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Background: Oligometastatic disease has emerged as a possibly distinct metastatic

phenotype in numerous cancer histologies. With the advancement in treatment

modalities including stereotactic body radiation therapy (SBRT), certain patients may

derive benefits from local ablative therapy. SBRT alone has already shown to have

potential benefits in certain oligometastatic disease types. However, more understanding

of the immunologic modulation and microenvironment is needed to guide which patients

may benefit from SBRT alone or with combination therapy, if at all.

Purpose: The purpose of this review is to offer an update on the emerging

data testing SBRT combined with immunotherapy, review the pro-inflammatory and

immunosuppressive effects of the tumor microenvironment, discuss novel molecular

targets used to augment the immune response, and review potential methods used to

decrease toxicity in order to improve the therapeutic ratio.
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Stereotactic body radiation therapy (SBRT) has emerged as a prominent and safe modality for
metastasis-directed therapy across histologies and appears to result in long-term disease control
(1). Initial Phase 2 trials suggest that this long-term disease control translates into a progression-free
survival as well as an overall survival benefit further increasing the excitement for definitive phase 3
trials (2, 3). Potential benefits of this approach are hypothesized to include delaying progression in
known metastases, preventing further seeding of new metastases, as well as inhibiting progression
of micrometastatic foci (4–6). In terms of the effectiveness of the SBRT on local control, increasing
the biologically effective dose (or BED) of radiation correlates with the robustness of tumor control
(7–10). These techniques have been shown to be effective even when targeting larger metastases
(11), with treated metastasis control ranging from 70 to 90% (12). Ongoing phase III trials are
investing whether this approach may lead to improve overall survival in a subset of patients
with limited metastatic disease (NRG BR002, LU002, SABR-COMET-3, SABR-COMET-10, and
SARON). Here, we will focus on the emerging role for SBRT combined with immunotherapy, the
modulation of the tumor microenvironment through the utilization of novel molecular targets, and
mechanisms used to decrease toxicity during multi-site SBRT.

Beyond radiation alone for oligometastases, there is great interest in enhancing the effects of
both radiotherapy and immunotherapy with combined regimens. The goal of combined therapy
is to improve both local control of irradiated metastases and un-irradiated responses outside the
radiation field (abscopal effect) (13). This immune response may be further affected by the tumor
microenvironment. For instance, an immune-excluded environment, which is characterized by a
lack of T-cell infiltration, low TH1 cell activity, and reduced cytotoxic T cells, has been shown to
predict for worse response to therapy (14).

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.00706
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.00706&domain=pdf&date_stamp=2019-08-02
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:schmura@radonc.uchicago.edu
https://doi.org/10.3389/fonc.2019.00706
https://www.frontiersin.org/articles/10.3389/fonc.2019.00706/full
http://loop.frontiersin.org/people/726277/overview
http://loop.frontiersin.org/people/245099/overview


Onderdonk and Chmura SBRT and the Oligometastatic Microenvironment

Described mechanisms for the improvement in immune
modulation include but are not limited to increased tumor
antigen exposure, improved antigen presentation by dendritic
cells, improved T-cell function, re-priming of T-cells, as well
as modulation of immunosuppressive cell populations such as
T regulatory cells and myeloid derived suppressor cells (15–
17). In addition, direct tumor debulking by radiation may also
improve systemic immunotherapy outcomes (18, 19). Moreover,
ablating multiple areas of disease may also help to overcome
PD-L1/CTLA-4 monoclonal antibody therapy resistance (20,
21). Thus, the pre-clinical data suggest that radiation, and
in particular SBRT-like doses, may induce a CD8+ T cell
mediated anti-tumor response leading to tumor control of the
irradiated tumor and potentially to tumor control outside the
radiation field.

However, the initial reports of clinical trials combining SBRT
with immunotherapy are difficult to interpret with conflicting
results. For example, a recent trial (ASCO 2018) in patients with
advanced NSCLC treated with 8Gy x 3 to a single metastatic
site followed by Pembrolizumab demonstrated a doubling in
overall response rate (ORR) in a randomized setting (22). In
contrast, a similar trial design with Progression-Free Survival
(PFS) as an endpoint conducted and recently presented in
head and neck cancer patients (using 9Gy x 3, to a single
metastasis) failed to demonstrate a signal of efficacy (23).
Given the higher doses of radiation in the head and neck
trial compared with the NSCLC trial (BED10 of 51.3 vs. 43.2,
respectively), and the type of immunotherapy were similar (both
PD-1 monoclonal antibodies), the difference may lay in the
timing of SBRT with immunotherapy. Since the NSCLC trial
used sequential SBRT followed by Pembrolizumab and the head
and neck trial used SBRT between doses of Nivolumab, the
SBRT timing may serve a purpose to “prime” the immune
system for optimal effect. However, this efficacy may be tempered
by possibly increasing toxicity from a robust response from
sequential administration.

As phase 3 trials continue with SBRT alone and many early
phase trials continue combining radiation and immunotherapy,
a fundamental question remains: which patients, if any, may
benefit from SBRT directed at oligometastases? In order to
begin to understand this issue, one must incorporate tumor
biology into one’s treatment paradigm since activation of
various cellular pathways may identify potentially curable
oligometastatic states (24). Radiation therapy may modulate
the tumor microenvironment through pro-immunogenic and
immunosuppressive signals (see Figure 1), and the balance of
these signals may determine the effectiveness of local tumor
cell killing and systemic antitumor immune response. Once
we have a better understanding of the immunosuppressive
and pro-immunogenic actions of radiation, we can begin to
understand which patients may benefit from cytoreductive
SBRT alone or in combination with molecular targets. Below
we are going examine a few examples of current attempts
to modulate the tumor microenvironment to be more
favorable toward an SBRT and immunotherapy approach
where early stage therapeutics exists for both pre-clinical and
clinical testing.

FIGURE 1 | Depicts the balance between increasing anti-tumor immunity with

toxicity within the tumor microenvironment.

One method of modulating the microenvironment in favor of
SBRT and immunotherapy may be achieved by augmenting pro-
inflammatory effects. For example, 4-1BB (CD137) stimulation
promotes survival and cell cycle progression of activated human
CD8+ T cells while simultaneously inhibiting regulatory T
cells (T-regs) (25). Due to these effects, there are numerous
ongoing trials using 4-1BB ligands in combination with
chemoradiation (NCT00461110), other targeted monocloncal
antibody targets (NCT01775631, NCT02110082), and PD-
1 inhibitors (NCT03792724, NCT02845323). As these trials
examine the combination of 4-1BB ligands with one other
modality, our institution is currently evaluating the safety of
combining a 4-1BB ligand (Uralumab) with a PD-1 inhibitor
(Nivolumab) and SBRT (NCT03431948). These clinical trials will
gauge the safety of combination therapy, and may prove useful in
identifying future directions for this molecular target.

Another method of improving the therapeutic ratio for
SBRT and immunotherapy may come through inhibiting
immunosuppressive signals. Activation of these signals result
in increased infiltration by T-regs and myeloid-derived
suppressor cells (MDSCs). One such pathway with a molecular
target includes the macrophage colony-stimulating factor 1
receptor pathway (CSF-1R). CSF-1R signaling has specifically
demonstrated a role in differentiation, maintenance, trafficking,
functioning of the monocytic lineage, and serves as a prominent
driver in resident tumor macrophages (26, 27). These tumor-
associated macrophages (TAMs) have shown the ability to
promote tumor regrowth (28). Although the relationship
between TAMs is relatively plastic, the ratio of M1/M2 TAMs
is prognostic of clinical outcome in multiple of human cancers
including lung, breast, pancreas, and lymphoma (29, 30).
There is evidence of a benefit in cancer therapies by targeting
these trophic effects of TAMs through this CSF-1R pathway
(31, 32). Moreover, further research targeting this receptor in
combination with other therapies (i.e., PD-1/PD-L1 inhibitors)
are currently underway. For example, preliminary phase 1a/1b

Frontiers in Oncology | www.frontiersin.org 2 August 2019 | Volume 9 | Article 706

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Onderdonk and Chmura SBRT and the Oligometastatic Microenvironment

data (SITC 2018) in pancreatic cancer demonstrated safety
of Cabiralizumab (CSF-1R inhibitor) with Nivolumab (PD-1
inhibitor) with a 6-month disease control rate of 13 percent
and an ORR of 10 percent (33). Given this preclinical and
early clinical data, our institution is currently investigating the
toxicity of SBRT, PD-1 inhibition (Nivolumab) with a CSF-1R
monoclonal antibody (Cabiralizumab (NCT03431948) in a phase
1 setting. Further trials examining this molecular target may
identify subsets of patients that may benefit from combination of
SBRT and immunotherapy.

Beyond modulating the immune microenvironment through
4-1BB agonism or CSF-1R inhibition, TGF-β in particular
has shown to be a primary mechanism of tumor immune
evasion by blocking the TH-1 effector phenotype, inhibit T
cell division/function and natural killer (NK) cell function,
and by promoting epithelial-mesenchymal transition (EMT)
(34, 35). This microenvironment high in TGF-β signaling has
further characterized a poor-prognostic phenotype in colorectal
cancer, and preclinical models showed that inhibition of TGF-β
stops disease progression in liver metastases from colon cancer
(36). Moreover, a lack of response to PD-L1 monotherapy has
been associated with increased TGF-β by creating an immune-
excluded phenotype, and several preclinical studies examining
the utility of TGF-β inhibition in promoting PD-L1 response
(34, 37). In addition to these immune-exclusion aspects of
TGF-β, increased TGF-β signaling has demonstrated radiation
resistance (38), while inhibition of TGF-β cell lines promoted
radiation sensitization (22). Thus, targeting these immune-
excluding signaling molecules, may allow for improved response
to PD-1/PD-L1 therapy and radiation therapy.

Another method of overcoming local PD-1/PD-L1 immune
resistance is through the use of novel bispecific fusion protein
technology. One such fusion protein, (M7824), combines an
anti-PD-L1 monoclonal antibody with two TGF-β receptor 2
molecules to serve as a TGF-β “Trap.” Urothelial cancer cell
lines treated with this bispecific fusion protein demonstrated
an increase in T-cell trafficking, TRAIL-mediated tumor lysis,
and ADCC when compared to PD-L1 inhibition alone (39).
In NSCLC, this bifunctional PD-L1 and TGF-β inhibitor
prevented tumor endogenous mesenchalization compared with
PD-L1 inhibition alone and enhance antibody-dependent cellular
cytotoxicity (ADCC) in cervical, breast, and prostate cancer cell
lines (40, 41). Also, when compared to PD-L1 monotherapy
alone, this bifunctional inhibition demonstrated a decrease in
TAMs and increases effector T cells, M1 cells, and improved the
M1/M2 ratio (discussed above) (35). Combining this bispecific
fusion protein with radiation therapy may promote an immune
response while simultaneously decreasing immune exclusion. In
pre-clinical models, this bifunctional inhibitor combined with
radiation therapy promoted the inhibition of tumor growth,
metastases and improved survival (42). Furthermore, murine
models combining radiotherapy and a the bifunctional protein
results in significantly greater irradiated tumor response as
well as a secondary non-irradiated tumor response, suggesting
secondary systemic beneficial effects of radiation on the immune
response (35). With this new preclinical and early clinical data
in mind, these novel bispecific monoclonal antibodies may prove

beneficial in subsets of patients with oligometastatic disease and
further testing is warranted.

As radiation therapy may promote pro-inflammatory effects
in the tumor microenvironment, it may also promote immune-
exclusion. For example, a preclinical study demonstrated that
high doses of radiation has shown the ability to induce an
immune-suppressive, M2-like phenotype, and that reversing this
effect could improve local control of tumors and stimulate a more
robust immune response (43). Thus, some patients receiving
cytoreductive SBRT may gain a benefit from concomitant use of
targetable signalingmolecules (PD-1/PD-L1, 4-1BB, CSF-1R, and
TGF- β) in order to limit the immune-exclusion and promote a
more robust response to SBRT.

Beyond the initial concept of oligometastatic disease, the
largest published benefit of immunotherapy to date comes
from the PACIFIC Trial. Although these patients all had
locally advanced non-small cell lung, presumably they may have
had micrometastatic disease. In those treated with adjuvant
Durvalumab, there was a tripling of median PFS and a 10%
improvement in 2-year OS (44, 45). Thus, we hypothesize that
patients with the lowest burden of metastatic disease, in this
case possibly micrometastatic disease, may benefit the most
from immunotherapy. Although a radiation-immunotherapy
interaction may also be the rationale for this benefit, further
surgical studies in locally advanced NSCLC combined with
immunotherapy (i.e., ECOG-ACRIN E5142) may aid the
argument of minimal micrometastatic disease benefitting the
most from immunotherapy. On the opposite end of the disease
spectrum, a recent prospective phase 1 trial from our group
further supports the notion of possibly improving on the
immune-exclusion microenvironment through cytoreduction of
metastatic disease with high-dose SBRT and combined with
pembrolizumab. The combination demonstrated a long median
overall survival (9.6 months) with low rates of severe toxicity
in a heavily pre-treated, non-oligometastatic patient cohort (46).
Moreover, local control was no different between partial tumor
radiation coverage (see Figure 2) for larger tumors and smaller
ones suggesting a synergistic effect with the immunotherapy. In
an exploratory analysis, the only predictor for overall survival was
the local control of the irradiated tumor with high dose radiation
(47). As oligometastatic states exist between “micrometastatic”
and heavily pre-treated metastatic states, evidence from our
group further confirms the necessity for local control of large
metastatic lesions through cytoreductive SBRT to promote an
inflammatory microenvironment and limit immune-exclusion.

SBRT alone to oligometastases is currently well-tolerated
with around 30% grade 2+ toxicity, however given the grade
5 toxicities observed, there is continued concern that toxicity
may increase with multi-site SBRT (3). These pro-immunologic
benefits of SBRT, and especially with the combination with other
pro-inflammatory molecular targets, may result in improved
outcomes however there is concern over increased toxicity.
Some strategies to limit toxicity are attempting to ameliorate
this inflammatory response in the normal tissues (see Figure 1).
For example, a recent study demonstrated that patients with
non-small cell lung cancer showed an increased risk for radiation
pneumonitis with increased TGF-β signaling (48), while a
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FIGURE 2 | Depicts partial tumor coverage of a large liver lesion. The 45 Gy

in three fractions was prescribed to the central 65 cc of the tumor (SUCITV)

with a 5 mm PTV expansion. ITV, internal target volume; SUCITV, seriously

undercovered immuno-target volume; PTV, planning target volume.

preclinical study demonstrated a decrease risk for radiation
pneumonitis in mice treated with TGF-β inhibition (49). Thus,
inhibition of TGF-β, possibly in the bispecific antibody approach,
may provide another means of limiting the toxicity from therapy.
Another possible mechanism of limiting toxicity adopted by our
group has been through decreasing dose to adjacent OARs. In
patients receiving immunomodulatory agents, initial observation
suggests that local control may be achieved despite significantly
decreased doses to the tumor edge (see Figure 2) (46, 47).
With this approach, we noticed that the majority of the center
of the tumors received a high dose of radiation while the
periphery of the tumor received a lower prescription dose.
Interestingly, we were able to increase the dose to the center
of the lesion without compromising control, while also limiting
our dose to critical structures and subsequent toxicity. Another
method of limiting toxicity, although logistically challenging,
may be through adaptive radiation planning. This method of

re-planning the SBRT treatment during the course of radiation
may allow for the most accurate method of delivery as it
accounts for tumor responses and relationship of adjacent
OARs to target lesions. By using these various methods: TGF-
β inhibition, limiting target coverage to spare adjacent OARs,
and adaptive radiation planning, we may continue to treat
more lesions with multi-site cytoreductive SBRT while also
limiting toxicity and not compromising our primary objective of
local control.

In conclusion, phase 3 trials of SBRT alone for oligometastasis
are currently underway in various histologic disease sites. These
studies are needed to demonstrate oligometastatic states while
also being cognizant of emerging concepts regarding tumor
biology and the microenvironment. As this data emerges, future
trials examining cytoreductive SBRT combined with checkpoint
inhibition and using novel agents against other molecular targets,
such as TGF-β, CSF-1, and 4-1BB may demonstrate a logical
progression of the current data. We believe there is promise in
further translational and clinical studies identifying a synergistic
mechanism to increase anti-tumor immunity through high-dose
SBRT combined with systemic therapies. We believe the most
promising to date revolve around cytoreduction of tumor burden
combined with systemic treatments aimed at balancing toxicities
(i.e., TGF-β), partial-tumor coverage of the prescription dose to
avoid critical organs, and adaptive radiation planning.
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