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Introduction: Glioblastoma (GBM) is the most common and malignant variant of

intrinsic glial brain tumors. The poor prognosis of GBM has not significantly improved

despite the development of innovative diagnostic methods and new therapies. Therefore,

further understanding the molecular mechanism that underlies the aggressive behavior

of GBM and the identification of appropriate prognostic markers and therapeutic

targets is necessary to allow early diagnosis, to develop appropriate therapies and to

improve prognoses.

Methods: We used a weighted gene co-expression network analysis (WGCNA) to

construct a gene co-expression network with 524 glioblastoma samples from The

Cancer Genome Atlas (TCGA). A risk score was then constructed based on four module

genes and the patients’ overall survival (OS) rate. The prognostic and predictive accuracy

of the risk score were verified in the GSE16011 cohort and the REMBRANDT cohort.

Results: We identified a gene module (the green module) related to prognosis. Then,

multivariate Cox analysis was performed on 4 hub genes to construct a Cox proportional

hazards regression model from 524 glioblastoma patients. A risk score for predicting

survival time was calculated with the following formula based on the top four genes in the

green module: risk score = (0.00889 × EXPCLEC5A) + (0.0681 × EXPFMOD) + (0.1724

× EXPFKBP9) + (0.1557 × EXPLGALS8). The 5-year survival rate of the high-risk group

(survival rate: 2.7%, 95% CI: 1.2–6.3%) was significantly lower than that of the low-risk

group (survival rate: 8.8%, 95% CI: 5.5–14.1%).

Conclusions: This study demonstrated the potential application of a WGCNA-based

gene prognostic model for predicting the survival outcome of glioblastoma patients.

Keywords: glioblastoma, WGCNA, prognostic model, cox proportional hazards regression model, nomogram

INTRODUCTION

Glioma is one of the most common types of malignant brain tumors and has a very poor
prognosis (1). The efficacy of conventional surgery plus radio- and chemotherapy is poor. Several
signature molecular markers have been used in the diagnosis, therapy and prognosis of glioma.
For example, methyl guanine methyl transferase (MGMT) promoter methylation is considered a
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predictive marker for the resistance of glioblastoma (GBM) to
chemotherapy with temozolomide (2). The 1p/19q co-deletion is
a molecular signature of oligodendroglial tumors and a predictive
marker for the response of anaplastic gliomas to vincristine
(PCV) chemotherapy. High WT-1 expression is significantly
associated with worse outcomes in diffuse astrocytic tumors.
IDH1/IDH2 mutations have a strong favorable prognostic value
across all glioma histopathological grades (3–5). With the
advancement of gene technology, molecular signatures for the
classification of gliomas have become prominent in recent years.
The 2016 revision of the World Health Organization (WHO)
classification of tumors of the central nervous system (6) includes
novel classes of diffuse gliomas based on genomic features.
Though molecular diagnostics increase diagnostic accuracy
and prognostic yield compared to previous histology-based
classifications, the current clinical prediction and treatment
outcomes are still not satisfactory (7). As GBM is notoriously
heterogeneous and complex, multi-parameter markers are much
more accurate for cancer prognosis than a single biomarker.
Therefore, a proper analytical model is highly desirable.

In the present study, we identified gene modules related to
the overall survival (OS) and recurrence time of GBM based on
The Cancer Genome Atlas (TCGA) database and weighted gene
co-expression network analysis (WGCNA). The TCGA database
contains genomic expression, sequence, methylation, and copy
number variation data on over 11,000 individuals and over 30
kinds of cancers (8, 9).WGCNA is based on a system of biological
methods for describing the correlation patterns among genes
and modules of highly correlated genes. By using Kaplan-Meier
survival analysis and multivariate Cox regression analysis, we
identified a prognostic model for GBM patients based on gene
characteristics. Our findings may provide novel insight toward
developing a promising predictive tool for the prognosis of GBM.

MATERIALS AND METHODS

Patients
A total of 906 glioma cases were collected from three
databases in this study, including 528 samples from TCGA
(https://portal.gdc.cancer.gov), 219 samples from REMBRANDT
(https://gdoc.georgetown.edu/gdoc/), and 159 samples from the
GSE16011 dataset (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE16011). Forty-six samples were excluded due to a
lack of OS information. As shown in Figure 1, we grouped

Abbreviations: WGCNA, Weighted Gene Co-expression Network Analysis;

TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; GS,

gene significance; MS, module significance; EGFR, epidermal growth factor

receptor; HR, hazard ratio; EXP, expression; MAPK, mitogen-activated protein

kinase; CLEC5A, C-type lectin member 5A; FMOD, fibromodulin; FKBP, FK506-

binding proteins; LGALS8, lectin, galactose binding, soluble 8; CIMP:CpG

island methylator phenotype; IDH1, Isocitratedehydrogenase 1; IDH2, isocitrate

dehydrogenase 2; MGMT, O6-methylguanine-DNA methyltransferase; FPKM,

fragments per kilobase per million; TOM, topological overlap measure; GO, gene

ontology; CC, cellular component; MF, molecular function; BP, biological process;

KEGG, Kyoto Encyclopedia of Genes and Genomes; ROC, receiver operating

characteristic curve; AUC, area under the curve; JEV, Japanese Encephalitis Virus;

AIC, akaike information criterion.

cases from TCGA into a training cohort, whereas all cases from
REMBRANDT and GSE16011 were used for validation.

Data Pre-processing
Microarray data of the 906 samples were normalized by the
affy package. All data were filtered to reduce outliers. For genes
with several probes, the median of all probes was chosen.
For probes with missing values, the impute package (http://
bioconductor.org/packages/release/bioc/html/impute) was used
to fill the missing values. Finally, 12,700 genes were obtained
from the TCGA dataset.

Construction of the Weighted Gene
Co-expression Network
By choosing 6 as a soft threshold, a weighted gene co-expression
network was constructed using the R package WGCNA (10),
which has the approximate scale-free fundamental property of
the biological gene networks. A co-expression similarity matrix
was composed of the absolute value of the correlation between
the expression levels of transcripts. The network modules were
generated using the topological overlap measure (TOM) (11),
and the dynamic hybrid cut method (a bottom-up algorithm)
was used to identify co-expression gene modules (12). Finally,
the modules with highly correlated genes were merged, and the
minimum height for merging modules was set to 0.2. Gene
significance (GS) and module significance (MS) were calculated
to measure the correlation between the sample traits (recurrence
time, CpG island methylator phenotype (CIMP) status, survival
time, status, IDH1 status, MGMT status, subtype, age and sex)
of either the genes or modules. The targeted module genes were
visualized with Cytoscape 3.5.1 software (13).

Functional Enrichment Analysis
The biological process (BP) ontology of the modules was
analyzed by Gene Ontology (GO) (14), while pathway
enrichment was analyzed by the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (15). The function of module genes was
verified by the R package clusterProfiler (16). The corrected
P-value (false discovery rate, FDR) < 0.05 was identified as a
significant outcome.

Identification of the Predicted Survival of
Glioblastoma Patients by the Cox
Proportional Hazards Regression Model
To verify the significance of the genes screened above, the
436 green module genes were first screened using univariate
Cox proportional hazards regression, and the 230 genes
with p-value <0.05 was selected for the advanced analysis
(Supplemental Data 2). According to the p-value, we selected
only the top 14 survival-related genes for visualization using the
R package forestplot. Then, a multivariate Cox regression model
analysis was performed to establish a Cox proportional hazards
regression prognosticmodel, which was calculated as follows: risk
score=Σ(C× EXPgene), where EXP was the mRNA expression
of the crucial gene, and C was the regression coefficient for
the corresponding gene in the multivariate Cox hazard model
analysis. The optimal model was determined based on akaike
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FIGURE 1 | Flow chart of data collection and analysis.

information criterion (AIC). The relevant codes were provided in
the Supplemental File. The samples were divided into a high-risk
group and a low-risk group according to the median risk score of
the training dataset from TCGA.

Statistical Analysis
Survival curves were constructed by the Kaplan-Meier method
and compared by the log-rank test, which was carried out
through the R package survival. The sensitivity and specificity of
the survival prediction based on the risk score were depicted by

a time-dependent receiver operating characteristic (ROC) curve
using the R package survivalROC. Gene set enrichment analysis
(GSEA) was used to identify the pathways that were significantly
enriched between the high- and low-risk groups. The Cox
regression model was used to perform the multivariable survival
analysis and generate nomograms. Calibration curves were used
to assess whether the actual outcomes approximately predicted
outcomes for the nomogram. Nomogram and calibration curves

were performed with the rms package (https://CRAN.R-project.

org/package=rms). The discrimination of the nomogram was
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FIGURE 2 | Network construction of the weighted co-expressed genes and their associations with clinical traits. (A) Hierarchical clustering tree of the TCGA-GBM

samples based on the training cohort. Dendrogram tips are labeled with the TCGA-GBM unique name. In the hierarchical dendrogram, lower branches correspond to

(Continued)
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FIGURE 2 | higher co-expression. The branches of the cluster dendrogram correspond to the 15 different gene modules based on topological overlaps. Each piece of

the leaves on the cluster dendrogram represents a gene. (B) Module-trait relationships. The background colors of the numbers represent the strength of the correlation

between the gene module and the clinical traits, which increased from blue to red. Each column corresponds to a clinical trait. (C) Visualization of the co-expression

network of the green module. The larger the nodes and the numerous edges, the more significant the gene is. Based on weight, not all genes were represented.

measured and compared by the C-index. All statistical tests were
two-sided, and P < 0.05 was considered statistically significant.
Statistical analyses were conducted using R software (version
3.4.3, www.r-project.org).

RESULTS

Pre-processing of RNA Sequence Data and
Clinical Data
In total, 906 glioblastoma microarray and clinical data were
downloaded from TCGA, REMBRANDT and GSE16011. We
constructed an mRNA expression matrix with gene symbols and
patient barcodes. Furthermore, outlier samples with expression
quantities <20% were screened. A total of 46 samples were
discarded owing to the lack of OS information. Finally, the top
5,000 genes with the greatest variance obtained from the training
cohort were used in the WGCNA studies.

Identification of Modules Associated With
Glioma Survival Status
To identify significant gene modules, we constructed a gene co-
expression network with WGCNA. With a scale-free network
and topological overlaps, we generated a hierarchical clustering
tree based on the dynamic hybrid cut (Figure 2A). Finally,
15 gene modules were identified, and the branches of the
tree represent different gene modules. The non-co-expressed
genes were included in the “gray” module, which was not
further analyzed (Figure 2B). The relationships of the fifteen
modules were analyzed with clinical traits, such as survival time,
recurrence time, age, and sex. The green module correlated
significantly with survival status (Figure 2B). A total of 436 genes
were included in the green module.

Visualization of Green Module Genes
Network screening was used to detect the hub genes in the green
module. The co-expression network of the green module was
visualized with a Cytoscape graph. As shown in Figure 2C, the
hub genes were centrally located in the modules and may be
the key elements of the modules. The larger the nodes and the
numbers of the edges, the more significant the gene is. When
depicted based on weight, not all genes were represented.

Functional Enrichment Analysis
We performed a functional enrichment analysis of the green
module using GO analysis. As shown in Figures 3A–D, enriched
BPs were mainly involved in the positive regulation of cellular
component biogenesis. The cellular components (CCs) were
mainly enriched in focal adhesion and the cell substrate adherens
junction. Enriched molecular functions (MFs) were mainly
involved in cell adhesion molecule binding. KEGG pathway
analysis showed that the MAPK signaling pathway was the most

enriched pathway, followed by proteoglycans in cancer and the
regulation of the actin cytoskeleton. The results suggested that
these genes were closely related to cell adhesion function.

Identification and Validation of a Cox
Proportional Hazards Regression Model
We further selected all genes of the green module to perform
a univariate Cox analysis (Figure 3E). Then, multivariate Cox
analysis was performed on the four genes that were significantly
related to survival time. A Cox proportional hazards regression
model was constructed with the TCGA cohort. The risk score
for predicting survival time was calculated with the following
formula based on the four genes: risk score = (0.00889 ×

EXPCLEC5A) + (0.0681 × EXPFMOD) + (0.1724 × EXPFKBP9) +
(0.1557× EXPLGALS8).

We divided patients from the training set into high-risk (n
= 262) and low-risk (n = 262) groups according to the median
of the risk score. The 1- and 3-year areas under the ROC curve
were 0.62 and 0.71, respectively, indicating a high predictive
value. Additionally, the predictive model can function as a good
predictive indicator of the survival of glioma patients, which was
confirmed by Kaplan-Meier curves. Patients with high-risk scores
exhibited worse OS according to the Kaplan-Meier curves. The
5-year and 3-year survival rates of the high-risk group (2.7 and
6.8%, respectively) were significantly worse than those of the low-
risk group (8.8 and 18.9%, respectively; Figure 4A). Moreover,
the Kaplan-Meier curves confirmed that the four genes could
function as predictive indicators for the survival of GBM patients
in the training cohort (Figures 3F–I).

Furthermore, we assessed the prognostic effect of different
clinical characteristics using a univariate Cox proportional
hazards regression model. The results showed that CIMP status,
IDH1 status, MGMT status, age, and risk score were associated
with OS (P < 0.01) (Table 1). However, the multivariate
regression model showed that the risk score and age were
independent prognostic factors associated with OS.

To confirm that the proposed risk score model has similar
prognostic value in different populations, the same formula was
applied to the GSE16011 and REMBRANDT cohorts. The results
showed that patients in the high-risk group had a significantly
lower OS rate than those in the low-risk group in both the
GSE16011 and REMBRANDT cohorts (Figures 4B–C). The
functional GSEA showed that the high-risk group was highly
enriched in genes closely related to base excision repair, the cell
cycle, DNA replication, and ribosome function (Figure 5A).

Construction of a Predictive Nomogram
To develop a quantitative method to predict patients’ OS rate,
we constructed a nomogram in the TCGA cohort. The risk
score was stratified into high- and low-risk groups based on the

Frontiers in Oncology | www.frontiersin.org 5 August 2019 | Volume 9 | Article 812

http://www.r-project.org
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Tang et al. Prognostic Signature in GBM

FIGURE 3 | Functional enrichment analysis. (A) Biological process (B) cellular component, (C) molecular function; (D) enrichment of Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis for hub genes related to survival time; (E) The top 14 genes which were significantly related to survival time in univariate

analysis; (F–I) Kaplan-Meier curves for CLEC5A,FKBP9, FMOD, and LGALS8 in the TCGA cohort.
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FIGURE 4 | The prognostic efficiency of the Cox proportional hazards regression model. Heat map of the model genes in (A) training set of the TCGA, (B) test set of

GSE16001, (C) test set of Rembrandt; ROC curves of the four genes signature for predicting 12- and 36-months survival of glioblastoma. The 12- and 36-months

areas (AUC) under the ROC curves indicate higher predictive value; Kaplan–Meier curves analyze the survival of the high-risk group and the low-risk group, the high-

risk group had the worse outcome (P < 0.001).
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TABLE 1 | The prognostic effect of different clinical characteristics.

Univariate analysisa Multivariate analysisb

HR 95%CI P-value HR 95%CI P-value

CIMP-status 0.35 0.24–0.5 <0.001 0.29 0.04–2.19 0.232

IDH1-status 0.34 0.21–0.55 <0.001 1.8 0.23–14.08 0.573

MGMT-

status

0.69 0.54–0.87 <0.001 0.84 0.64–1.1 0.205

Subtype 0.93 0.86–1.01 0.07 - - -

Age 1.03 1.03–1.04 <0.001 1.03 1.02–1.04 <0.001

Gender 1.16 0.96–1.41 0.13 - - -

Risk score 1.57 1.3–1.89 <0.001 1.49 1.14–1.94 0.003

aThese data were used to perform the Cox proportional hazards regression.
bMultivariate analysis used stepwise addition of clinical covariates related to survival in

univariate analysis (P < 0.01) and the ultimate models contained those covariates that

were significantly associated with survival (P < 0.01).

median. The predictors included age, risk group, and IDH1 status
(Figure 5B). Due to the lack of IDH1 mutation information
in the REMBRANDT cohorts, the calibration curves for the 1-
and 3-year OS rates were well-predicted in only the TCGA and
GSE16011 cohorts (C-index: 0.65 for the TCGA cohort and 0.68
for the GSE16011 cohort; Figures 5C,D).

DISCUSSION

Gliomas are the most common and malignant brain tumors
with poor prognosis, especially GBM. The most promising
treatments, such as surgery, radiation, and chemotherapy with
temozolomide, improve survival measured in only weeks rather
than years (17). Precise studies of GBM biology and molecular
markers have renewed our understanding of GBM. In 2008,
Parsons et al. first proposed subtypes of GBM based on specific
gene alterations (18). In 2016, the WHO revised the classification
of tumors of the central nervous system based on gene technology
andmolecular signatures. The classification contained somewell-
known biomarkers, such as MGMT methylation, 1p/19q co-
deletion, IDH 1 or 2, and EGFR. Recently, Suchorska et al.
reported that amino acid positron emission tomography (PET)-
based metabolic imaging can be used as a promising tool
for the non-invasive characterization of molecular features
and to provide additional prognostic information (19). These
classifications and studies helped with prognosis, survival time,
and response to treatment. As GBMs are heterogeneous and
complex, molecular signatures are superior to single biomarkers
in the prognosis of glioma.

To identify a gene signature associated with the survival
status of GBM patients, we first constructed a weighted gene
co-expression network in 524 glioma samples and generated the
survival time-specific green module. The detected hub genes in
the green module were significantly correlated with the survival
status of patients with GBM. The GO and KEGG functional
enrichment analysis showed that the genes that were closely
related to adhesion function, adhesion molecules and the MAPK
signaling pathway accounted for the highest proportion of green

module genes. Adhesion function is a key factor in glioma
invasiveness, and adhesion molecules play an important role
in gliomagenesis. The MAPK pathway regulates the activity
of transcription factors that function in proliferation, survival,
differentiation, and apoptosis (20). Furthermore, this signaling
pathway is also activated by EGFR signaling. TheMAPK pathway
could also be directly or indirectly activated through mutations
of downstream components. In high-grade gliomas, MAPK-
activated samples presented prolonged survival in comparison
to other high-grade tumors. In low-grade gliomas, the presence
of activated MAPK was also a predictor of favorable patient
outcome, regardless of fusion or hotspot mutation events (21).

To analyze the relationship between survival time and the
hub genes of the green module, we selected 436 genes for
univariate Cox analysis. Our survival analysis by constructing
a Cox proportional hazards regression model showed that
CLEC5A, FMOD, FKBP9, and LGALS8 were highly associated
with OS. CLEC5A/MDL-1 is a member of the myeloid C-type
lectin family expressed in macrophages and neutrophils, which
is strongly associated with the activation and differentiation of
myeloid cells and has been implicated in the progression of
multiple acute and chronic inflammatory diseases. Research by
Batliner et al. suggested that CLEC5A/MDL-1 could activate a
signaling cascade that results in the activation of downstream
kinases in inflammatory responses (22) and maintain lesional
macrophage survival, causing their accumulation (23). Another
report showed that Japanese encephalitis virus (JEV) directly
interacted with CLEC5A. Additionally, anti-CLEC5AmAb could
repair the blood-brain barrier, attenuate neuroinflammation,
and protect mice from JEV-induced lethality (24). Recently, R.
Chai reported that CLEC5A was also a prognostic biomarker
of GBM (25). FKBP9 is a peptidyl–prolyl isomerase and is
a member of this protein family. It has been implicated in
neurodegeneration, mainly through accelerating fibrillization
(26, 27). Fibromodulin (FMOD), as a GBM-upregulated gene,
promotes glioma cell migration through its ability to generate
the formation of filamentous actin stress fibers. FMOD-induced
glioma cell migration is dependent on the integrin-FAK-Src-
Rho-ROCK signaling pathway (28). FMOD was also reported
to be a prognostic biomarker in GBM (29). LGALS8 plays
functional roles in promoting GBM cell proliferation and clonal
sphere formation (30). Though CLEC5A and FKBP9 have not
been reported in glioma-related studies, their features play
important roles in cell metabolism and pathological processes.
Further studies are needed to explore their relationship with
glioma. Therefore, CLEC5A, FMOD, FKBP9, and LGALS8
could be considered crucial prognostic factors in the OS of
glioma patients.

In this study, we constructed a prognostic score model of a
four-gene signature. The univariate Cox proportional hazards
regression result demonstrated that this four-gene signature,
together with CIMP status, IDH1 status, MGMT status, and
age, was highly associated with OS. The independent prognostic
significance was also verified according to a multivariate
regression model. The ability of the four-gene model to predict
survival outcomes was further confirmed by the validation
cohorts from the REMBRANDT and GSE16011 datasets. To
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FIGURE 5 | Gene-set enrichment analysis (GSEA) and Nomogram. (A) The GSEA showed that high-risk group highly enriched in Base excision repair, Cell cycle, DNA

replication, Ribosome; (B) Nomogram to predict the 1- and 3-year OS. Calibration curve for OS nomogram model in the TCGA cohort (C) and GSE16011 cohort (D).

further strengthen the accuracy of the model, we combined
age, IDH1 status, and risk group to fit a Cox proportional
regression model in the TCGA cohort and used a nomogram
for visualization. The calibration curves showed high predictive
ability in the TCGA and GSE16011 cohorts. Our analysis showed
that the four-gene model is likely a promising and viable
prognostic signature for the survival status of glioma patients.

In summary, through the construction of a gene co-expression
network with data from the TCGA database, a green module

with a survival signature was identified using the WGCNA
approach. The hub genes were selected from the green module
genes and visualized with Cytoscape. By constructing a Cox
proportional hazards regression model, four genes were finally
identified and used in univariate and multivariate Cox analyses,
thereby composing a four-gene module with the risk score =

(0.00889 × EXPCLEC5A) + (0.0681 × EXPFMOD) + (0.1724 ×

EXPFKBP9) + (0.1557 × EXPLGALS8). This four-gene module
represents a promising and viable prognostic signature for the

Frontiers in Oncology | www.frontiersin.org 9 August 2019 | Volume 9 | Article 812

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Tang et al. Prognostic Signature in GBM

survival outcome of GBM patients. The present study revealed
the potential application of a WGCNA-based gene prognostic
model for predicting the survival outcomes of GBM patients.
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