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Glypican-3 (GPC3) is a cell-surface glycoprotein consisting of heparan sulfate

glycosaminoglycan chains and an inner protein core. It has important functions in cellular

signaling including cell growth, embryogenesis, and differentiation. GPC3 has been linked

to hepatocellular carcinoma and a few other cancers, however, the mechanistic role

of GPC3 in cancer development remains elusive. Recent breakthroughs including the

structural modeling of GPC3 and GPC3–Wnt complexes represent important steps

toward deciphering the molecular mechanism of action for GPC3 and how it may

regulate cancer signaling and tumor growth. A full understanding of the molecular basis

of GPC3-mediated signaling requires elucidation of the dynamics of partner receptors,

transducer complexes, and downstream players. Herein, we summarize current insights

into the role of GPC3 in regulating cancer development through Wnt and other signaling

pathways, including YAP and hedgehog cascades. We also highlight the growing body

of work which underlies deciphering how GPC3 is a key player in liver oncogenesis.
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INTRODUCTION

Each year hepatocellular carcinoma (HCC) affects 750,000–1 million people worldwide and is
projected to be the third most common cause of cancer death in the United States by 2030 (1).
Glypican-3 (GPC3), a broadly conserved cell-surface proteoglycan, contains heparan sulfate (HS)
chains connected to a core protein. Glypican regulation is linked to cell growth, differentiation and
motility. GPC3 is highly expressed in >70% of HCCs but not in normal adult tissues (2). GPC3
has also been associated with poor prognosis in HCC patients (3). Taken together, this designates
GPC3 as an established biomarker and indication of progression for HCC, a lethal disease for which
there are limited treatment options (4, 5). While GPC3 is most notably studied in HCC, it has been
implicated in other solid tumors as well (6, 7).

Wnt signaling is vital in embryonic development and tissue homeostasis (8). In adults, Wnt
signaling promotes tissue renewal and regeneration. During the embryonic stage, GPC3 is widely
expressed in a stage and tissue specific manner (9). GPC3 expression can be detected in the placenta
and other embryonic tissues including the ovary, mammary, and lung. Several studies have shown
that expression of GPC3 regulating tumor proliferation and progression through Wnt signaling
cascades (10). Given that Wnt is highly hydrophobic and may require HS fragments functioning as
a transporter or nano-storage unit to facilitate its activation in the extracellular microenvironment,
the link between cell surface glypicans and Wnt would be highly interesting (11–14).
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In this review, we highlight the role of GPC3 in cellular
signaling including Wnt and other signaling pathways such as
YAP (Yes associated protein), and Hedgehog (Hh) within the
current scientific milieu. Due to the importance of GPC3 in
multiple signaling cascades, GPC3 could have a pivotal role as a
biomarker and as a potent therapeutic target in investigational
immunotherapies (15). Therapeutics targeting GPC3 are in
preclinical development and rigorous mechanistic insight could
be pivotal in further developing a successful therapeutic
strategy (15, 16).

BIOLOGY AND STRUCTURE OF GPC3

Glypicans, classified among the heparan sulfate proteoglycan
family, reside on the exterior cell membrane via a
glycosylphosphatidylinositol (GPI) anchor and are a major
part of the extracellular matrix (ECM) mediating cell-ECM and
cell-cell interactions (4, 17). Glypicans comprise of a core protein
attached to two HS glycosaminoglycan polysaccharide chains.
The structure of glypicans is evolutionarily well-conserved and
the family consists of six subtypes including GPC1-6 inmammals
(18). Glypicans are typically between 60 and 70 kDa and contain
a secretory signal peptide at the N-terminal and a GPI anchor
at the C-terminal. All glypicans have 14 conserved cysteines,
which form intramolecular disulfide bridges to connect the N
terminus and C terminus, even after possible furin cleavage (19).
The unique structure of glypicans provides glypicans the unique
capability to store and sequester various molecules including:
cytokines, morphogens, chemokines, and growth factors (15).
Glypicans attract these molecules and develop concentration
gradients around the ECM and cellular membrane allowing for
recognition of receptors with different thresholds.

During early development, GPC3 is found in the fetal
organs including: liver, lung, placenta, and kidney. In most
adult tissues, GPC3 is absent or lowly expressed in most adult
tissues (20). Simpson Golabi Behmel syndrome (SGBS), an X-
linked overgrowth disorder characterized by a broad spectrum of
clinical manifestations, is due to GPC3 loss of functionmutations
and primarily affects males. In SGBS patients, developmental
abnormalities described include enlarged tongue, polydactyly,
syndactyly, cleft palate, congenital heart defects, cystic kidneys,
and vertebral fusions (21). This overgrowth phenotype has also
been observed in GPC3-null mice, which expire at birth in the
C57BL/6 background and share several clinical abnormalities
with SGBS patients (22, 23). GPC3 is located on the X
chromosome (Xq26) with Isoform 2 (GenBank Accession No.:
NP_004475) being the most commonly expressed. A total of
four alternatively spliced variants are documented (4, 19). The
functional relevance and specificity of these isoforms is unknown.
GPC3 HS chains have been shown to bind molecules including
Wnt (24, 25). Interestingly, studies have suggested that the GPC3

Abbreviations: HCC, Hepatocellular Carcinoma; HS, Heparan Sulfate; YAP, Yes

Associated Protein; Hh, Hedgehog; ECM, Extracellular Matrix; SGBS, Simpson

Golabi Behmel syndrome; FZD, Frizzled receptor; GPCR, G Protein Coupled

Receptor; LRP5/6 lipoprotein receptor-related protein; DVL, Disheveled; PTCH,

Patched; SMO, Smoothened; Sufu, Suppressor of Fused.

core protein may also participate in bindingWnt as a co-receptor
(26, 27). Using computational structure modeling, our group
recently identified a cysteine-rich domain on the N-lobe of GPC3
for Wnt functional binding, providing evidence that GPC3 is a
Wnt co-receptor that modulate Wnt/β-catenin signaling in HCC
cells (28). By attracting and storing growth factors via HS chains
and recognizing Wnt as a co-receptor, GPC3 acts as a cell surface
glycoprotein that can modulate Wnt signaling in liver cancer.

MODULATION OF WNT SIGNALING VIA
GPC3

In HCC progression, activation of canonical Wnt signaling is
a frequent molecular event (29). Approximately 95% of HCCs
exhibit Wnt/β-catenin deregulation (30). The Wnt cascade is
aberrantly activated in several human diseases including cancers
and metabolic disorders. In humans, a total of 19 Wnts are
secreted via autocrine and paracrine systems (31). Canonical
Wnt signaling, a β-catenin-dependent process, is prompted by
Wnt binding via two coreceptors: frizzled (FZD), a seven-
pass transmembrane G protein coupled receptor (GPCR), and
low-density lipoprotein receptor-related protein 5/6 (LRP5/6), a
single-pass transmembrane receptor. There are 10 total human
FZDs (32, 33).Wnt ligands bind to FZD’s protruding extracellular
cystine-rich domain containing the Wnt binding domain. The
interaction between Wnt and FZD promotes the assembly
of the FZD-LRP5/6 receptor complex (34). Conformational
changes in FZD and LRP5/6, followed by phosphorylation
of glycogen synthase kinase 3 and casein kinase 1 promote
recruitment of Axin, an important component of the destruction
complex. Consequently, DVL, a cytoplasmic protein, is recruited
and binds to the C terminal tail of FZD. Thus, destruction
complex, containing DVL, Axin and other binding partners, is
stabilized (35–38). Axin prevents β-catenin from degradation;
therefore, β-catenin accumulates in the cytoplasm, travels to
the nucleus, and drives transcription of cell proliferation and
survival genes (Figure 1) (39). Wnt signaling can also act in
a β-catenin independent fashion, termed the non-canonical or
alternative pathway (40). Since Wnt signaling is vital for many
functions such as hepatobiliary functions, cell differentiation, and
repair, Wnt dysregulation can result in HCC, hepatoblastoma,
cholangiocarcinoma, or other liver diseases.

In HCC cell lines, overexpression of GPC3 promotes the
proliferation and growth, indicating that GPC3 regulates cell
surface signaling by functioning as a co-receptor for Wnt
proteins (26). Interestingly, both GPC31GAG (the mutant
GPC3 lacking the HS side chains) and GPC3 were able to
form a complex, indicating that the GPC3-Wnt complex was
enabled through the core GPC3 protein. GPC3 HS chains are
not required for Wnt activation, but instead, the HS chains
may be important to stabilize FZD (41). These data provided
initial evidence of the interaction between GPC3 and Wnt.
Our laboratory reported evidence of the potential mechanism
of GPC3 enhancement of Wnt3a/β-catenin signaling activity
in Hep3B and other HCC cells lines by blocking GPC3 by
antibodies. HS20, a human monoclonal antibody isolated using
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FIGURE 1 | A model for the role of GPC3 in regulating Wnt in liver cancer. (A) When no GPC3 is present, Wnt can independently activate FZD without GPC3

co-ordination. In the absence of GPC3, there is a baseline level of Wnt/β-catenin activation in normal liver cells. (B) When GPC3 is upregulated in malignant liver cells

(HCC), GPC3 serves as a Wnt co-receptor to attract Wnt to the cell surface via a hydrophobic groove in the N-lobe of GPC3 containing F41 and surrounding residues.

(C) When FZD is locally concentrated and GPC3 is high in HCC cells, the Wnt/GPC3/FZD complex is formed, and Wnt signaling is amplified.

phage display technology, blocks the Wnt3a/β-catenin cascade
by binding the HS chains (10). The HS20 antibody interferes
with binding of GPC3 to Wnt3a and impedes access to FZD. In
the same study, we showed that HS20 inhibited Wnt/β-catenin
signaling in HCC cell lines and cells which endogenously express
GPC3. Then, using an in vivo model, our group showed that
HS20 has considerable antitumor activity when nude mice were
inoculated with Hep3B and HepG2 cells, separately (10). In
another study, the endogenous interaction between GPC3 and
Wnt was confirmed in the Hep3B model (42). Additionally, the
oncogenic human sulfatase SULF2, which is upregulated in over
60% of HCCs and has, 6-O-desulfatase activity in mammalian
cells, can release Wnt from HS chains and form a complex with
GPC3 and Wnt. This provided an indication that sulfation of HS
may play an essential role for binding Wnt and other growth
factors. To understand the exact mechanism for the binding
motif of Wnt on the HS glycans, we and collaborators devised
an array of synthetic HS oligosaccharides with differing lengths
and sulfation modifications (25). We found that 2-O and 6-O
sulfations were essential for Wnt binding while 3-O sulfation
could enhance Wnt binding, providing direct evidence for a Wnt
binding domain on the HS chains on GPC3 (25). This work also
provided mechanistic insights about the size of the Wnt binding
domain which we estimated to be between 6 and 8 sugar residues.
Taken together, these data reasonably link GPC3, SULF2, Wnt,
and FZD. However, the preciseWnt binding domain on HS is yet
to be shown by structural and functional studies.

Evidence of the Wnt binding domain on the GPC3 core
protein has been suggested by using the HN3 single-domain

antibody (27, 43). In a recent study, we and collaborators
modeled Wnt/GPC3 to predict hydrophobic areas of interest
(28). We identified, phenylalanine 41 (F41), a key residue within
GPC3’s hydrophobic groove located in the N-lobe of GPC3.
We mutated the F41 residue as F41E and found it to be
critical in recognizing Wnt3a in HCC cell and mouse models
(28). Furthermore, in the same study, we showed that both
major parts of GPC3, the core protein and HS glycan chains,
can modulate Wnt signaling (Figure 1). In a Wnt functional
reporter assay, overexpression of GPC3 alone activated Wnt
signaling and could be lessened by the F41E mutation, but
not by eliminating HS chains (Figure 1B). Interestingly, co-
transfection of GPC3 and FZD induced synergistic activation of
Wnt activity. This synergistic effect was stopped by removing
the HS chains of GPC3, however the F41E mutation no longer
showed any effect (28). This dynamic model can conceivably
connect GPC3 expression and HCC progression in which low
FZD and no GPC3 represents normal liver, high GPC3 and
low FZD represents early stage HCC, and high FZD and high
GPC3 coordination represents late stage HCC (44) (Figure 1).
When GPC3 is upregulated in malignant liver cells (HCC),
possibly by chronic inflammation due to hepatitis viral infection
or other etiological factors (Figure 1B) (45), GPC3 serves as a
Wnt co-receptor to attract Wnt to the cell surface via the newly
identified cysteine-rich hydrophobic groove in the N-lobe of
GPC3 containing F41. When FZD is locally concentrated and the
Wnt/GPC3/FZD complex is formed, the HS component rather
than the core protein of GPC3 can serve as a bridge for the
stability of the complex (Figure 1C). In this way, GPC3 may act
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as a bridge through its HS chains to stabilize Wnt and FZD after
the Wnt/GPC3/FZD complex is formed. Thus, depending on the
levels of FZD, GPC3 can promote Wnt activation through either
the core protein or HS chains (Figure 1).

GPC3, WNT, AND YAP

Early work in the Drosophila model implicated the Hippo
signaling pathway in modulating organ size and development.
In mammals, the Hippo cascade involves two main kinases
Mst1/2 and Lats1/2. Once these kinases are in play, Lats1/2,
phosphorylates, YAP, a transcriptional co-activator. YAP
inactivation leads to downregulation of target genes including:
cyclin E, diap1, and bantam. YAP has been shown to be a
critical nuclear effector within Hippo signaling, however, the
precise mechanism by which Hippo signaling inactivates YAP
function in mammals remains unclear (46). Furthermore,
recent advancements in understanding signaling pathways have
indicated that the Hippo pathway suppresses liver overgrowth
and HCC development. YAP function is critical in regulating cell
size, tissue regeneration, and cancer morphogenesis. Studies have
indicated a connection between GPC3 andWnt via YAP however
the mechanism of crosstalk between β-catenin and YAP remains
undetermined (Figure 1B). Additionally, in the cytoplasm,
there is evidence that YAP can regulate DVL (47). Moreover,
in liver cancer, HCC tissues showed higher YAP activation,
indicating a positive correlation between HCC progression and
YAP activity (48).

Our laboratory used phage display technology to identify
the human single domain antibody, HN3, a GPC3 target, and
showed that HN3 potently inhibited HCC cell growth. When
investigating the mechanism of HN3 activity, we found that
phosphorylated YAP (p-YAP), the inactive version of YAP, was
greater in HCC cells treated with HN3. Overall, total YAP level
was reduced in HCC cells treated with HN3. GPC3 knockdown
led to lower cell proliferation and reintroduction of recombinant
YAP was able to rescue the cells from apoptosis triggered
by GPC3 knockdown (49). The observation is consistent
with our early finding that GPC3 regulated YAP signaling
in HCC cells (43). When we knocked down YAP in HCC
cells, cell proliferation decreased by ∼50%. Upon subsequent
HN3 treatment, YAP-knockdown cells did not further inhibit
cell proliferation, indicating that YAP knockdown may cause
acquired resistance to HN3 treatment. However, in mutant YAP
overexpression cell lines where YAP is constitutively active, we
reported increased cell proliferation and abatement of HN3
antagonist activity, i.e., HN3 could not inhibit cell proliferation.
In a subsequent work, used a reporter assay to investigate
YAP activity. In Hep3B cells, blocking Wnt via HN3-GPC3
binding also blocks YAP, overall indicating that Wnt may be
involved in the upstream regulation of YAP signaling (27). Taken
together, these results indicate that YAP is not only involved in
HCC proliferation but also that GPC3 may act as an upstream
regulator of YAP. As discussed previously, Li et al. reported that
the HN3 antibody recognizes the Wnt binding site, a unique
conformational epitope which is a cysteine-rich, hydrophobic

groove in the N-lobe of GPC3 (28, 43). These works reasonably
link YAP inactivation to GPC3 and Wnt via HN3.

GPC3, WNT, AND HEDGEHOG SIGNALING

The hedgehog (Hh) signaling pathway (Figure 2) plays a
defining role in embryonic development and is highly conserved
across species. Hh signaling is involved in cell growth,
differentiation, tissue patterning, and vascularization. When
aberrantly activated, these processes can lead to tumor growth,
malignant transformation or metastasis. Thus, hyperactivation
of the Hh pathway has been linked to various cancers including
breast, prostate, liver, pancreatic, and brain (50, 51). In exploring
the biological role of GPC3 in liver cancer (HCC) cells, GPC3
was found to promote HepG2 cell proliferation through Hh
signaling (52).

The Hh signaling pathway involves recruitment of Hh ligands
including: desert hedgehog (Dhh), Indian hedgehog (Ihh), and
Sonic hedgehog (Shh). Any Hh ligand can initiate binding to
the 12 transmembrane proteins Patched (PTCH) and various co-
receptors, thus triggering Hh signaling by Smoothened(SMO)
de-repression. SMO, a 7-pass transmembrane protein from the
FZD family of GPCRs, mediates downstream signaling. Sufu,
a cytoplasmic protein, and GLI proteins, main transcriptional
effectors, cooperate to induce Hh activation and expression
of Hh target genes. In the absence of Hh ligands, or in the
case of Hh ligands binding to GPC3, PTCH will not be active
and SMO will be repressed, thereby inhibiting Hh signaling
(Figure 1B) (53, 54).

Early work in the Drosophila model demonstrated that
glypicans are involved in regulation of Hh signaling (53). GPC3-
null mice, a SGBS disease model, display increased Hh signaling
activity and higher levels of Shh and Ihh (55). Further, GPC3
binds to Shh and Ihh with high affinity and competes with PTCH
for Hh binding (55). Of note, the core protein of GPC3 can
directly bind Hh to inhibit its signaling activity in cell culture
(26). In a later study, experimental evidence demonstrated that
cleavage by convertases is also crucial for GPC3 inhibition of Hh
signaling (56). Low-density-lipoprotein receptor-related protein-
1 (LRP1) was also shown to mediate endocytosis of the GPC3-Hh
complex (57) (Figure 2B).

CD81, a cell surface tetraspanin, which facilitates Hepatitis
C Virus (HCV) entry into hepatocytes, further entangles GPC3
with Hh and Hippo signaling. CD81 is main GPC3 binding
partner and the GPC3/CD81 interaction modulates Hh signaling
through hematopoietically expressed homeobox protein (Hhex),
a transcriptional repressor (58, 59). However, 78% of HCCs
do not express CD81 indicating loss of CD81 expression
occurs commonly in HCCs (60). In the JM2 rat hepatoma
cell line, forced expression of CD81 in the presence of high
GPC3 expression, increased activation of the Hippo pathway by
decreasing nuclear YAP (60). The precise connections between
these signaling pathways remain unclear and future work
which elucidate the interplay between YAP, Wnt, hedgehog, and
other signaling players will be necessary in designing targeted
therapeutics. Since the outlined signaling pathways all have
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FIGURE 2 | The model for the role of GPC3 in regulating Hedgehog signaling. (A) In the presence of Hh ligand, PTCH promotes surface localization and activation of

SMO. SMO transduces the Hh signal within the cytoplasm. Protein kinases phosphorylate GLI proteins, leading to an NH2-terminal truncated form, which travels to

the nucleus and activates Hh signaling. (B) GPC3 competes with PTCH for Hh binding which results in inhibition of hedgehog signaling. GPC3 binds both Shh and

Ihh, resulting in the endocytosis and lysosomal degradation of the GPC3/Hh complex in the presence of LRP1.

underlying roles in cell growth and proliferation processes,
cross regulation is an essential strategy. Therefore, key steps in
Wnt, YAP and hedgehog may be connected via GPC3 and its
counterparts to tightly control fundamental cellular processes as
a fine-tuning mechanism (50, 54, 61, 62).

FUTURE PERSPECTIVES

GPC3 is clearly an important player Wnt, Hh, and YAP signaling
cascades. However, fundamental questions regarding the
GPC3/Wnt/FZD complex structure, intratumor heterogeneity
of protein expression, and alternatively spliced variants of
GPC3 in liver cancer have yet to be fully understood. Future
work addressing the mechanism of GPC3 in the outlined
signaling pathways would provide a more complete picture
of its precise role in oncogenesis of liver cancer. Rigorous
experimental interrogation of mechanism will be crucial in
engineering therapies which can disrupt tumor progression.
Nevertheless, as extensively summarized in other recent articles,
the development of GPC3-targeted therapies has emerged with
many clinical trials worldwide (15, 16, 63). These ongoing
clinical trials will help define the utility of GPC3 as a target for
liver cancer therapy.
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