 94). By creating a complex together,
they have been shown to interact with DNA methyltransferases,
specifically DMNT3. Originally identified in D. melanogaster
(95) loss of specific DNA methylation genes elicit a dual role
as H3K9 methylation was also reduced. By investigating the
interactions of DNMT and HMT with the HP1 further, a larger
network of epigenetic regulation begins to unfold. For example
in AML a large crosstalk between epigenetic regulators develops,
methylation of H3K9 creates a binding site for HP1 which
allows the recruitment of DNMT catalyzing DNA methylation
recruiting methyl-CpG-binding proteins which create a location
for Histone Deacetylases (HDACs), priming H3K9 sites for
methylation (96).

SETDB1/2

SET domain, bifurcated 1 (SETDB1) and SET domain, bifurcated
2 (SETDB2) represent a second family of methyltransferases
(97, 98) that specifically target H3K9. They were named after
the observation of an intervening 347 amino acid sequence
that splits their SET domains (99). These proteins unlike
SUV39H family lack a CD, instead possessing methyl-CpG
binding domains with SETDB1 additionally possessing a triple
Tudor domain (3TD), the function of which has recently
been elucidated by crystallographic studies. Revealed to bind
a novel bivalent chromatin state defined by H3K9me1/2 and
K14ac it subsequently mediates the trimethylation of H3K9
(62). Overexpressed in several cancer phenotypes SETDB1 is
necessary for the survival of over 70% of tested AML cell
lines. By knocking down SETDB1, AML cells will apoptose
via the removal of H3K9me3 on transposable elements, their
subsequent expression, and the induction of the interferon
immune response identifying it as a fundamental leukaemic cell
survival protein (63). One of the major contributing factors of
histone methyltransferases in the development of a leukaemic
phenotype is their interaction to allow the evasion of the
immune system response. Through increasing H3K9me3 at
select retrotransposon sites SETDB1 increases the formation
of heterochromatin preventing immune presentation allowing
leukaemic cells to evade the immune response (63–65). A
recently published paper elucidated a role for SETDB1 in
the regulation of H3K9me3 through the PAF1 gene known
to be associated with histone methylation in Mixed Lineage
Leukemia (MLL). By physically interacting withMLL, PAF1 plays

a role in regulating fundamental leukaemogenesis genes, for
example MEIS1 and the previously described HOXA9. Through
critically regulating the Wnt/β-catenin pathway samples with
high SETDB1 levels showed a significant reduction in both
MEIS1 and HOXA9 by regulating and increasing the silencing
associated with the H3K9me3 mark on these specific oncogenic
gene promotors (66). Loss of SETDB1 has been identified to cause
the differentiation of cells in the embryonic lineage (21).

Erasers of H3K9me3 Modifications: KDM4 Family of

Histone Demethylases
At the same time as the methyltransferase enzymes were being
investigated, three independent research groups provided insight
into the α-ketoglutarate (α-KG), Fe2+, and O2 dependent
lysine-specific demethylase 4 (KDM4) JmjC-domain containing
demethylase family of proteins, whose catalytic activity reverses
the H3K9me3 mark (100–102). Although their function was
first characterized by these landmark studies, the KDM4
family was initially described in silico showing the family to
be composed of six members (KDM4A-F), four functional
members with KDM4E/F hypothesized as pseudo-genes. Each
member ubiquitously possesses the JmjC and JmjN domains
with KDM4A-C having an additional two Tudor domains (103).
KDM4 proteins utilize a distinct hydroxylation chemistry to
demethylate H3K9me3 unlike previously identified demethylases
such as KDM1A which use a FAD-dependent amine reaction,
making their targets mono/di methylated and preventing them
from removing the trimethyl marks.

The structural disparity between the KDM4 members has
functional consequences. For example, whilst the KDM4A-
C proteins primarily function to demethylate trimethylated
H3K9, KDM4D also efficiently demethylates H3K9me2 (104).
To discern the essential amino acids and domains of the KDM4
family that are required for their catalytic activity, numerous
site-directed mutagenic (105–107) and protein-truncation (102)
strategies have been employed. These primarily concern KDM4A
and have shown that both the JmjC and JmjN domains are
required for demethylation, whereas the plant homeodomain
and Tudor domains are not obviously necessary for catalytic
activity and are thought to primarily facilitate recruitment and
adhesion to specific chromatin loci to remove H3K9me3. For
example, crystallographic studies have offered insight concerning
the molecular mechanisms of KDM4 proteins and revealed key
amino acid residues that determine substrate specificity in the
catalytic site of KDM4A which interacts with H3K9me3 (106,
108, 109). Recent work has also shown that the tandem Tudor
domain of KDM4C can also bind to H3K4me3 and that this
interaction acts to enhance the demethylation of H3K9me3 on
the same histone tail, owing to an increased affinity for the
mark (110). Another important characteristic recently uncovered
is the ability of KDM4A to function as an oxygen detector,
restricting H3K9me3 demethylation in hypoxic conditions (111,
112). An unexplored feature of this family is their capability
to form homodimers and heterodimers between themselves
and the impact this has upon their regulation of H3K9me3.
Initial work using a reporter construct suggests that heterodimer
formation can synergise or neutralize the transcriptional impact
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of these proteins at specific gene targets depending on the dimer
composition, for example KDM4C and KDM4D heterodimers
can synergise to promote higher expression of target genes (104).

Importantly, the KDM4 subfamily is commonly
overexpressed in human cancers disrupting the equilibrium
of cellular proliferation (67). Given the role of the KDM4
family in demethylating trimethylated H3K9 and the distinct
deregulation known for this mark in AML, it is necessary to
fully investigate their mechanisms in leukaemogenesis (68).
KDM4A has been associated with genomic instability resulting
in accelerated replication due to the increase in chromatin
accessibility and hence the possibility for the introduction of
DNA replication errors to further progress disease (69). It has
been investigated and implicated in the disease progression
of several cancers via alternative pathways (39, 113–115).
Upon knock-out of the KDM4 family (KDM4A-C) a decreased
proliferation and colony forming potential of MLL-AF9
leukaemic cells was observed with prolonged survival of murine
models (70). ChIP sequencing analysis upon knocking down
the KDM4 family members identified thousands of regions
which were indicative of KDM4A binding sides, of which 77%
were within 1 kb of transcriptional start sites (TSS). A number
of these sites show largely increased H3K9 methylation upon
deletion of KDM4A-C and localization to sites which are positive
for H3K4, demonstrating the crosstalk between modifications.
A large amount of transcriptional changes were subsequently
observed with 55 genes being up-regulated and 94 genes being
down-regulated, with approximately half being associated with
binding sides of the KDM4 family (70, 116). The molecular
mechanisms elucidated to date in AML suggest KDM4A has
roles both directly, dependent on its demethylase activity,
and indirectly, through downstream targets of its methylation
changes, in oncogenesis. In MLL-AF9 driven leukemia KDM4A
has been demonstrated to be involved in the proliferation of
leukaemic cells via the aberrant demethylation of the TSS region
of l3ra (cd123), the α subunit of the heterodimeric IL-3 receptor
that, together with the β subunit (IL3 receptor β), forms a
functional high-affinity receptor. Subsequent upregulation of
downstream targets and the activation of the Janus Kinase/Signal
Transducer and Activator of Transcription (JAK/STAT) pathway
drive proliferation (69, 70, 117).

Readers of H3K9me3 Modifications
Writers and erasers of histone modifications functions are not
exclusive, alongside their dynamic control of the mark they
also have a unique and highly controlled feedback system
by which they recognize and read the marks to allow for
changes in the system to be identified, altered and maintained.
H3K9me3 can be read by a number of domains, the PhD
and Tudor domains function in the demethylases and the
chromo domain which has previously been described in the SUV
family of methyltransferases. Others will also contain ankyrin
repeats or MBT domains allow them to read and regulate
their own function (118). Whilst the core regulatory apparatus
governing H3K9me3 levels is composed of methyltransferases
and demethylases, another layer of control exists to permit
greater flexibility in H3K9me3 regulation. For example, many

proteins which belong to the Polycomb Repressive Complexes
(PRC) have been implicated in regulating H3K9me3. Depletion
of SUZ12, an essential member of the PRC2 complex results
in an EZH2-independent simultaneous decrease in overall
H3K27me3 and H3K9me3 levels and results in relocation of
the HP1α isoform. Whilst the exact mechanism is still elusive,
given their localization and demonstrated in vitro (cell line)
interactions, SUZ12 is thought to stimulate SUV39H1 activity
or be involved with either HP1α recruitment or stability (71).
In addition, CBX7, a member of the PRC1 complex has also
been shown to play a role in the stability of H3K9me3 at
specific loci in a molecular mechanism requiring SUV39H2
recruitment (119).

Complex Regulatory Network
Despite the physical accessibility of the histone modification
site being essential, nucleosome occupancy has been identified
as a key player in influencing the histone modifications and
the complex network of crosstalk they employ to control
gene expression and maintain cell identity (51). Transcriptional
activation requires both the addition of post-translational marks
which promote activation and the removal of post-translational
marks which induce repression. A number of enzymes work
together to achieve this, each requiring the other to gain the
desired effect (120). For example, in AML the protein arginine
methyltransferases PRMT4/5 are commonly overexpressed and
contribute to the blockage in myeloid differentiation. PRMT1 is
a necessary member of the MLL transcriptional complex (116),
whilst PRMT6 inhibits the action of MLL to methylate H3K4.
Similarly, acetylation of histone complexes (histone acetylates
(HATs) have known interactions with the methylation of H3K9
(121). TIP60, which is reduced in AML, has a tumor suppressor
role through its recognition of H3K9me3 through the activation
of ATMkinase signaling andDNAdamage checkpoint activation;
it also interacts with p53 protein to initiate apoptosis of damaged
cells (122). Similarly competing evidence has been published on
the role of H3K9me3 in the establishment and maintenance of
specific DNA methylation patterns (123). Originally identified in
plant species trimethylation of H3K9 has been shown to directly
affect cellular DNA methylation. DNA methylation is governed
by two main families of enzymes, Methyl CpG-binding (MBD)
family and BR-C, ttk and bab (BTB)/Pox virus and Zinc finger
(POZ) family proteins, however these families do not exclusively
interact with DNA methylation but also through histone
modifications such as histone methylation and acetylation (123).
One mechanism of this interaction involves HP1 binding leading
to the recruitment of DNA methyltransferases adding a new
layer of epigenetic control to the story. HP1 specifically binds
during the cell cycle interacting specifically with H3K9me3
recruiting the DNA methyltransferases. During mitosis the
binding with HP1 is displaced by the phosphorylation of H3
interrupting the mechanism of DNA methylation (REF 105). A
more recent discovery of the ubiquitin-like, PHD, and RING
finger containing 1 protein (UHRF1), found a more significant
connection between histone methylation and DNA methylation
with each reliant on the other for normal function (124).
Similarly to the KDM4A family UHRF1 has a Tudor and
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Plant Homeodomain (PhD) with the former being responsible
for binding the histone methyl marks. However, unlike the
histone demethylase family UHRF1 has a secondary binding site
specific for hypomethylated DNA foci (125). UHRF1 association
with methylated H3K9me3 is required for DNA methylation
maintenance binding hemimethylatedDNAduring S phase at the
replication fork and recruiting DNA methyltransferases (124).
Mutants of UHRF1 which are selectively unable to bind H3K9
methylation or hemi-mCpG, but not both, show a partial defect
in heterochromatin, and an ability to bind DNMT1 with a partial
rescue of DNA methylation showing that these functions are
not mutually exclusive rather that sequence and modification
state of DNA can play a part in histone modifications and vice
versa (123, 125). These marks must all work together to hold the
cell in a homeostatic position; evidence has shown that in AML
these mechanisms lose their control and deregulation leads to the
phenotype of disease (118).

H3K9me3 is the most prominent and fundamental
component to the epigenomic outlook of AML however it
is not the only form of histone methylation shown to have
influence on the epigenomic and genomic landscapes in AML
and other cancer phenotypes. H3K9me3 methyltransferases and
demethylases have been shown to form a larger complex and
both individually and interdependently influence the epigenetic
landscape SETDB1 and SUV39H1 both discussed form a
complex with di- and mono-methylase proteins G9A and GLP.
In this manner all three forms of H3K9 methylation ultimately
rely on the others for maintenance (126). Dimethylation of
H3K9 has a major role in transcriptional control and is shown
to be erased from tumor suppressors following successful
treatment. Specifically in AML large sections of H3K9me2
are hypothesized to promote chromosome instability and
mutagenesis changing transcription and silencing tumor
suppressors (127). G9a/GLP heteromeric complex is essential
for mammalian H3K9 methylation, specifically mono- and
di-methylation. With aberrant gene expression following genetic
knockdown of both or either of these genes they are hypothesized
to be involved in transcriptional silencing (128). The complex is
essential for embryonic cell development, lineage commitment,
and restriction of reprogramming with spreading H3K9me2
observed during haematopoietic cell lineage development
(129, 130). Inhibition of G9a/GLP reduces differentiation,
promotes stem cell characteristics delaying disease and reducing
LSC frequency via the leukaemic transcription factor HOXA9,
implicating a crossover role with the output of H3K9me3 on
HOX genes (131, 132).

A related phenomenon within the histone methylation story
involves LSD1. LSD1 is a demethylase commonly associated with
the demethylation of the activating mark of H3K4 methylation,
despite this an alternative role has been postulated for its role in
the demethylation of H3K9me3 (72). In the presence of androgen
specific receptors LSD1’s function alters to selectively control
H3K9 methylation resulting in gene repression of androgen
specific markers (73, 74).

Originally identified in normal and cancerous prostate cells,
LSD1 interacts with androgen nuclear receptor and stimulates
androgen receptor dependent transcription via its interaction

with a number of factors which together, both as direct
effectors or in a combinational manner contribute to the altered
transcriptional outlook of disease (75).

Therefore, depending on its associated co-factor LSD1 can
either be involved in activation accessibility to chromatin
or as a repressive. Similarly this functions in a reciprocal
manner, by inhibiting the function of LSD1 in androgen
receptor dependent phenotype androgen receptor binding
is altered (76). The direct mechanism of this ability
to influence the substrate specificity of LSD1 is largely
unknown however roles have been postulated for other
post translational modifications such as phosphorylation and
protein kinases. Similarly a dual interaction has been identified
of LSD1 with KDM4C in an androgen receptor mediated
system (77).

At a higher level than direct methylation of H3K9, many of
the histone modification enzymes are under a form of regulation
by the PRDM family of proteins. Themselves with varying
known roles in maintaining H3K4 and H3K36 methylation
they are thought to recruit intrinsic histone methyltransferases
and demethylases to H3K9 influencing methylation status (82).
Containing a similar domain to the SET domain conserved
within the demethylase family known as PR domain, they interact
with H3K9 methylation with varying effects. A few members
have been postulated to have roles either directly or indirectly
(133). PRDM9 with its main role in the identification and
tethering of recombination hotspots during meiosis, binds and
recruits other proteins into a multi-protein complex interacting
with G9A, previously described as a H3K9me2 methyltransferase
and CDYL a reader of the di methyl mark (78–82). PRDM2
is one of few members which have an identified histone
methyltransferase activity and is known to work in an estrogen
activation dependent manner mediating promotor repression via
H3K9 methylation (82). Again PRDM14 functions in a pathway
through the G9a protein in early stem cell and embryonic
development and has a role not only in H3K9me2 maintenance
but also H3K27me3 levels hypothesized to have a role in AML
(82). In contrast to this indirect method PRDM8 is thought
to have an intrinsic methyltransferase activity in mouse tissue
but the function of the human homolog has not been widely
explored (82, 83).

Thus, elucidating the regulatory mechanisms contributing
to the multifaceted role of H3K9me3 in hematological
malignancies will provide insights in aid of novel anti-leukaemic
therapy development.

Therapeutic Relevance of H3K9
Methylation and Its Regulators in AML
H3K9 Methylation Status Can Determine Survival in

AML
In AML, specific histone methylome patterns owing to the
deregulation of histone methyltransferases and demethylases
bring with them a phenotype of disease, this could prove to be key
in assessing patient’s outcome and treatment regime (69, 134).
Recent work has been carried out with the aim of improving
the current prognostic diagnosis of AML via the incorporation
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FIGURE 2 | Potent epigenetic inhibitors targeting H3K9 modifying enzymes—including SUV39H1/2 (1), G9a (2–6), SETDB1 (7–12), and KDMs (13–21). Compound

structures are numbered according to Table 2 and throughout the text.

of both epigenetic factors and genetic markers (135). In terms
of histone methylation, it has been determined that global
epigenome changes can refine the disease classification system in
a large cohort of AML patients. Over 2000 genomic loci, around
453 promoters were found to have differential expression owing
to changes in H3K9me3. It was then further investigated if these
changes could distinguish the cell’s origin and if a signature of
histonemodifications could effectively predict the outcome of the
disease. By comparing AML to Acute Lymphoblastic Leukemia
(ALL) and normal white blood cell (WBC) populations it was
found that independent of karyotype, age or mutation status,
promoter H3K9me3 levels correlated with the outcome of the
disease in >70% of cases (13).

H3K9 Methylation Regulators as Potential

Therapeutic Targets in AML
A better understanding of the regulatory pathways which
govern this dynamic mark has continuously proven to be key
in the precise selection of fundamental functional targets.
The increasing importance of post translational regulatory
proteins highlight them as potential therapeutically targets.
Lysine-methylation and other modifications are complex
networks which will take significant time to completely reveal
its mechanisms (136). However, a number of studies and
groups both industrial and academic are currently focused on

collaborating to develop synthetic, organic and peptidomimetric
chemistry to produce a wide variety of inhibitors that are capable
of targeting epigenetic regulating enzymes. While great progress
is being made, selectivity remains a significant challenge.

Inhibitors of Writers of H3K9 Methylation as Novel

Therapeutic Agents1

Originally, Chaetocin 1 (Figure 2; Table 2) was reported as the
first specific inhibitor for SUV39H1/H2, with an IC50 of 0.8 uM
(61, 138). However, follow-up studies showed that this inhibition
was non-specific and time-dependent, therefore, Chaetocin was
unsuitable to act as a selective chemical probe for histone
lysine methyl transferases (139, 140, 143). Most current drug
developments involve targeting G9a including competition with
the S-adenosylmethionine (SAM) cofactor for example inhibitor
BRD4770 2 (144). It is postulated that G9a/GLP, SUV39H1, and
SETDB1 coexist in the same multi-protein complex together
with other post-translational modifying proteins. Having an
interdependency on one another knockdown or inhibition of
SUV39H1 has the ability to not only also destabilize the
G9a,GLP, and SETDB1 proteins but also affect the downstream
targets of these proteins independently with a causal effect in
histone methylase levels and activity (126). High throughput
screening of over 125,000 compounds identified BIX01294 3,
one of only seven compounds which showed any efficacy via
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TABLE 2 | Overview of aAssay as described by Eskeland et al. (137) bAlphaLISA assay detecting H3K9 methylation.

Entry Name Therapeutic target IC50[ref](µM) EC50[ref](µM) Cell-line

1 Chaetocin SUV39H1/2 0.8 (117)a, 0.11 (118)b

G9a 2.5 (71)b, 7.2 (134)b

2 BRD4770 G9a 6.3 (126)h

3 BIX01294 G9a 0.018 0.0166 (135)c NCl-H1437

GLP 0.034 0.0147 (135)c NCl-H1395e

4 UNC0321 G9a <0.015 0.042 – 0.101 (138)c A549d

GLP 0.28 ± 0.11 (139)f

5 UN0638 G9a <0.015 e

GLP 0.019 ± 1

6 UNC0642 G9a <0.0025 8.7 ± 0.37 (139)e A549

GLP

7 MTM SETDB1 0.0166 (135)c NCl-H1437

0.0147 (135)c NCl-H1395d

8 MTM SDK SETDB1 0.107–0.311(136) e

0.024–0.089 (138)c

9 MTM SK SETDB1 0.042–0.101 (138)c e

0.28 ± 0.11 (139)f A549

10 MTM SD SETDB1 8.7 ± 0.37 (139)e A549

11 DZNep SETDB1 ∼ 10 (122)c H1299

A549

H460

12 Paclitaxel SETDB1 0.0025–0.0075 (140) g

13 PDCA KDM4A

KDM4E

0.7 (132)i

1.4 (132)i

KDM4A 0.445 ± 0.03 (72)j

14 JIB-04 KDM4B 0.435 ± 0.07 (72)j

KDM4C 1.1 ± 0.2 (72)j

KDM4E 0.34 ± 0.05 (72)j

15 NSC636819 KDM4A 6.4 (73)i 16.5 (73)c LNCaP

KDM4B 9.3 (73)i

KDM4A 2.0 (77)i 86 (82)k HeLa

16 IOX1 KDM4C 0.6 (82)l

KDM4D 0.2 (82)l

KDM4E 0.3 (82)l

17 Octyl – 8 –Hydroquinoline- 5 - Carboxylate KDM4C 3.9 (133)l 3.8 (133)c HeLa

KDM4E 45.0 (133)l

18 B3 KDM4B ∼ 0.01 (78)m 0.04 (78)c PC3

19 8-(1H pyrazol−3- yl)pyrido[3,4d]pyrimidin–

4(3H)-one

KDM4A 0.08 ± 0.042 (79)l

KDM4B 0.017 ± 0.002 (79)l

KDM4A 42 (80)m

KDM4B 33 (80)m

20 CP2 KDM4C 39 (80)m

KDM4D 6,270 (80)m

KDM4E 9,200 (80)m

21 QC6352 KDM4C 0.035 ± 8 0.0035 ± 1

cMTT assay. dWST1 assay: MSC-4H and T-4H (E) or MSC-5H and T-5H cell lines. eDU145, 22RW1, PC3, LNCaP, A549. fResazurin assay. gHeLa, A549, U373, MCF-7, HT-29, OVG-1,

PC-Sh, PC-Zr. hDELFIA assay (141). iFDH coupled assay. jELISA assay. kAssay as described by King et al. (142). lAlphaScreen. mHistone demethylase assay.

inhibition of G9a/GLP against H3K9me2 (145). It was selected
for further analysis due to its alternative method of binding
in comparison with non-specific generic analogs which inhibit

via cofactor S-adenosyl-methionine (SAM), such as methylthio-
adenosine (MTA), sinefungin, and S-adenosyl-homocysteine
(SAH) binding (141). However, it was found to have a high degree
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of toxicity against human cells restraining its potential (141).
Using the 2,4-diamino-6,7-dimethoxyquinazoline template, Kim
et al. developed UNC0632 4, a selective G9a and GLP inhibitor
that was less toxic but also less potent than BIX01294 because of
poor cell permeability (146).

To improve the cell permeability they utilized a previously
established structure activity relationship of the quinazoline
scaffold to design a new generation of inhibitors with better
cell permeability while maintaining the same potency. Among
these compounds UNC0638 5 had the best potency and
physiochemical potency and subsequently UNC0642 6 a selective
inhibitors of EHMT2 (G9a) inducing a selective H3K9me2
decrease (146).

Although the importance of SETDB1 as a potential
therapeutic target was recently demonstrated, selective
inhibitors for SETDB1 have not been extensively described
(147). A number of potential nonspecific inhibitors including
mithramycin (MTM, 7) and its analogs eg. MTM SDK 8, MTM
SK 9, and MTM SD 10, together with the cyclopentenyl analog
of 3-deazaadenosine, DZNep 11 have been postulated. The
latter non-specifically inhibits histone methylases (148), and a
decreased methylation of H3K9 was observed in the nucleus of
DZNep-treated cells. Transcription of SETDB1 can be regulated
by DZNep and its expression was decreased in lung cancer (149).
Similarly Paclitaxel 12 is a, widely used anti-cancer drug and
downregulation of SETDB1 at the transcriptional level by 12

resulted in the death of human lung cancer cells (150). However,
little is known about the effectiveness of these drugs against
hematological malignancies.

Inhibitors of Erasers of H3K9 Methylation as Novel

Therapeutic Agents
As previously described lysine specific demethylation in humans
is catalyzed by two subfamilies of demethylases, namely, 2-
oxoglutarate (2OG)—and flavin-dependent lysine demethylases.
Their active sites consist of the JmjC- and amine oxidase-
like (AOL) domains, respectively. Structural similarities and the
conservation of active sites within the KDM families, makes
design of specific inhibitors challenging. The concepts of KDM
inhibition have been well-covered by Thinnes, Kaniskan and
Lohse et al., who have described a wide variety of JmjC inhibitors
(114, 136, 151). Specific inhibitors for KDM4 have been described
in detail (67, 152). In AML with a major focus on H3K9me3
and specifically the KDM4A-D subfamily which catalyze its
demethylation inhibitors of this specific family will be discussed
here in more detail.

The KDM subfamily containing the JmjC domain has a Fe
(II) containing catalytic site (153). Unlike the AOL domain,
the JmjC domain is able to demethylate trimethyl lysine. The
catalytic cycle requires the co-factors molecular oxygen and
2OG (154). Most inhibitors are small molecules and will, either
act as 2OG mimics competing with 2OG, or act by chelating
Fe2+ in the active site. Early promising metal binding inhibitors
included pyridine-2, 4-dicarboxylic acid (PDCA, 13), capable of
selective inhibition of KDM4A and KDM4E (IC50 = 0.7 and
1.4µM, respectively) over the other JmjC containing KDMs
(155). In the search for potential inhibitors for 2OG-oxygenases,

Wang et al. uncovered JIB-04 14, a hydrazone derivative.
Although 14 was a potent inhibitor, it was not selective and
a range of KDM family members were inhibited including
KDM4A (IC50: 0.445 ± 0.03µM) and KDM4C (IC50:1.1 ±

0.2µM) (156). NSC636819 15, was uncovered via a structure
guided compound screen with available docking and domain
knowledge. Although it was capable of inhibiting KDM4’s with
an association for KDM4A (IC50 = 6.4µM) and KDM4B (IC50

= 9.3µM) it was not as potent as other inhibitors published at
the time (namely JIB-04) (157) and in a prostate cancer model
has a reduced inhibitory concentration of 16.5µM showing
a reduced cell permeability and specificity. 15 functions as a
competitive inhibitor and despite have a relatively low efficacy
against KDM4 family members may provide an alternative
framework base for drug development. Similar to 14, 15 is also
capable of inhibition of Prolyl-hydroxylase and HIF1α in the
micromolar range (158). A clear disadvantage in inhibitor 15 is
the presence of nitro aromatic moieties, which are potentially
carcinogenic and therefore undesirable (159, 160). Interestingly
downstream gene targets of prostate cancer cell lines treated
with 11 showed a number of pathways alongside 27% androgen
response gene targets identifying a possible crossover function of
LSD1 and KDM4A/B.

High throughput screening of potential inhibitors for
2OG-oxygenases resulted in uncovering 8-hydroxyquinoline-5-
carboxylic acid (IOX1, 16), with an IC50 of 0.2µM against
KDM4A specifically (142). in addition to an EC50 value of
in HeLa cells of 86µM. Clearly, the polar character of IOX1
caused by the carboxylic acid moiety, hydroxyl, and amino
groups hinder membrane permeability, explaining the >400-
fold decrease in potency biochemical assays as compared to that
in cells (161). To improve the membrane permeability, Schiller
et al. (161) synthesized ester derivatives of 16 with varying
lengths of alkyl groups. Evaluation of activity against KDM4A
as a representative histone demethylase by immunofluorescence
identified by transiently overexpressing KDM4A in a HeLa cell
line model and then subsequently treating with each compound
individually, H3K9me3 levels following treatment significantly
increased on comparison with both control and overexpression
of a mutant KDM4A protein, as a negative. They found that an
n-octyl ester derivative, octyl 8-hydroxyquinoline-5-carboxylate
17 was superior to its parent compound likely due to increased
membrane permeability (162). A more extended ALPHA screen
assay was then used to compare the selectivity of 17 against other
2OG oxygenase families in comparison to their KDM4 function.
The results support the classification of 16 as a broad-spectrum
2OG-oxygenases inhibitor (161). Compound 17 restricted the
observed inhibitory activity to the KDM4 subfamily. Specifically,
KDM4C was inhibited most potently with an IC50 value of
0.6µM (161). 17 was also the least cytotoxic compound and the
most potent inhibitor of H3K9me3 demethylation with an IC50

of 3.8 µM (162).
Additionally, an 8-hydroxyquinoline containing compound

was utilized to inhibit KDM4B. 3-(8-Hydroxyquinolin-6-yl)-
N-(3-phenylpropyl) benzamide (B3, 18) inhibited KDM4B
with an IC50 of ca. 10 nM in enzymatic studies and also
significantly inhibited the enzymatic activity of other KDM4
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isoforms (163). Another very potent KDM4A/B inhibitor
class was developed by Bavetsias et al. (139) and comprised
the N-substituted4-(pyridin-2-yl) thiazole-2-amine derivatives
which were optimized to give 8-(1H-pyrazol-3-yl)pyrido[3,4-
d]pyrimidin-4(3H)-ones 19. Having a 4- (3,5-dichlorophenyl)
piperidine linker this compound was the most potent in the
series, capable of inhibition of KDM4A with an IC50 value
of 80 nM and KDM4B with an IC50 value of 17 nM (164).
Kawamura et al. reported cyclic peptide inhibitors of KDM4A-
C demethylase enzymes with selectivity over other KDMs,
including closely related KDM4D/E isoforms. CP2 20 was
uncovered as the most promising cyclic peptide. 20 selectively
inhibited KDM4A-C with IC50 values of 42, 33 and 39 nM,
respectively (165).

The KDM4 family are deregulated in many cancer
phenotypes, one which has been the focus of drug discovery
in recent times is breast cancer. Breast cancer stem cells as
they have been termed have been postulated to be responsible
for metastasis and resistance to current therapies. This stem
cell population is poorly characterized but thought to involve
KDM4 family members for maintenance. Using a 3D tissue
model and cell free assays Metzger et al. (166) showed that
knockdown of KDM4A had effect in breast cancer tumors in
mouse models through its control of cell proliferation (166).
They went on to utilize a compound identified by Chen et al.
(167) known as QC6532 to chemically inhibit the action of
KDM4 family members. QC6532 (21) was developed through a
complex strategy of compound modification. Through screening
of an established database they selected an appropriate base
structure with known efficacy by substituting the carboxylic
acid position they selectively increased hydrophobic interactions
and improved cellular permeability, alongside optimizing the
position of tetrahydronaphthalene to increase potency (167).
Intermediate compounds showed favorable interactions with
the KDM4 family and through using crystal structural analysis
the group designed compounds substituting on the active site
aromatic ring. QC6352 showed cellular activity with a relatively
reduced potency however perceived activity against KDM5
family remained significantly high to an extent that it may
influence the phenotype observed (167). It has promising efficacy
against breast cancer cell lines and 3D culture models and
encouragingly is readily orally available in mouse models with
low clearance and a high volume of distribution (166). Other

inhibitors such as A366 have been identified however as their
main target so far has only been identified to be KDM4 family
action on H3K4 methylation they are outwith the scope of this
review (168).

CONCLUSION

H3K9me3 is a dynamic covalent post-translational histone
modification which is known to be pathologically deregulated
in a number of diseases including haematopoietic malignancies.
It is tightly controlled by a number of enzymes which place,
maintain and remove H3K9me3 such as the KDM4 family which
are rapidly emerging as factors which demonstrate a strong
regulatory influence on oncogenic gene transcription in AML.
Whilst progress has been made in targeting and developing
of inhibitors for the specific H3K9me3 methyltransferases or
demethylases, selectivity remains an unmet challenge. The
worrying statistics which accompany AML with a 5 year survival
rate of <40%, highlight the necessity to continually drive
to identify new mechanisms for the development of de-novo
AML both causative and as consequences of driver mutations.
Alongside this identifying and developing the ability to target
these functions specifically. A comprehensive understanding of
the oncogenic function of H3K9me3 within AML cells and the
respective epigenetic regulators that fine-tune its abundance will
permit the development of more efficient therapeutic strategies
in the future.
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