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Introduction: Acute lymphoblastic leukemia (ALL) is the first neoplasm where the

assessment of early response to therapy by minimal residual disease (MRD) monitoring

has proven to be a fundamental tool to guide therapeutic choices. The most

standardized methods to study MRD in ALL are multi-parametric flow cytometry

(MFC) and polymerase chain reaction (PCR) amplification-based methods. Emerging

technologies hold the promise to improve MRD detection in ALL patients. Moreover,

novel therapies, such as monoclonal antibodies, bispecific T-cell engagers, and chimeric

antigen receptor T cells (CART) represent exciting advancements in the management of

B-cell precursor (BCP)-ALL.

Aims: Through a review of the literature and in house data, we analyze the current

status of MRD assessment in ALL to better understand how some of its limitations could

be overcome by emerging molecular technologies. Furthermore, we highlight the future

role of MRD monitoring in the context of personalized protocols, taking into account the

genetic complexity in ALL.

Results and Conclusions: Molecular rearrangements (gene fusions and

immunoglobulin and T-cell receptor-IG/TR gene rearrangements) are widely used

as targets to detect residual leukemic cells in ALL patients. The advent of novel

techniques, namely next generation flow cytometry (NGF), digital-droplet-PCR (ddPCR),

and next generation sequencing (NGS) appear important tools to evaluate MRD in ALL,

since they have the potential to overcome the limitations of standard approaches. It

is likely that in the forthcoming future these techniques will be incorporated in clinical

trials, at least at decisional time points. Finally, the advent of new powerful compounds

is further increasing MRD negativity rates, with benefits in long-term survival and a

potential reduction of therapy-related toxicities. However, the prognostic relevance in

the setting of novel immunotherapies still needs to be evaluated.

Keywords: acute lymphoblastic leukemia (ALL), minimal residual disease (MRD), flow cytometry, real time

quantitative PCR (RQ-PCR), next generation flow cytometry (NGF), digital droplet PCR (ddPCR), next generation

sequencing (NGS), novel agents
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INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a malignant disorder that
originates from hemopoietic lymphoid precursors, that can be
of B- (80–85%) or T-cell (20–25%) derivation: the acquisition of
a series of genetic aberrations leads to an impaired maturation,
with an arrest in the differentiation process and an abnormal
proliferation (1). As a consequence, the accumulation of leukemic
cells occurs in both the bone marrow, where it suppresses the
physiologic hemopoiesis, as well as in extra-medullary sites.

The leukemic transformation generates a progeny of leukemic
lymphoid blasts that have undergone a maturation block in an
early phase of the differentiation process. The pathophysiological
bases of the symptoms and signs of ALL consist in a suppression
of normal hemopoiesis, in the infiltration and colonization
of lymphoid organs and in the release of lymphokines and
mediators of inflammation of both leukemic cells and normal
cells. It is a heterogeneous malignancy also in terms of clinical
manifestation and prognosis.

ALL is themost frequent cancer in childhood and is diagnosed
also in adulthood, with peaks of incidence between the age of
2 and 5 years and after the age of 50 (2, 3) with 60% of cases
occurring in individuals below 20 years of age (4).

Owing to the application of risk-adapted therapy and
improved supportive care, the 5 years survival rate for children
with ALL has significantly increased from 57 to 92% over time
(5–10). However, relapses still occur in 20% of children with
ALL (11) and are associated with a poor outcome (12). In adults,
the frequency of high-risk leukemia and relapse risk is higher;
implementing pediatric ALL treatment algorithms has led to
substantial improvements in adult ALL. Nevertheless, 40–50% of
adult patients still relapse (13, 14). This can be partly attributed to
the higher incidence of high-risk molecular aberrations in older
patients and also to the fact that older patients are less fit to
tolerate intensive treatments.

ALL is the first neoplasm where the assessment of early
response to therapy by minimal residual disease (MRD)
monitoring has proven to be a fundamental tool for guiding
therapeutic choices. At present, MRD detection is used for:
the assessment of initial treatment response and subsequent
definition of MRD-based risk groups with consequent risk-
stratification; monitoring disease burden in the setting of stem
cell transplantation (SCT); early marker of impending relapse.

METHODOLOGIES FOR MRD DETECTION

MRD is defined as any approach—including cytogenetics, flow
cytometry, PCR-based tools, and high throughput sequencing
methods—aimed at detecting and possibly quantifying residual
tumor cells beyond the sensitivity level of cytomorphology. To
be informative, MRD assays for ALL should allow to detect
one leukemic cell among 10,000 normal cells or more in
virtually all patients. Currently, the most standardized methods
to study MRD in ALL are: multi-parametric flow cytometry
(MFC) of leukemia-associated immunophenotypes (LAIP) and,
more so, polymerase chain reaction (PCR) amplification-based
methods that use leukemia-specific (fusion gene transcripts) or

patient-specific (immunoglobulin/T-cell receptor (IG/TR) gene
rearrangements) molecular markers (15–20).

Source of Material for MRD Evaluation
In the past, it has been debated if peripheral blood (PB), rather
than bone marrow (BM), could be used for MRD monitoring,
regardless of the technique used (MFC or PCR). It is nowadays
clear that the scenario is different between B-lineage and T-
lineage ALL: in fact, in BCP-ALL, MRD levels tend to be 1–3
logs lower in PB than in BM (21, 22) and that bone marrow
assessments cannot be replaced by blood analyses; at variance,
in T-ALL, it has been shown—both in children and adults—that
PB is a reliable source for MRD monitoring since there are no
significant differences with BM and therefore they could be used
as an alternative source. Nevertheless, also in T-lineage ALLMRD
assessments are normally carried out on BM samples.

Multi-Parametric Flow Cytometry Analysis
This approach takes advantage from the presence of proteic
epitopes (antigens) in the nucleus, cytoplasm or surface of
the cell, which are sequentially acquired during normal cell
development. Antigens are differently expressed by B- and T-
lymphoblasts, and their expression is assessed by quantification
of the signal emitted by fluorochrome-conjugated-specific
monoclonal antibodies (MoAb). The LAIP must be identified
at diagnosis, before any therapy in each ALL case, by
comparing the marker profile of leukemia cells to reference bone
marrow samples, through various combinations of monoclonal
antibodies against surface, cytoplasmic, or nuclear leukocyte
antigens. A second approach is represented by the so-called
“different from normal (DFN)” analysis, which defines leukemic
blasts by recognizing immunophenotypic changes with respect
to a normal counterpart population (either hematopoietic
progenitors of similar lineage and maturational stage) thought
the evaluation of antigenic patterns expression (23). This tool has
the advantage of studying MRD without the need of a diagnostic
immunophenotype, but it requires standardization and needs
further implementation.

During the years, antibody-conjugated fluorochromes were
developed to increase the number of “colors;” further advances
in the field increased the possibility of studying a great number
of functionally distinct lymphocyte populations in human PB
(24–26). The introduction of violet lasers (405 nm) and of
nanocrystals (called quantum dots) or organic polymers capable
of conducting electrons (27) led to the current MFC capable
of analyzing up to 18 colors in a single cell (28). At present,
the most commonly used MFC panels comprise 6–8 MoAb
combinations. The refinement of MFC has required a parallel
advancement in hardware, software and reagents. Engineering
advances in optics and signal processing (digital electronics) are
areas of active development (24, 29). Different software packages
are now available, including FACSDivaTM [Becton Dickinson],
KaluzaTM [Beckman Coulter], FlowJoTM [www.treestar.com],
CytobankTM [www.cytobank.org], SPICETM [http://exon.niaid.
nih.gov/spice/], SamSPECTRALTM [R-package], FLAMETM,
SPADETM [www.cytospade.org], FlowTypeTM [R-package],
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FlowCAPTM [flowcap.- flowsite.org], GemStoneTM [www.vsh.
com], InfinicyteTM [www.infinicyt.com].

Flow cytometry can be successfully applied to the majority
of cases (>90%) and can reach a sensitivity of 10−3-10−4 (one
leukemic cell out of 1000–10,000 normal cells) (Table 1 and
Figure 1) (30). Flow cytometry analysis is quick, can releaseMRD
evaluations in few hours, and is, therefore, also useful to assess
the therapeutic response following the first 2 induction weeks
(31). However, some limitations exist, such as the fact that the
samples must be analyzed shortly after collection to avoid cell
death, a problem when shipment is required for the centralized
evaluation of MRD referral laboratories. Furthermore, (a) post-
induction regeneration of normal lymphoid cells co-expressing
some ALL-type antigens can lead to false positive results in B-
ALL cases, (b) the bone marrow sample hypocellularity and,
in some patients, phenotypic shift can induce erroneous or
difficult interpretations (32, 33). The EuroFlow Consortium
has optimized and standardized immunostaining protocols for
the diagnosis, classification and prognostic subclassification of
hematologic malignancies, as well as for the detection of MRD
during the clinical follow-up; however, experienced operators are
still needed to correctly evaluate MRD results (34, 35).

Molecular Analysis
Antigen-Receptor Gene Rearrangements
The most commonly used technique is the molecular study based
of antigen-receptor gene rearrangements. Immunoglobulin and
T-cell receptor (IG/TR) gene rearrangements are physiological
events not directly linked to the pathogenesis of the leukemia.
During B- and T-lymphocytes ontogeny, the IG and TR genes
are assembled by a somatic rearrangement process. The separated
gene segments encoding the V, D, J regions are combined
to form a single exon encoding the variable region. In this
process, some nucleotides are randomly deleted or inserted
at junctional sites of each segment, leading to final receptor
sequences unique to each B or T lymphocytes (36). In the
case of a neoplastic transformation of a single lymphoid cell,
all leukemic cells will contain the same rearranged clonal
IG and/or TR genes; this approach can also be exploited to
detect a low number of ALL cells among a large number of
normal lymphoid cells expressing gene rearrangements with
different sequences. The study of these rearrangements has
become the most sensitive method to assess the clonality of a
lymphoid expansion. Although IG rearrangements are mostly
found in B cells and TR rearrangements in T- lymphocytes,
both B-lineage and T-lineage leukemic cells can display cross-
lineage rearrangements, which can be used for MRD evaluation
(37, 38): up to 90% of precursor B-ALL may express TR
gene rearrangements (38) whereas a lower proportion of
T-ALL (20%) shows IG rearrangements (39). To identify
these molecular markers at diagnosis, genomic DNA derived
from leukemic cells need to undergoes a PCR amplification
process and the positive PCR products are then analyzed
by heteroduplex or gene scan (40, 41) to establish clonality.
Subsequently, clonal PCR fragments undergo Sanger sequencing
to define the junctional regions and obtain complementary allele-
specific oligonucleotide (ASO)-primers for MRD monitoring,

mostly performed by real-time quantitative PCR (RQ-PCR).
Amplification conditions and sensitivity testing for each ASO-
primer are established on the diagnostic material serially diluted
in normal mononuclear cells. This RQ-PCR protocol combined
with fluorescently labeled probes allows the detection of up
to 1 leukemic cell in 100,000 (10−5) normal lymphoid cells
and leukemia cell dilutions are therefore used to quantify
MRD in bone marrow samples collected during treatment
(42) (Table 1 and Figure 2). This technology can generate at
least one single sensitive molecular probe suitable for MRD
analysis in over 90% of pediatric (18) and adult (43, 44)
ALL patients.

Antigen-receptor gene rearrangements analysis is the most
broadly applied method for MRD detection and has been
extensively standardized within the EuroMRD Consortium
(previously known as European Study Group- ESG-MRD-ALL)
that established guidelines for the analysis and interpretation
of RQ-PCR data (16) to favor an homogeneous application of
MRD studies within different treatment protocols for childhood
and adult ALL. Of note, a small percentage of ALL, mostly
those originating from more immature cells, does not carry
IG/TR gene rearrangements and occasionally technical failures
can impair MRD target identification. Overall, it is not possible
to perform RQ-PCR-based MRD assessments in about 5–10% of
ALL cases. Another limitation of this approach is represented
by clonal evolution of IG/TR rearrangement patterns during
the course of the disease and at relapse, which can sometimes
occur in cases with oligoclonal rearrangements leading to false
negative MRD results (45). These events depend on the type of
marker, disease and time to relapse (i.e., early or late relapse).
The amount of diagnostic DNA is another problematic factor
for this type of MRD assessment, because diagnostic DNA is
needed for each MRD experiment, as well as for the detection
of IG/ TR clonal rearrangements, being the quantification related
to the tumor load at diagnosis. Finally, RQ-PCR is not able to
define precisely the amount of residual disease in those cases
in which the disease burden is very low. These cases with low
MRD levels are defined as “positive-not-quantifiable” (PNQ)
and their identification represents today a primary unmet need
in the clinical practice when treatment decisions are based on
MRDmonitoring.

Fusion Transcripts
Another method for molecular MRD detection and monitoring
is based on fusion transcript analysis. Overall, more than 40%
of ALL patients carry chromosomal translocations that generate
chimeric transcripts: these are potentially ideal targets for MRD
assessment (46, 47), since they are main driver events, are
expressed in all leukemic cells and are extremely stable during
the course of the disease. Within B-lineage ALL, the most
common translocation detected in adult cases is the (9, 23),
also called Philadelphia chromosome, leading to the BCR-ABL1
rearrangement (25–30% of cases); its frequency increases with
age, being detected in about 50% of cases above the age of 50
years. At variance, the most common chimeric transcript in
pediatric patients is represented by ETV6-RUNX1, that accounts
for 25–30% of childhood ALL. Other fusion transcripts are

Frontiers in Oncology | www.frontiersin.org 3 August 2019 | Volume 9 | Article 726

www.vsh.com
www.vsh.com
www.infinicyt.com
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Della Starza et al. MRD in ALL

TABLE 1 | Technical comparison of MRD standard methods.

Method Target Applicability Material Quantification Sensitivity Advantages Disadvantages

Multicolor flow

cytometry

Leukemia-

associated

immunophenotypes

>90% Cell suspension

(peripheral blood,

bone marrow,

needle aspirates of

several tissues)

Absolute 3–4 colors:10−3/10−4

6–8 colors: 10−4
Fast

Widely applicable

Single cell analysis

Easy storage of data

Information on whole

population

Standardized

Relatively sensitive

Operator dependent

Relatively expensive

Cell number available

Real-time

quantitative

(RQ) PCR

Recurrent fusion

genes

30–40% Nucleic acid

(RNA/DNA)

Related to cell line

or plasmid DNA

(on RNA)

Related to

diagnosis

(on DNA)

10−4/10−5 High sensitivity

Rapid

Relatively easy

Stable throughout treatment

Well standardized on DNA

Applicable to specific

leukemia subgroups:

BCR-ABL1 & KMT2A-AF4

Limited applicability

(target-negative in >50%

of patients)

RNA instability

Risk of contamination

Limited standardization

on RNA

Relatively expensive

on DNA

Real-time

quantitative

(RQ) PCR

IG/TR gene

rearrangements

90–95% Nucleic acid (DNA) Related to

diagnosis on DNA

10−4/10−5 High sensitivity

Good applicability

Well standardized:

international guidelines for

analysis and

data interpretation

Dependent on

ASO-primer

Laborious and time

consuming

Affected by clonal

evolution

Large amount of

diagnostic DNA

Relatively expensive

FIGURE 1 | An example of standard flow cytometry MRD analysis. Sample preparation from peripheral and/or bone marrow blood requires staining with fluorescent

conjugate antibodies. Data acquisition requires: (1) the stained cells through a laser beam, (2) registration of fluorescence emission from conjugate cells. This is

followed by data analysis with a specific software.

KMT2A (alias MLL)-AFF1 and TCF3-PBX1 each accounting
for 3–8% of cases, regardless of age. Infants (i.e., <1 year)
carry a KMT2A gene rearrangement in 80% of cases. In T-
ALL, TAL1 deletions (SIL/TAL1) occur in about 20% of T-ALL
(48). Other rarer translocations in T-ALL involve the ABL1
gene (NUP/ABL1, EML1/ABL1, ETV6/ABL1). Because most of

these chromosomal abnormalities have prognostic value, their
detection must be performed in all cases at diagnosis (49) so
that each patient can be monitored for MRD using a predefined
marker throughout the course of the disease. Due to the large
DNA portion in which the translocation breakpoints occurs,
a patient-specific tool for MRD evaluation cannot be easily
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FIGURE 2 | An example of RQ-PCR MRD analysis by a IGHV gene rearrangement according to EuroMRD Consortium guidelines. Patient-specific primers are used to

detect malignant cells among normal lymphoid cells during follow-up. Serial dilutions of the diagnostic DNA in DNA from healthy donors are performed to verify the

sensitivity and specificity of each designed primer and of each PCR assay (A), and to obtain a regression curve (B) for the precise quantification of fluorescent levels at

the single time points. Afterwards, the primer suitable for analysis is used for MRD study (C). A control gene analysis (i.e., albumin) must be performed for the

diagnostic and for each follow-up sample, in order to assess the amount and quality (amplificability) of the DNA in each reaction (D).

obtained; at variance, the RNA splicing process produces in
all patients the same fusion transcript or few splicing variants.
Thus, RNA is the optimal starting material to detect these
lesions, allowing the use of a small number of quantitative-
reverse transcriptase PCR (QRT-PCR) assays (50). This offers the
opportunity to apply the same primer set to all patients bearing
the same translocation, leading to an easy and rapid fusion
transcript evaluation at diagnosis and during treatment (47).

Quantification of the fusion gene using RNA samples is
achieved by comparing the amplified product to a standard
curve derived from the amplification of serial dilutions of
a cell line or plasmid DNA (i.e., BCR-ABL1+). This highly
sensitive MRD assay is capable of detecting up to 1 leukemic
cell within 100,000 (10−5) normal lymphoid cells, is not patient-
specific, is relatively easy to perform and is not expensive
(Table 1). However, the accuracy of this assay is hampered
by the variability in the number of RNA transcripts per
leukemic cell from patient to patient, and among different
cells within the same leukemic clone. A full standardization
is still not available and the EuroMRD Consortium is setting
up guidelines for the correct interpretation of quantitative
data (51).

At variance from the BCR/ABL1 rearrangement, in patients
displaying other recurrent chromosomal translocations (i.e.,
KMT2A gene rearrangements and SIL/TAL1), quantification
of the fusion gene is well standardized within the EuroMRD
Consortium (52, 53).

New Methods for MRD Detection and
Monitoring: Next-Generation Flow
Cytometry, Digital-Droplet-PCR, Next
Generation Sequencing
The advent of RQ-PCR (54) has represented a significant
advancement with respect to conventional PCR based methods.
However, the measurement of a dynamic process, such as the rate
of target amplification, carries some intrinsic fluctuations that
cannot be to fully eliminated: (a) non-specific amplification of
spurious IG/TR rearrangements are hardly distinguishable from
cases positive at a very low level (PNQ) in RQ-PCR, with an
intrinsic risk of false positive/negative MRD detections; (b) the
use of RQ-PCR can be limited by the lack of sufficient diagnostic
material since the method is based on the comparison, for each
experiment, with a standard curve based on neoplastic DNA
collected at the onset of the disease, and this can limit the
possibility of monitoring patients over time.

The novel next generation flow (NGF)-MRD approach

takes advantage of innovative tools and procedures recently
developed by the EuroFlow Consortium for sample preparation,
antibody combinations (including choice of type of antibody
and fluorochrome), and identification of B-cell precursor (BCP)
pathway in the BM, which allows to define the degree of
immunophenotypic deviation of BCP-ALL cells from normal
BCP (also in regenerating BM). Also for T-ALL a comparable
strategy is used to obtain reliable (evidence-based) antibody
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combinations, in order to discriminate from various types
of normal T cells and other cells with cross-lineage marker
expression (55, 56).

NGF-MRD is faster and reproducible, it has a greater
applicability (>95%). Moreover, the costs of reagents and
assays are estimated to be lower than those of NGS (57).
However, it requires fresh material analyzed within 24 h after
sampling. Finally, NGF-MRD strategies provide a full insight
into the composition of normal cells and aberrant cells, and
can help to better characterize ALL cell population changes
such as treatment-induced immunophenotypic shifts (58, 59),
heterogeneity in the blast cell population with a de-differentiation
to immature stem like-cells and aberrations in other lineages.

A similar applicability associated with a significantly
increased sensitivity for the novel EuroFlow-NGF approach
vs. conventional flow-MRD has been described in multiple
myeloma (59); NGF-MRD reaches a sensitivity close to 10−6,
while conventional flow tools reach sensitivities in the range
of 10−4-10−5 (Table 2 and Figure 3). The greater sensitivity of
NGF-MRD is mostly due to the use of standardized approaches,
including instrument setting, sample processing with bulk
lysis procedure, immunostaining, data acquisition, and data
analysis with standardized (even automated) gating strategies for
definition of cell populations (59). However, the acquisition of a
large number of cells is needed to reach the required sensitivity.

In the forthcoming decade, the new flow technologies will
improve applicability and specificity of flowMRDmeasurements.

The digital PCR technology (ddPCR) (61) based on sample
partitioning (mimicking limiting dilution) and Poisson statistics,
has the potential to overcome the limitations of RQ-PCR. DdPCR
(62, 63) is the third-generation implementation of conventional
PCR that allows the quantitation of nucleic acid targets without
the need of the calibration curves (64). As reported in several
studies (65, 66), based on the dynamic nature of two methods,
ddPCR appears more accurate than RQ-PCR since: (i) each
sample is partitioned in droplets and each droplet is analyzed
individually, (ii) small changes in fluorescence intensity are
more readily detected, and (iii) the ratio between target DNA
molecules to PCR reagents is substantially higher; this increases
its amplification efficiency (67). Finally, the presence of inhibitors
negatively affects the RQ-PCR efficiency but not that of ddPCR
(68) (Table 2 and Figure 4).

Moreover, RQ-PCR, as an exponential process, is able to
greatly amplify even small differences in reaction efficiency,
leading to discrepancies in the final results with 68%
confidence intervals (http://www.biorad.com/webroot/web/
pdf/lsr/literature/Bulletin_6407.pdf).

ddPCR is an endpoint measurement with 95% confidence
intervals, as reported by the manufacturer’s application guide.
The ddPCR technology has been applied to various fields of
medical diagnostics, in particular in molecular oncology (62, 64,
65) and in prenatal diagnosis (69, 70). Several reports on the
use of ddPCR in hematologic malignancies (71–74) are available
in the literature. Three recent articles, including two from our
Center, have compared ddPCR to RQ-PCR in adult patients
affected by mature lymphoid malignancies and in Ph- ALL
(75–77). These studies have established analytical parameters

to investigate the applicability of ddPCR for MRD detection
and concluded that ddPCR has a sensitivity, accuracy and
reproducibility at least comparable to that of RQ-PCR. Regarding
MRD evaluations, some discordances have been observed at
very low disease levels; in this setting, ddPCR showed a good
analytical performance to quantify those low positive samples
defined as PNQ by RQ-PCR or to identify the false MRD+
cases. These results have been confirmed from our group in a
wider comparative analysis including 175 patients with different
lymphoid malignancies (78) (Figure 5). Recently, the clinical
significance of ddPCR has been reported in a pediatric cohort
of ALL patients (79). The authors showed that among “slow
early responder” patients, most relapses occurred in cases with
quantifiable ddPCR MRD at day +78, while patients with a
negative or PNQ MRD by ddPCR at day +78 had a better
outcome, emphasizing that high-risk treatment could be offered
only to ddPCR quantifiable cases.

No established guidelines for ddPCR MRD analysis and
interpretation have so far been defined. A major standardization
effort is underway within the EuroMRD Consortium.

Several groups have shown the value of next-generation

sequencing (NGS) technologies for MRD detection in precursor
and mature B-cell tumors (80–82) NGS can be used to detect
clone-specific IG/TR index sequences; clonal sequences detected
at diagnosis can be re-detected and quantified in each follow-
up sample. By using universal primers, this method allows
to monitor all IG/TR gene rearrangements at the same time,
providing a complete picture not only of the residual leukemia
but also of the normal immune repertoire (82).

Sensitivity is a critical aspect in MRD detection. Methods
allowing a sensitivity higher than 10−5 (routinely achieved by
RQ-PCR) might be of interest to identify very low-level disease.
Studies using the NGS platform in ALL and chronic lymphocytic
leukemia have demonstrated that a sensitivity level of 10−6 (81,
83) is achievable when higher amounts of DNA are used (Table 2
and Figure 6). This is reflected in the possibility of detecting
early clonal evolution, a relatively frequent occurrence in relapsed
ALL (84).

Many authors have reported that NGS appears more specific
than RQ-PCR in predicting relapse in ALL patients after
induction (82) as well as after allogenic SCT (85). A comparative
MRD analysis between RQ-PCR and NGS showed within
the Berlin Frankfurt Münster (BFM) trials a change in the
stratification risk, mainly due to different interpretations of
the two techniques within low-positive samples (82). The NGS
quantitative discrimination is always superimposable to the
sensitivity, whilst the RQ-PCR quantitative range is usually
inferior to the sensitivity threshold leading to cases which
are defined as PNQ, as previously described (81). Another
comparative analysis, performed at our Center, between RQ-
PCR, ddPCR andNGS has documented amore precise prediction
of relapse with the new methods compared to the standard
technique and a change in the adult ALL risk stratification (86).
However, NGS has a substantial intrinsic complexity and involves
major costs. Furthermore, at the moment robust and broadly
applicable NGS-based MRD standardized protocols are still
not available in academic laboratories. The Euroclonality-NGS
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TABLE 2 | Technical comparison of MRD novel methods.

Method Target Applicability Material Quantification Sensitivity Advantages Disadvantages

NGF Leukemia-

Associated

Immunophenotypes

>95% Cell suspension

(peripheral blood,

bone marrow,

needle aspirates of

several tissues)

Absolute 10−4/10−6 High sensitivity

High applicability

Fast and reproducible

Accurate quantification

Highly standardized with

possibilities for automated gating

Education and training required

Many cells needed to reach the

required sensitivity

Requires fresh material analyzed

within 24 h after sampling

Expensive

ddPCR IG/TR gene

rearrangement

90–95% Nucleic acid (DNA) Absolute 10−4/10−5 High sensitivity

Good applicability (90-95%)

no need of standard curve

easy

Dependent on ASO-primer

No standardized: no guidelines

for analysis and data

interpretation

Available in few labs

Relatively expensive

NGS IG/TR gene

rearrangements

>95% Nucleic acid (DNA) Absolute 10−4/10−6

(depending

on amounts

of DNA

analyzed)

High sensitivity

High applicability (>95%)

Potential to identify clonal

evolution

Provides information on

background repertoire of B and T

cells

Not dependent on ASO-prime

No standardized: no guidelines

for analysis and data

interpretation

Available in few labs

Discrimination from normal clonal

background

Need of a bioinformatic analysis

Expensive

FIGURE 3 | Schematic representation of normal and malignant B-cell precursor by multidimensional analysis based on EuroFiow-based NGF-MRD. This analysis is

not based on a single marker but on multiple required antigens, allowing to define the degree of immunophenotypic deviation of BCP-ALL cells from normal BCP,

visualized in multivariate analysis plots. (1) Representation of Automated population separation (APS) of physiological phases of B-cell maturation. (2) Plot of ALL cells

(red dots) with respect to normal BCP cells (green dots). (3) Plot of ALL cells (red dots) with respect to immature CD34+ BCP cells only (green dots). Adapted from

van Dongen et al. (60).

Consortium is working to standardize guidelines for analysis and
data interpretation.

Through the integration of these technologic innovations,
we are moving toward a system that can quickly integrate all
the information necessary for a more precise evaluation of
the response to treatment in ALL patients. ddPCR and NGS
appear to be feasible and attractive alternative methods for MRD
assessment that can help to classify more precisely cases that
RQ-PCR is unable to detect or quantify.

CLINICAL SIGNIFICANCE OF MRD

MRD in All Without Major Molecular
Transcripts
The clinical impact of MRD is now widely accepted and is
regarded today as the most important prognostic factor in the
state-of-the-art management of ALL. MRD can provide different

information, according to the timing in which it is performed
(very early during treatment, after induction/consolidation,
before and after SCT) and, more recently, it can be refined by
the evaluation of additional genomic markers.

It is now widely acknowledged that MRD detection should
be carried out with molecular methods, as it occurs in
European countries; at variance, in the United States MFC,
with few exceptions, is more commonly used, also for the
lack of standardized guidelines for molecular analysis and
data interpretation.

In the modern era, treatments include combination
chemotherapy for the achievement of a complete hematologic
and clinical remission (CR), followed by post-remission
consolidation therapy with or without SCT, plus an effective
central nervous system prophylaxis. Several pediatric and adult
ALL study groups have established informative checkpoints in
their respective treatment protocols. Among these, the initial
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FIGURE 4 | An example of ddPCR MRD analysis. In the (A) is reported a schematic diagram of a ddPCR experiment. 1-Step: the mix reaction is prepared with the

same primer/probes of the TaqMan assay. Both the reaction and the DNA samples are partitioned into 20,000 droplets of identical volume through a microfluidic

system. 2-Step: in a thermal cycler 20,000 PCR reactions are amplified and fluorescence is the output during the reaction of polymerization. 3-Step: a droplet reader

analyzes each droplet individually and detects an increased fluorescence in positive droplets, which contains at least one copy of target DNA. (B) Each droplet is

plotted on the graph of fluorescence intensity vs. droplet number (B1). The concentration is calculated on the fraction of empty droplets (green bar) that are the

fraction that does not contain any target DNA by software (B2). Fraction of positive droplets is fitted to a Poisson algorithm to determine absolute copy number,

results are presented in copies per 1-µL (B3).

FIGURE 5 | MRD analysis by both RQ-PCR and ddPCR in 504 follow up samples from 176 patients with several hematological malignancies (Acute Lymphoblastic

Leukemia, n = 80, Follicular Lymphoma, n = 48, Chronic Lymphocytic Leukemia, n = 40, Mantle Cell Lymphoma, n = 8). The study was performed on bone marrow

(BM) and peripheral blood (PB) samples, based on the material availability. MRD detection was concordantly positive or negative in 78% (393/504) of FU samples (r =

0.78, P < 0.0001), while 22% (111/504) were identified as discordant (A). Most of the discordances occurred in FU samples with a low level of disease - positive not

quantifiable or negative—and did not appear to cluster in specific disease subsets. Overall, the use of ddPCR significantly reduced the proportion of PNQ samples

compared to RQ-PCR (64/504 [13%] vs. 89/504 [18%], respectively) (p = 0.03), increasing the proportion of Q samples (212/504 [42%] vs. 169/504 [33.5%], p =

0.006). In (B) is reported the concordance rate (78%) between the two methods on all BM samples analyzed (unpublished data). Q, positive and quantifiable; PNQ,

positive and not quantifiable; NEG, negative.

MRD response to therapy is a relevant prognostic factor in
both childhood and adult ALL (87, 88); indeed, MRD negativity
at very early time points during induction therapy correlates
with a particularly good outcome both in childhood and adult
ALL, and is indicative of a high sensitivity to chemotherapy.
In children, it has been shown that MRD negativity achieved
as early as at day 15 correlates with an excellent outcome;
in adults, the early evaluation of MRD is usually carried out
at a later timing (i.e., end of induction, week 4) and it again
correlates with better survival rates. Some studies have reported
that patients with a very rapid tumor clearance after 2 weeks of

therapy have a very good prognosis (31, 89). Along the same
line, in a MFC-based trial, high levels of disease at day 14 of
treatment (>30%) identified a small subgroup of patients with
a particularly poor prognosis and a median event-free survival
(EFS) and overall survival (OS) of only 9 and 21 months,
respectively; however, MRD evaluation was not significant if
evaluated at CR achievement (90). It must be again underlined
that in European protocols the use of MFC for MRD evaluation
is normally substituted by molecular techniques.

The other time points that hold prognostic significance are
the end of induction/early consolidation. Indeed, the first pivotal
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FIGURE 6 | An example of NGS MRD analysis. (A) starting from genomic DNA, a library is prepared by fragmentation and conjugation with adaptive sequences,

composed with few nucleotides. The library is subsequently amplified and sequenced, with the production of so-called ≪reads≫. (B) Data analysis is performed

through the use of bioinformatic tools, that align experiment-derived reads to a reference genome.

study on molecular MRD analysis was carried out by the German
Multicenter Study Group for Adult ALL (GMALL) on a large
cohort of Ph- patients with standard-risk and high-risk features
(n = 580 in CR) that showed that the molecular response to
standard induction and consolidation treatment was the only
significant prognostic factor for remission duration and survival
in both risk groups (91). These data have been confirmed by
others groups, regardless of the cut-off values, MRD technique,
timing of MRD analysis and the target patient population chosen
(92–94). The PETHEMA group evaluated the role of MRD (by
flow-cytometry, cut-off: 5× 10−4) in 326 adult high-risk Ph- ALL
and confirmed that the only prognostic factor was represented
by MRD persistence after induction and early consolidation
(92). The GRAAL conducted an analysis on 955 patients to
assess the role of SCT, taking into account also MRD after
induction (week 6, cut-off: 10−3), and again showed that the role
of MRD persistence is not abrogated by transplant procedures
and that MRD-negative patients could be spared this approach
(93). The Northern Italian Study Group (NILG) performedMRD
evaluations starting from the end of induction (week 4) and then
at weeks 10, 16, and 22 in an adult patient population to assess
the feasibility and efficacy of liposome-encapsulated cytarabine
for central nervous system prophylaxis along with the use of
lineage-targeted systemic methotrexate blocks (2.5 and 5 g/m2 in
B- and T-lineage ALL, respectively) and other intensive pediatric-
like elements (94). The early MRD response at weeks 4 (end of
induction) and 10 had a profound prognostic effect. The relapse
risk was very low (17% at 5 years) in the group of week 4 MRD
responders and significantly lower (28%) than in non-responders
(57%) when week 10 MRD results were examined. Similar results
have been preliminary confirmed in the subsequent GIMEMA
LAL 1913 (95).

Pivotal studies on the clinical role of MRD in Ph-ALL are
summarized in Table 3.

MRD in Ph+ All
The Ph chromosome, leading to the BCR/ABL1 rearrangement,
defines the more frequent high risk ALL subset in adults. It is
found in 25–30% of patients and its incidence increases with
age progression (101). Ph+ ALL was previously regarded as
the subgroup with the worse outcome: the introduction of TK
inhibitors (TKI) such as imatinib, dasatinib, and ponatinib (102–
106), has led to the achievement of a CR in virtually all patients,
to improve disease-free survival (DFS) and OS, and to increase
the percentage of patients who can undergo a SCT. A common
therapeutic approach for adult Ph+ ALL patients is based on
the use of a TKI, with or without systemic chemotherapy for CR
induction, followed by consolidation and when possible SCT. As
in Ph- ALL, MRD has an important role in the management of
this disease. The GIMEMA has clearly shown that the degree
of MRD reduction correlates with improved DFS, regardless
of the inhibitor used (107). Lee and colleagues showed that
also the timing of MRD clearance is important for patients’
stratification: in fact, patients who display a very early clearance
have a significantly better outcome (108).

Pivotal studies on the clinical role of MRD in Ph+ ALL are
summarized in Table 4.

In Ph+ ALL, MRD can also drive therapeutic decisions:
indeed, a persistent MRD positivity and/or its reappearance
can underlie the presence of resistant mutations, particularly
the T315I for which alternative approaches, including novel
TKIs (namely ponatinib) and/or therapies based on the
combination of TKI with immunotherapeutic strategies,
particularly blinatumomab have been evaluated (116).
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TABLE 3 | Pivotal studies on MRD prognostic value on Ph– ALL.

Study MRD methodology and cut-off MRD time points

Basso et al. (31) Flow cytometry Day 15

UKALL XII/ ECOG2993 trial

Patel et al. (96)

RQ-PCR of Ig/T-cell receptor gene rearrangements, among others;

MRD–: RQ-PCR <10−4
After phase 1 and 2 induction and after intensification

Joint analysis of EWALL

Giebel et al. (97)

Flow cytometry or PCR-based;

MRD–: <0.1% of bone marrow cells

Before HSCT

GMALL

Gökbuget et al. (91)

RQ-PCR of Ig/T-cell receptor gene rearrangements;

MRD– with assay sensitivity of ≥10−4
Day 71 and at week 16

NILG-ALL 09/00 trial

Bassan et al. (98)

RQ-PCR of Ig/T-cell receptor gene rearrangements;

MRD–: <10−4
Weeks 16 and 22

PETHEMA ALL-AR-03 trial

Ribera et al. (92)

Flow cytometry;

MRD-: 5 × 10−4
After induction and early consolidation

Salah-Eldin et al. (99) RQ-PCR of clonally rearranged Ig;

MRD– with assay sensitivity of ≥10−3
After induction and after consolidation

GRAALL trials

Dhèdin et al. (93)

RQ-PCR of Ig/T-cell receptor gene rearrangements;

MRD–: ≤10−3
Week 6

NILG 10/07 trial

Bassan et al. (94)

RQ-PCR of Ig/T-cell receptor gene rearrangements;

MRD–: <10−4
Week 10

Salek et al. (89) Flow cytometry or PCR-based;

MRD–: <10−4 with assay sensitivity of ≥10−4
At the beginning of each chemotherapy cycle and at the

end of the second induction cycle

Short et al. (90) Flow cytometry;

MRD– with assay sensitivity of 0.01%

At the time of CR or CRp and again 3 months later

Berry et al. (100)* Flow cytometry or PCR-based;

MRD–: ≤0.01%

After induction and after consolidation

Gökbuget et al. (88) RQ-PCR of clonally rearranged Ig or Flow cytometry;

MRD–: <10−4 by RQ-PCR or ≤10−3 by flow cytometry

Baseline MRD status, defined as MRD persistence or

MRD reappearance

*Based on metanalysis of previously published data.

An open issue in this setting is represented by the cases who
are persistently MRD negative; in fact, while in the past SCT
was considered mandatory in all Ph+ ALL patients, if clinically
fit, it is currently debated if these patients might be spared this
procedure, in line with the clinical policy routinely applied to Ph-
ALL (102–107, 113, 115).

Finally, there is growing interest in evaluating MRD using
more than one marker: in pediatric Ph+ ALL, Hovorkova
and colleagues (53) showed that roughly 20% of children have
significantly higher BCR/ABL1 levels (assessed by evaluating
both genomic DNA and RNA fusion levels) than IG/TR or IKZF1
deletions, indicating that the BCR/ABL1 signal arises from other
hemopoietic cells. Along the same line, Cazzaniga et al. (117)
showed that MRD positivity after induction and consolidation
(evaluated by IG/TR) is strongly associated with relapse. A formal
comparison between IG/TR and BCR/ABL1 evaluation showed
comparable results in terms of relapse risk: however, concordance
between the two techniques was only 69% and, again, BCR/ABL1
levels were significantly higher than IG/TR. In the adult setting,
Clappier et al. (118) evaluated IG/TR and BCR/ABL1 levels
(using genomic DNA and RNA) and again proved that there is
an overall poor concordance between genomic DNA BCR/ABL1
and IG/TR results (correlation coefficient = 0.51), while a good
concordance is detected between genomic and RNA BCR/ABL1
levels (correlation coefficient = 0.8). Furthermore, the authors
showed that there are two subsets of patients: the first group with
concordant MRD results and the second displaying discordant
results among IG/TR and BCR/ABL1, with BCR/ABL1 levels

being higher. Interestingly, discordant cases harbor more often
the p210 protein isoform, and have less frequently IKZF1
deletions, again suggesting that the BCR/ABL1 signal derives
from other cells rather than lymphoblasts and that these cases
might resemble a “CML-like” subset. At present, however, it is not
defined which marker is most suitable for therapeutic decisions.

MRD and Stem Cell Transplantation
As mentioned, MRD after induction/early consolidation is the
most important decision-making parameter for on allogeneic
transplant, a procedure still aggravated by transplant-related
mortality and toxicity, observed in about 20% of patients (119,
120). In addition, several studies have analyzed the prognostic
impact on outcome of a MRD (+) status at the time of SCT
(121, 122) and others have shown the prognostic relevance of
pre-transplant MRD assessment in adults (98, 101, 123). In
particular, Bassan et al. (98) showed that patients with MRD
levels≥10−3 at week 16 and/or week 22 (i.e., after consolidation)
had a worse post-transplant outcome with a 6 years relapse
incidence of 64% compared to 23% in patients with MRD
levels <10−3. A recent metanalysis on 21 published reports,
including over 2,000 patients, confirms that a pre-transplant
positive MRD is a significant negative predictor of relapse-free
survival (RFS), event-free survival (EFS), and OS; as expected,
a positive MRD prior to transplant was not associated with
a higher rate of non-relapse mortality (124). Taken together,
these results show that MRD evaluation before transplant is
extremely useful for treatment intensification, since we can
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TABLE 4 | Pivotal studies on MRD prognostic value on Ph+ ALL.

Study MRD methodology and definitions MRD time points

Foà et al. (103) RQ-PCR for BCR-ABL1 transcript and flow cytometry; Molecular

response defined as a BCR-ABL1/ABL1 <10−3; Flow cytometry

sensitivity: 0.01%;

Days 22, 43, 57, and 85

Mizuta et al. (109) RQ-PCR for BCR-ABL1 transcript (sensitivity at least of 10−5);

MRD–: BCR-ABL1/GAPDH <10−5
Before and at HSCT

Lee et al. (108) RQ-PCR for BCR-ABL1 transcript;

MRD– [BCRABL1/ABL1 ratio ≤0.1%] or CR [undetectable

BCR-ABL1]

After 2 courses of chemotherapy, before HSCT

Pfeifer et al. (106) RQ-PCR for BCR-ABL1 transcript;

Low MRD level defined as a BCR–ABL1/ABL1≤10−4
After HSCT

Ravandi et al. (110) RQ-PCR for BCR-ABL1 transcript, flow cytometry and IGH-PCR:

Major molecular response (MMR) defined as a

BCR-ABL1/ABL1<0.1%;

IGH-PCR sensitivity: ∼0.2–1%.

Flow cytometry sensitivity: 0.01%;

At the end of induction and at ∼3 months intervals thereafter

GIMEMA 1509 trial

Chiaretti et al. (111)

RQ-PCR for BCR-ABL1 transcript;

Complete molecular response (CMR) defined as

BCR-ABL1/ABL1 = 0

Day 85

Kim et al. (112) RQ-PCR for BCR-ABL1 transcript (sensitivity at least of 10−5);

MRD–: BCR-ABL1/GAPDH ratio < =10−5
Every 3 months from CRh until end of maintenance therapy

Chalandon et al. (102) RQ-PCR for BCR-ABL1 transcript;

Molecular CR defined by the absence of detectable MRD with a

sensitivity of at least 0.01%

After cycle 1 and cycle 2

NILG 09/00 and 10/07

trial

Lussana et al. (113)

RQ-PCR for BCR-ABL1 transcript;

MRD–: BCR-ABL1/ABL1 <1 × 10−5
Before HSCT

Ravandi et al. (114) RQ-PCR for BCR-ABL1 transcript, flow cytometry and IGH-PCR:

Major molecular response (MMR): BCR-ABL1/ABL1 <0.1%;

IGH-PCR sensitivity: ∼0.2–1%.

Flow cytometry sensitivity: of 0.01%.

Day 21 and then every 2–3 cycles during the intensive phase,

and approximately every 3 months during the maintenance

phase

Nishiwaki et al. (115) RQ-PCR for BCR-ABL1 transcript (sensitivity at least of 10−5);

MRD–: BCR-ABL1/GAPDH ratio <10−5
Within 30 days prior to HSCT

Chiaretti et al. (107) RQ-PCR for BCR-ABL1 transcript;

Complete molecular response (CMR) defined as

BCR-ABL1/ABL1 = 0

Day +35, +50, and post consolidation

Yoon et al. (104) RQ-PCR for BCR-ABL1 transcript;

MMR was defined as BCR-ABL1/ABL1 ≤0.1% for p210 or a

reduction in the BCR-ABL1 transcript level by at least 3-log for

p190. Complete molecular response defined as the absence of

detectable BCR-ABL1transcripts

During TKI-based chemotherapy, before HSCT

offer the opportunity to adequately use immunotherapeutic
compounds (e.g., blinatumomab, inotuzumab, and in the
future possibly CAR-T cells) aimed at obtaining a MRD
negative status.

With regard to the post-transplant setting, MRD monitoring
has been much less frequently used after SCT because donor
chimerism monitoring provides an alternative for early relapse
detection; nevertheless, it has been shown that a IG/TR-
based MRD assessment allowed an earlier and more specific
detection of an impending relapse compared to chimerism
analysis, showing that MRD positivity was an independent
significant predictor of risk of relapse (125). Another MFC-
based trial showed that patients with evidence of MRD
after SCT had significantly worse outcomes compared to
patients without evidence of MRD (126). In the pediatric
context, pre-SCTMRD resulted the only independent prognostic

factor in a multivariate analysis and after-SCT MRD is
considered a reliable marker for early detection of impending
relapses (127, 128).

Relapse and Clonal Evolution
At relapse, molecular evaluation of IG/TR markers previously
used for MRD monitoring might be useful to confirm the
persistence of the same clone. However, it has some potential
pitfalls, mostly represented by the phenomenon of clonal
evolution. The analysis of all molecular markers at first diagnosis
and at the time of relapse may reveal a different origin of the
predominant clone (84, 129). Indeed, the loss of a molecular
marker at relapse, or the expansion of a clonal marker expressed
at the subclonal level at diagnosis, is a relatively frequent
event: therefore, MRD assessment should be carried out with
several targets (84). Finally, it must be reminded the clonal

Frontiers in Oncology | www.frontiersin.org 11 August 2019 | Volume 9 | Article 726

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Della Starza et al. MRD in ALL

evolution can vary according to the site of relapse (medullary
or extramedullary).

MRD and Novel Markers
The extensive characterization of the genetic bases of ALL is
leading to an attempt of combining MRD with other markers:
a pivotal study was carried out by the GRAAL group (130) which
evaluated 423 young adults with Ph- ALL in first remission (both
B- and T-lineage ALL), demonstrating that a higher risk of relapse
was associated with MRD persistence and can be further refined
by the presence of IKZF1 deletions in B-lineage ALL, and by the
absence of NOTCH1/FBXW7 mutation, and/or by the presence
ofN/K-RASmutation and/or PTEN gene alteration in T-cell ALL.

Likewise, in childhood ALL, the generation of a risk score
based on the combination of MRD at day 33, the presence
of IKZF1 intragenic deletion and P2RY8-CRLF2, which proved
more discriminative of outcome that MRD evaluation alone, has
been recently reported (131).

MRD and Novel Agents
Novel therapies, such as monoclonal antibodies, bispecific T-cell
engagers, or chimeric antigen receptor T cells (CART), are an
exciting advancement in the immunotherapeutic treatment of
relapse/refractory BCP-ALL. These new therapeutic approaches
make MRD an almost perfect therapeutic target, considering
that MRD+ patients harbor significantly less leukemic cells
and therefore a more manageable clinical profile than cases in
hematologic relapse.

Blinatumomab
Blinatumomab is a bispecific anti-CD19 and anti-CD3 construct
recruiting cytotoxic T cells against CD19+ blast T cells.
Blinatumomab can bridge malignant B cells directly to
CD3-positive T cells, bypassing TCR specificity and major
histocompatibility complex (MHC) class I molecules (132, 133)
and induces T-cell activation, release of inflammatory cytokine
production, specifically IL-2, IFN-γ, TNF-α, IL-4, IL-6, and
IL-10 (134). Blinatumomab is the first antibody approved for
treatment of refractory ALL and, more recently, for the treatment
of MRD+ patients. In relapsed/refractory ALL, blinatumomab
has led to morphologic responses ranging from 43 to 69% of
patients (135, 136) with 76 to 88% of responding patients being
MRD negative. Patients who achieved a negative molecular MRD
status had a longer survival than patients who remained MRD
positive (137, 138). In MRD+ patients, blinatumomab induced
a complete MRD response in 78% of cases and, as expected,
MRD responders has a longer RFS than non-responders. A small
fraction of completeMRD responders did not undergo transplant
and is still in continuous CR (139, 140).

Inotuzumab Ozogamicin
Inotuzumab ozogamicin is a conjugated antibody-drug (ADC)
consisting of a monoclonal antibody (mAb) directed to CD22,
an antigen present on the cancer cells of almost all patients
with B-cell precursor ALL, linked to a cytotoxic agent. When
inotuzumab ozogamicin binds to the CD22 antigen on B cells, it is
internalized in the cell, where the cytotoxic agent, calicheamicin,
is released to destroy the malignant cell. The drug is approved

for the treatment, in monotherapy, of relapsed/refractory adult
ALL patients CD22-positive. Patients treated with inotuzumab
ozogamicin reached response rates ranging from 58 to 81%, with
72–78% of these having MRD results below 0.01% (141, 142) by
flow cytometry assessment. While this compound appears to be
extremely effective in reinducing responses, it must be underlined
that CR duration is usually short, and therefore SCT must be
performed as soon as possible.

CAR-T
CAR-T cells are patient or, less frequently, donor-derived normal
T cells molecularly engineered to express a T-cell receptor
mediating cytotoxicity toward anti-CD19 (in most cases). After
CAR-T cells are infused into a patient, they act as a “living
drug” against cancer cells: they bind to the target, become
activated, proliferate and exert their cytotoxic activity. Several
groups have shown that most of the responding patients (both
children and adults) become MRD negative (at least by FCM)
(143–145) and maintain this status for several months or years
(146, 147). Data on the prognostic value of MRD in this
setting are still preliminary. However, differently from first-
line chemotherapeutic approaches, relapse is observed also in
patients reaching a MRD negativity, mostly because of the loss
of CD19. Therefore, MRD response in this setting seems to
be an essential but not sufficient criterion for the definition
of long-term remissions. Higher sensitivities or earlier MRD
assessments might be necessary to identify a subgroup of
patients with a particularly rapid and deep MRD response and
a better prognosis.

CONCLUSIONS

MRD is a powerful and independent predictor of outcome in
both children and adult ALL, during treatment, in the pre- and
post-SCT settings, with different prognostic meanings on the
base of the clinical context.

Molecular rearrangements (gene fusion and IG/TR gene
rearrangements) are widely used as targets to detect residual
leukemic cells in ALL patients, although new molecular markers
could be used for prognostic and therapeutic purposes, also to
improve the number of evaluable patients. The alterations of
IKZF1 and FLT3-ITD, might potentially represent new MRD
molecular targets

Technically, MFC and RQ-PCR are the most broadly applied
consolidated methods for MRD monitoring, although they
present intrinsic limitations that must necessarily be overcome.
ddPCR, NGS, and NGF, the standardization of which is
underway, have shown to be important tools to evaluate MRD
in the research setting, and will probably be soon incorporated
in clinical trials due to their ability to overcome the limitation of
standard approaches.

At present, the advent of powerful new agents such as
ponatinib for Ph+ ALL and novel immunotherapeutic agents
for B-lineage ALL (blinatumomab, inotuzumab ozogamicin) and
CAR-T cells are further improving CR andMRD negativity rates,
with benefits in long-term survival and a potential reduction
of therapy-related toxicities. However, the prognostic relevance
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of MRD in the setting of novel immunotherapies still needs to
be evaluated.

In the next future, MRD will certainly be the main
tool to design innovative treatment algorithms including
immunotherapeutic strategies and possibly sparing
chemotherapy/transplant with the final aim of curing always
more patients with ALL.
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