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Cetuximab and panitumumab are two distinct monoclonal antibodies (mAbs) targeting

the epidermal growth factor receptor (EGFR), and both are widely used in combination

with chemotherapy or as monotherapy to treat patients with RAS wild-type metastatic

colorectal cancer. Although often considered interchangeable, the two antibodies have

different molecular structures and can behave differently in clinically relevant ways. More

specifically, as an immunoglobulin (Ig) G1 isotype mAb, cetuximab can elicit immune

functions such as antibody-dependent cell-mediated cytotoxicity involving natural killer

cells, T-cell recruitment to the tumor, and T-cell priming via dendritic cell maturation.

Panitumumab, an IgG2 isotype mAb, does not possess these immune functions.

Furthermore, the two antibodies have different binding sites on the EGFR, as evidenced

by mutations on the extracellular domain that can confer resistance to one of the

two therapeutics or to both. We consider a comparison of the properties of these

two antibodies to represent a gap in the literature. We therefore compiled a detailed,

evidence-based educational review of the known molecular, clinical, and functional

differences between the two antibodies and concluded that they are distinct therapeutic

agents that should be considered individually during treatment planning. Available data

for one agent can only partly be extrapolated to the other. Looking to the future, the

known immune activity of cetuximab may provide a rationale for this antibody as a

combination partner with investigational chemotherapy plus immunotherapy regimens

for colorectal cancer.

Keywords: colorectal cancer, cetuximab, panitumumab, FOLFOX, FOLFIRI, antibody-dependent cell-mediated

cytotoxicity

INTRODUCTION

The advent of targetedmonoclonal antibodies (mAbs) brought a revolution in the field of oncology.
With increased specificity, longer half-lives, and more predictable overall pharmacokinetic and
pharmacodynamic behaviors than their small-molecule inhibitor counterparts, mAbs have become
key components of standard-of-care treatments for multiple indications. Inevitably, sometimes
several approved mAbs against the same target are available, requiring physicians to perform
detailed research to understand which mAb is the optimal therapeutic agent for a given patient.
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In fact, more than half of the approved targeted mAbs in
oncology (excluding the new wave of checkpoint inhibitors)
are clustered around 5 targets: the epidermal growth factor
receptor (EGFR), the human epidermal growth factor receptor 2
(HER2), tumor necrosis factor α, CD20, and vascular endothelial
growth factor (VEGF) (1). Indeed, among treatment options
for metastatic colorectal cancer (mCRC), in particular, are
two anti-EGFR mAbs, cetuximab and panitumumab, currently
indicated for the same subgroup of patients, those with RAS
wild-type (wt) metastatic disease (2, 3). Approximately 40% of
patients with CRC will eventually develop metastatic disease
(4); per international guidelines, the majority of these patients
should undergo RAS testing for suitability for an anti-EGFR
mAb in combination with oxaliplatin- or irinotecan-based
chemotherapy. Thus, clinicians must choose between prescribing
cetuximab and panitumumab regularly.

In 2004, cetuximab was approved by both the US FDA
and the EMA for use in EGFR-expressing (K)RAS-unselected
chemorefractory mCRC. Panitumumab was approved by the
US FDA for use in the same patient population in 2006.
In 2007, the EMA rejected the use of panitumumab in an
unselected chemorefractory population, but approved the use
of panitumumab in a restricted population of KRAS exon 2 wt
mCRC, and imposed a similar restriction on use of cetuximab
in 2008. By 2009, the FDA followed the EMA by restricting use
of either anti-EGFR agent to KRAS exon 2 wt chemorefractory
mCRC patients.

In the first-line setting, panitumumab + CT was approved by
the EMA in 2011, based on positive results from the randomized
phase 3 PRIME trial. In 2012, cetuximab + CT was approved by
the FDA following the phase 3 CRYSTAL trial. In 2013, extended
RAS testing was required by the FDA and EMA for predicting
response to anti-EGFR agents (5).

According to the EU SmPC, cetuximab is currently indicated
for EGFR-expressing RAS wt mCRC as a monotherapy
in patients who have failed oxaliplatin- and irinotecan-
based therapy and who are intolerant to irinotecan, in
combination with irinotecan-based therapy in any line, and
in combination with FOLFOX in first-line. Cetuximab is
also indicated for use in SCCHN, both in locally advanced
disease (in combination with radiation therapy) and in
recurrent/metastatic disease (in combination with platinum-
based chemotherapy). Panitumumab is indicated for RAS wt
mCRC as a monotherapy after failure of fluoropyrimidine-,
oxaliplatin-, and irinotecan-containing chemotherapy regimens,
in combination with FOLFOX or FOLFIRI in first-line, and in
combination with FOLFIRI in second-line mCRC (6, 7).

To date, >480,000 patients with mCRC have received
cetuximab-based therapy worldwide, and>240,000 patients with
mCRC have been treated with panitumumab-containing therapy
(8, 9). Although these twomAbs are considered to be very similar,
important biological, molecular, and practical differences exist
between them. Thus, there are uncertainties regarding whether
they can be considered equivalent and whether it is prudent to
ascribe conclusions gleaned from a study of one agent to the
other and to pool data on the two in meta-analyses. In this article,
we summarize and discuss these differences, primarily within

the context of mCRC, but we also describe their differential
activity in the treatment of squamous cell carcinomas of the head
and neck (SCCHN). We then relate how these differences could
impact the potential for anti-EGFR mAbs to be combined with
emerging immunotherapies. The goal of this review is to provide
a comprehensive discussion of the available data on the twomAbs
and to highlight how they are distinct therapeutic agents with
individual, clinically relevant properties.

MODE OF ACTION AGAINST EGFR

Dysregulation in the EGFR signaling pathway has long been
associated with pro-oncogenic activities such as increased cell
proliferation, reduced apoptosis, and increased angiogenesis
and metastatic tendencies (1, 4, 10). The EGFR is activated
when one of its many ligands (including the epidermal growth
factor [EGF], transforming growth factor α, amphiregulin, or
epiregulin) binds the receptor’s extracellular domain, resulting
in receptor dimerization, conformational change, and tyrosine
autophosphorylation (4, 10, 11). Upon receptor binding,
downstream signaling cascades including the MAPK/ERK
(mitogen-activated protein kinase/extracellular signal-regulated
kinase), JAK/STAT (Janus kinase/signal transducers and
activators of transcription), and PI3K/Akt (phosphoinositide
3-kinase/protein kinase B) pathways become active. Constitutive
activation of these pathways can lead to cancer cell survival and
proliferation (1, 4, 5).

Cetuximab and panitumumab both function by binding to the
extracellular domain III of the EGFR, thereby preventing ligand
binding and locking the EGFR in the autoinhibitory monomeric
conformation (1, 4, 11). The antibody-receptor construct is
then internalized, ubiquitinated, and either degraded or recycled.
This turnover is regulated by the ubiquitin proteasome system
(12, 13). Briefly, after activation of the receptor tyrosine
kinase through ligand binding and dimerization, the activated
receptor is internalized by clathrin-dependent endocytosis and
ubiquitinated. This process terminates the tyrosine kinase activity
of activated EGFR and regulates the number of receptors
expressed on the cell surface. The final step of degradation is
performed by the proteasome; however, ubiquitinated receptors
can be deubiquitinated by deubiquitinating enzymes and then
recycled back to the cell membrane (12). Receptor ubiquitination
has been identified as a mechanism of resistance to anti-EGFR
therapy (12).

Between 60 and 80% of colorectal tumors overexpress the
EGFR; although this characteristic was historically thought to
be predictive of response to cetuximab and panitumumab, in
more recent years this notion has not held up in practice (1,
4, 14). Alternative explanations for the efficacy of cetuximab
and panitumumab in colorectal tumors regardless of EGFR
overexpression status focus on the ligands to EGFR and potential
dysregulation of the amount of ligands produced and released
into the extracellular space (5). Indeed, both cetuximab and
panitumumab compete with EGF for its binding site on EGFR.
Mutational studies have demonstrated that the two mAbs have
different binding sites on EGFR, but the binding epitopes are in
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close physical proximity and have some key residues in common
(15) (Table 1). Panitumumab’s binding epitope includes EGFR
residues P349, P362, D355, F412, and I438, all of which are
individually necessary for≥50% binding affinity (15). In contrast,
binding residues on EGFR critical for cetuximab binding are
Q384, Q408, H409, K443, K465, I467, and S468, as well as F352,
D355, and P387 (15). D355 is likely a source of competition
between themAbs and EGF because it is within the binding site of
all three molecules (15). Notably, panitumumab’s binding epitope
overlaps with the EGF binding site in two locations (D355 and
K443), whereas cetuximab overlaps with EGF’s binding site in 5
locations (D355, Q408, H409, K443, and S468).

Furthermore, cetuximab and panitumumab have different
binding affinities for EGFR, with dissociation constants (KD) of
0.39 nM vs. 0.05 nM, respectively (4). Cetuximab binds EGFR
with∼2-fold greater affinity than EGF (16). Panitumumab binds
EGFR with an ∼8-fold greater affinity than that of cetuximab.
However, it is unclear whether this characteristic is favorable.
From one standpoint, a higher affinity for EGFR should translate
into a greater proportion of mAb-bound EGFR; conversely,
however, studies have observed that a KD between 1 and 10 nM is
optimal for anti-EGFR mAb tumor targeting, accumulation, and
retention (11). Although the KD of cetuximab is closer, neither
mAb is within the optimal range. Cetuximab and panitumumab
administration schedules are very different from each other
(Table 1). Cetuximab is administered based on body surface area,
and is usually given as a 400-mg/m2 initial dose by a 120-min
intravenous (IV) infusion, followed by a weekly dose of 250
mg/m2 by 60-min IV infusion (6). However, Q2W doses of 500
mg/m2 have been investigated; this dosing schedule is frequently
used, and is recommended based on NCCN guidelines but not
approved by regulatory authorities (3). Maintenance cetuximab
can be administered on the same weekly or Q2W schedule (17)

and treatment with cetuximab is recommended to be given until
progression of disease (6). Indeed, in pharmacokinetic studies,
a 250-mg/m2 weekly cetuximab dose has a mean half-life of
4.19 days and a minimum recorded mean concentration of
49.6µg/mL (17). By comparison, panitumumab is administered
by weight at a dose of 6 mg/kg every 2 weeks; a 60-min infusion
time is recommended for total doses ≤ 1,000mg, and a 90-min
infusion time is recommended for total doses > 1,000mg (7).
At this administration schedule, panitumumab’s mean half-life is
7.5 days, with a minimum recorded mean serum concentration
of 39µg/mL (18). Studies have indicated that it takes 3
infusions of panitumumab to reach steady state (19), although
similar information has not been published for cetuximab.
Overall, administration of cetuximab and panitumumab per
their standard schedules results in comparable pharmacokinetic
behaviors and overall drug exposures. One final structural
difference between the two mAbs is found in their respective
backbones. Panitumumab is a human mAb and cetuximab is
a mouse/human chimeric mAb. Although this distinction can
sometimes lead to differences in the rates of infusion-related
reactions between the two agents, these can be managed with the
appropriate pre-medication prior to infusion.

MOLECULAR STRUCTURE AND
ASSOCIATED IMMUNE ACTIVITY

One of the most hotly debated topics is the functional
implication of the differing immunoglobulin (Ig) G subtypes
of cetuximab and panitumumab—namely, that cetuximab is
an IgG1 isotype mAb, whereas panitumumab has the IgG2
backbone (Figure 1, Table 1) (4, 38). The two Ig isotypes differ
in their ability to mobilize innate and adaptive immune cells

TABLE 1 | Basic comparison of cetuximab and panitumumab.

Variable Cetuximab Panitumumab

Approved indications

(acc.to EU label)

mCRC:

• in combination with irinotecan-based chemotherapy

• in first-line in combination with FOLFOX

• as a single agent in patients who have failed

oxaliplatin- and irinotecan-based therapy and who are

intolerant to irinotecan

SCCHN:

• in combination with radiation therapy for LA SCCHN

• in combination with platinum-based chemotherapy for

R/M SCCHN

mCRC:

• in first-line in combination with FOLFOX or FOLFIRI

• in second-line in combination with FOLFIRI for patients

who have received first-line, fluoropyrimidine-based

chemotherapy (excluding irinotecan)

• as monotherapy after failure of fluoropyrimidine-,

oxaliplatin-, and irinotecan-containing

chemotherapy regimens

IgG isotype IgG1 IgG2

Fc Chimeric (mouse/human) Human

EGFR binding sites in the

EGF-binding pocket

D355, Q408, H409, K443, S468 D355, K443

KD 0.39 nM 0.050 nM

Immune activity NK cell–driven ADCC, CDC Monocyte/neutrophil-driven ADCC

Registered

dose/posology

400 mg/m2 initial dose as a 120-min IV infusion,

followed by 250 mg/m2 weekly as a 60-min IV infusion

6 mg/kg every 2 weeks as an IV infusion over 60min

(≤1,000mg) or 90min (>1,000mg)

ADCC, antibody-dependent cell-mediated cytotoxicity; CDC, complement-mediated cytotoxicity; CRC, colorectal cancer; EGFR, epidermal growth factor receptor; FOLFOX, oxaliplatin,

leucovorin, and fluorouracil; Ig, immunoglobulin; IV, intravenous; KD, dissociation constant; LA, locally advanced; NK, natural killer; R/M, recurrent and/or metastatic; SCCHN, squamous

cell carcinoma of the head and neck.
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FIGURE 1 | Overview of differences in immune activation with cetuximab and panitumumab. Shown in orange: sites of activation by both anti–epidermal growth

factor receptor (EGFR) monoclonal antibodies (mAbs). Both anti-EGFR mAbs neutralize the cross talk between the cancer cells and M2 monocytes and

cancer-associated fibroblasts (CAFs) by neutralization of EGFR ligands. On the basis that cetuximab and panitumumab may have identical effects, from a mechanistic

point of view, both antibodies reduce vascular endothelial growth factor (VEGF) production (20, 21). Cetuximab can upregulate calreticulin (CRT), heat shock protein

(HSP) 90, and major histocompatibility complex (MHC) (22, 23), which may be theoretically upregulated by panitumumab (not reported). Shown in blue: sites

activated by cetuximab. Natural killer (NK) cells are activated by their binding to the cetuximab loaded onto EGFR (22, 24, 25). The released interferon γ (IFN-γ)

activates dendritic cells (DCs), which further activate the NK cells (26). Cetuximab-induced antibody-dependent cell-mediated cytotoxicity (ADCC),

complement-dependent cell-mediated cytotoxicity (CDCC), complement-mediated cytotoxicity (CDC) (27–30), and immunogenic death (31) release tumor antigens,

which are captured by the activated DC cells, to be presented to T cells (thus activating them). IFN-γ upregulates programmed cell death 1 ligand 1 (PD-L1) on tumor

cells and activates macrophages to release chemoattraction substances for NK cells and T cells (25). Inhibition of the angiogenic factors VEGF, interleukin (IL) 8, and

fibroblast growth factor (FGF) can be downregulated by both cetuximab and possibly by panitumumab (20, 21). Inhibition of these factors upregulates key homing

adhesion molecules for the immune cells (intercellular adhesion molecule 1 [ICAM-1] and vascular cell adhesion protein 1 [VCAM-1]) (32, 33) and downregulates Fas

antigen ligand (FasL) expression (34), which would be lethal for T cells. These effects enable the safe transmigration of T cells and NK cells into the tumor

microenvironment (35). The T cells activated by DCs loaded with tumor cell antigens are then ready to attack the tumor cells. Shown in black: Immune suppressive

mechanisms/prevention of the successful attack of activated cytotoxic T cells on tumor cells. These mechanisms include checkpoint inhibitory factors (programmed

cell death 1 protein [PD-1], PD-L1, cytotoxic T-lymphocyte protein 4 [CTLA-4]) and TGF-β generated by tumor-associated cells (25). Notably, irinotecan and fluorouracil

(5-FU) can eliminate tumor protective cells, such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), from the tumor microenvironment

(36, 37), reducing their immune suppressive effects and thus potentially facilitating the T-cell attack. bFGF, basic fibroblast growth factor; EREG, epiregulin; HB-EGF,

heparin-binding EGF-like growth factor; HLA, human leukocyte antigen; KIR, killer cell immunoglobulin-like receptor; TGF-β, transforming growth factor β.

against tumor cells (Figure 1, Table 2). For example, it has
been demonstrated in preclinical models and ex vivo studies
that target-bound cetuximab and other IgG1 isotype mAbs
(e.g., rituximab, necitumumab, trastuzumab) stimulate natural
killer (NK) cell–driven cytotoxicity against tumor cells coated
in mAbs via the interaction of the constant region and the
CD16 receptor on NK cells (38, 44–47). This antibody-dependent
cell-mediated cytotoxicity (ADCC) is specifically carried out
by NK cells of the innate immune system against tumor cells,

resulting in antigen release into the intratumoral space (16).
By secreting cytokines and interferon γ, active NK cells are
further able to stimulate dendritic cell (DC) maturation and DC-
NK cell cross talk (24, 27, 38) and use increased expression
of CD137 to recruit anti-EGFR CD8+ cytotoxic T cells to the
intratumoral space for additional cell-killing activity (40, 41,
48). In turn, mature DCs can mobilize a number of additional
immunogenic processes, including antigen presentation to
cytotoxic T cells and further activation of NK cells (24, 27, 38, 48).
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TABLE 2 | Cetuximab and panitumumab: differences in immune activation.

Variable Cetuximab Panitumumab

Cetuximab-related immune cytotoxicity

ADCC Yes (27–30) Activates neutrophil-mediated

ADCC and monocytes (1, 27)

CDCC Yes (29) –

CDC Yes (29) –

Effects on microenvironment cytokines and MMP

Downregulation of IL-8 Yes (20, 21) Probably

Downregulation of VEGF Yes (20, 21) Yesa (20, 21)

Downregulation of bFGF Yes (20, 21) Probably

Downregulation of MMP-9 Yes (39) Probably

Effects on NK cells

NK cell chemoattraction Yes (35) No

Increased NK cell infiltration Yes (31, 35) No

NK cell activation and HLA

expression

Good (22, 24, 25) No (24)

NK cell activation (CD137

upregulation)

Good (40, 41) Less (27)

IFN-γ induction by NK cells Yes (24) No (24)

Increase in TAP-1 in NK cells Yes (24) No (24)

Cross-presentation of tumor

antigens by NK cells

Significantly better (27) No (27)

Effects on DCS

DC maturation (increase in

CD80, CD83, CD86, HLA-DR)

Good (23, 24) No (24)

DC activation Good (23, 24) No (24)

Increase in TAP-1 and TAP-2 in

DCs (activation)

Yes (24, 42) No (24)

DC upregulation of MHC class I

(MICA)

Yes (24) Not reported

Enhanced reciprocal DC-NK cell

activation/cross talk

Yes (24, 27) No or significantly reduced

(24, 27)

Increased DC phagocytosis Yes (23) Not reported

Increase in efficiency of antigen

cross-presentation by DCs to T

cells

Good (24) Weak (24)

Effects on macrophages

Macrophage activation Yes (indirect) (25) Not expected

Effect on cytotoxic T cells

Increased T-cell chemoattraction Yes (35) Not expected

Increased T-cell infiltration Yes (35) Not expected

T-cell activation Yes (24) Significantly less than cetuximab

(24)

Immune priming effects on tumor cells

Upregulation of MHC class I Yes (24) Possibly

Immunogenic cell death Yes (31) Not reported

Immune responses induced by cetuximab + irinotecan combination

Effects on microenvironment cytokines

IL-2 increase Yes (26) Not reported

IFN-γ increase Yes (26) Not reported

IL-12 increase Yes (26) Not reported

IL-18 increase Yes (26) Not reported

IL-4 decrease Yes (26) Not reported

(Continued)
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TABLE 2 | Continued

Variable Cetuximab Panitumumab

Effects on immune cells in the TME

Increase in circulating NK cells Yes (43) Not reported

Increase in circulating DCs Yes (43) Not reported

DC activation Yes (23) Not reported

Increased DC phagocytosis and

trogocytosis

Yes (23) Not reported

Increase in activated T cells Yes (43) Not reported

Increase in central memory cells Yes (43) Not reported

Treg elimination Yes (26) Not reported

Immune effects on tumor cells

Increase in tumor cell

immunogenicity by upregulating

calreticulin, HSP 90

Yes (23) Not reported

Increased immunogenic death Yes (31) Not reported

Improved immune “contexture” Yes (26) Not reported

aOn the basis that cetuximab and panitumumab may have identical effects, from a mechanistic point of view.

ADCC, antibody-dependent cell-mediated cytotoxicity; bFGF, basic fibroblast growth factor; CAF, cancer-associated fibroblasts; CDC, complement-mediated cytotoxicity; CDCC,

complement-dependent cell-mediated cytotoxicity; DC, dendritic cell; HLA, human leukocyte antigen; HSP 90, heat shock protein 90; IFN-γ , interferon γ ; IL, interleukin; MDSC,

myeloid-derived suppressor cell; MHC, major histocompatibility complex; MICA, MHC class I polypeptide-related sequence A; MMP, matrix metalloproteinase; NK, natural killer; TAP,

transporter associated with antigen processing; TME, tumor microenvironment; Treg, regulatory T cell; VEGF, vascular endothelial growth factor.

Collectively, NK cell–mediated ADCC and other immunogenic
activity of IgG1 mAbs is thought to contribute to their antitumor
activity, provided that sufficient target is available for the mAbs
to dually bind to CD16 and their intended epitope (46, 49–
51). This sequence of immune events initiated by cetuximab
can be viewed as a chain reaction reminding of a domino effect
(Figure 1). Furthermore, some clinical evidence has suggested
that patients with higher baseline ADCC activity or specific
CD16 polymorphisms that increase NK cell–binding affinity
might be likelier to experience favorable outcomes with IgG1-
based therapy (28, 52–55). By contrast, the Fc region of the
IgG2 backbone of panitumumab has very low binding affinity for
CD16; thus, panitumumab is unable to induce NK cell–driven
ADCC or cytotoxic T-cell tumor infiltration (16, 48), although
evidence suggests that panitumumab instead induces some
immunostimulatory action via neutrophil-driven ADCC and
monocytes (1, 27). However, its immunogenic properties are not
considered to actively contribute to panitumumab’s antitumor
activity (47, 48). A final difference in the immunostimulatory
capabilities of IgG1 and IgG2 mAbs concerns the C1 complex
of complement, which can be induced by clusters (hexamers) of
IgG1 mAbs but has not been shown to be induced to the same
degree by IgG2 mAbs (47, 56, 57).

BIOMARKERS OF RESPONSE, TARGET
POPULATIONS, AND THERAPEUTIC
RESISTANCE

Colorectal cancer is a highly heterogeneous disease (5),
characterized by predictive and prognostic mutations (58, 59)
as well as a tendency to undergo clonal selection under drug
pressure and develop acquired resistance to certain therapies

(60–62). For example, as recommended by the international
guidelines, both cetuximab and panitumumab are suitable only
for patients with RAS wt colorectal tumors, with genetic analysis
of KRAS exon 2 (codons 12, 13), exon 3 (codons 59, 61), exon
4 (codons 117, 146) and NRAS exon 2 (codons 12, 13), exon
3 (codons 59, 61), and exon 4 (codons 117, 146) (“RAS wt”)
(2, 3, 5, 63). Although several early retrospective RAS analyses
(58, 64) provided evidence supporting testing beyondKRAS exon
2 (i.e., extended RAS analysis), the retrospective analysis of the
PRIME study was the first phase 3 analysis to support refinement
of the patient population by RAS status and the need for extended
RAS analyses. In PRIME, panitumumab in combination with
FOLFOX4was shown to have greater benefit in aRASwt-targeted
patient population rather than in a patient population identified
as KRAS wt, compared with FOLFOX4 alone (65). Additional
post hoc analyses of several phase 3 trials involving cetuximab
have also demonstrated improved responses and survival with
cetuximab-based therapy with FOLFOX or FOLFIRI in patients
with RAS wt mCRC compared with patients with KRAS wt
tumors (66–68). Results from the TAILOR trial, the first phase
3 study to prospectively recruit a RAS wt patient population for
first-line treatment of mCRC with cetuximab plus chemotherapy
(specifically, FOLFOX), further confirmed the survival benefit
with cetuximab-based treatment in RAS wt mCRC (69). Finally,
KRAS amplification, although much rarer than and nearly
always mutually exclusive with KRAS mutations (amplification
is present in ∼1–2% of cases of mCRC) (5), has been shown
to confer resistance to cetuximab and panitumumab and is
considered an emerging biomarker by current guidelines (2).

In addition to mutations existing in the predominant cell
population of the tumor before treatment, overall resistance
to therapy can arise during anti-EGFR therapy, as the drug
can inhibit growth of sensitive clones, thereby allowing for
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expansion of initially rare RAS-mutant clones (10, 62). Indeed,
there is preclinical and clinical evidence available demonstrating
that RAS wt tumors can “switch” to RAS mutant after anti-
EGFR treatment (with either cetuximab or panitumumab) (70),
likely because of a significant reduction of the wt clone and
an expansion of mutated clones. Finally, recent studies have
suggested the possibility of a restoration of responsiveness
to cetuximab after the development of resistance to previous
cetuximab treatment (71, 72). The prospective CRICKET study,
which evaluated third-line re-treatment with cetuximab plus
irinotecan after an initial response followed by progression while
patients had received the same regimen in the first line, showed
that RAS wt status in circulating tumor DNA before start of
third-line therapy was significantly associated with prolonged
progression-free survival (PFS) compared with a RAS mutated
status (73).

Resistance to anti-EGFR therapy can also be conferred
through extracellular domain mutations in the EGFR itself,
which have been observed in only EGFR therapy–experienced
patients, suggesting that these mutations arise specifically as
a mechanism of acquired resistance (13, 60, 74–76). Notably,
different mutations in the extracellular domain can dictate
resistance only to cetuximab, only to panitumumab, or to
both mAbs, owing to their differential binding sites (15). For
example, the S492R and S468R mutations in the extracellular
domain of the EGFR confer resistance only to cetuximab
(13, 75), whereas the G465R mutation that arises in 1 of
every 6 patients who receive panitumumab confers resistance
to both mAbs (77). Such observations may have implications
for planning treatment sequencing, treatment continuation,
and maintenance therapy designed to maximize the number
of efficacious lines of therapy and the likelihood of response
at each stage.

CLINICAL IMPACT OF CETUXIMAB AND
PANITUMUMAB IN COLORECTAL CANCER

Over the last two decades, cetuximab and panitumumab have
been evaluated for efficacy and safety in mCRC in many clinical
trials. With approximately half a million patients treated with
cetuximab, and close to a quarter of a million treated with
panitumumab, the clinical impact of these two mAbs on the
disease has been substantial. Currently, the median overall
survival (OS) in patients who present with RAS wt metastatic
disease is usually ≥ 30 months, with hazard ratios (HRs)
for survival with first-line cetuximab-based therapy of 0.763
in combination with FOLFOX vs. FOLFOX alone, 0.69 in
combination with FOLFIRI vs. FOLFIRI alone, and 0.70 to 0.90 in
combination with either doublet chemotherapy vs. bevacizumab
plus doublet chemotherapy, according to phase 3 trials (66, 67,
69, 78). Although panitumumab has not been extensively studied
in combination with FOLFIRI chemotherapy in the first-line
setting, first-line panitumumab plus FOLFOX vs. FOLFOX alone
yielded anHR for survival of 0.78 in a retrospective analysis of the
RAS wt population of the phase 3 PRIME trial (65). Additionally,
a retrospective analysis of the phase 2 PEAK trial yielded an

HR for survival of 0.63 with panitumumab plus FOLFOX vs.
bevacizumab plus FOLFOX in the population with RAS wt
disease; however, patient numbers were much lower in this phase
2 study than in the analogous cetuximab phase 3 CALGB/SWOG
80405 and FIRE-3 trials (63, 67, 78).

A full summary of the available first-line data for cetuximab
and panitumumab in combination with chemotherapy is
presented in Table 3. Notably, however, while cetuximab
has been shown to pair well with FOLFIRI, FOLFOX, and
FOLFOXIRI (leucovorin, 5-FU, oxaliplatin, and irinotecan)
chemotherapy backbones in multiple randomized studies (66,
67, 78, 85, 86, 89), almost all available data for panitumumab in
the first-line RAS wt setting are in combination with FOLFOX
and include only 1 phase 3 and 1 phase 2 study. Evidence for
panitumumab plus FOLFIRI in mCRC comes from two studies.
The first was a phase 2, single-arm study of panitumumab +

FOLFIRI in first-line mCRC, which showed favorable efficacy
of the combination in KRAS wt vs. KRAS mt mCRC (90). The
second study was the phase 3 20050181 trial, which administered
this combination in the second-line setting in patients with
KRAS wt mCRC. The phase 3 second-line study reported a
significant but modest improvement in PFS compared with
FOLFIRI alone (median, 6.7 vs. 4.9 months; HR, 0.82), a trend
toward improvement in OS (median, 14.5 vs. 12.5 months;
HR, 0.92), and a significant improvement in objective response
rate (ORR; 36 vs. 10%) (91). Recently, the phase 2 Gruppo
Oncologico del Nord Ovest (GONO) and VOLFI trials provided
published evidence for the first-line panitumumab combination
with FOLFOXIRI in patients (N = 37 and N = 96, respectively)
with non–liver-limited mCRC (88, 92).

In recent years, primary tumor location has gained
importance as another characteristic of mCRC that impacts
patient prognosis and treatment decision making. Primary
tumor location (right vs. left, or proximal vs. distal, respectively)
has been demonstrated to have significant implications
for patient survival and response to available therapies
(93). Specifically, patients diagnosed with left-sided tumors
have appeared to have better responses with anti-EGFR
therapy than with anti-VEGF therapy, with the bulk of
tumor location subgroup analysis evidence coming from
the available cetuximab-based phase 3 trials. In contrast,
patients with right-sided tumors have appeared to derive less
benefit from therapy in general (80, 94). In the populations
of patients with RAS wt left-sided primary tumors in the
CALGB/SWOG 80405 and FIRE-3 trials, the median OS
approached 40 months with cetuximab plus chemotherapy
(FOLFIRI or FOLFOX in CALGB/SWOG 80405 and FOLFIRI
in FIRE-3) (80, 94). Indeed, a small retrospective study by
Sagawa et al. demonstrated a median OS of over 50 months
with cetuximab-based treatment in patients with RAS wt
left-sided tumors (95). Furthermore, improvements in OS
with cetuximab-based treatment were statistically significant
compared with bevacizumab-based treatment in the population
with RAS wt left-sided tumors (80, 94, 95). Efficacy data for
first-line panitumumab- vs. bevacizumab-based treatment in
RAS wt left-sided mCRC are available only from the phase 2
PEAK study, in which OS trended toward improvement with
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TABLE 3 | Clinical impact of cetuximab and panitumumab in RAS wt mCRC*.

Study Patients, n Treatment regimen Median PFS, months Median OS, months ORR, %

CALGB/SWOG

(78–80)

270 vs. 256 Cetuximab +

FOLFOX/FOLFIRI vs.

bevacizumab +

FOLFOX/FOLFIRI

11.4 vs. 11.3 (HR, 1.1 [95%

CI, 0.9–1.3]; P = 0.31)

32.0 vs. 31.2 (HR, 0.9 [95%

CI, 0.7–1.1]; P = 0.40)

68.8 vs. 56.0 (P < 0.01)

FIRE-3 (67) 199 vs. 201 Cetuximab + FOLFIRI vs.

bevacizumab + FOLFIRI

10.3 vs. 10.2 (HR, 0.97

[95% CI 0.78–1.20])

33.1 vs. 25.0 (HR, 0.70

[95% CI, 0.54–0.90])

65.3 vs. 58.7 (OR, 1.33

[95% CI, 0.88–1.99])

CRYSTAL (66) 178 vs. 189 Cetuximab + FOLFIRI vs.

FOLFIRI

11.4 vs. 8.4 (HR, 0.56 [95%

CI, 0.41–0.76]; P < 0.001)

28.4 vs. 20.2 (HR, 0.69

[95% CI, 0.54–0.88]; P =

0.0024)

66.3 vs. 38.6 (OR, 3.11

[95% CI, 2.03–4.78]; P <

0.001)

COIN (81) 362 vs. 367 Cetuximab + oxaliplatin +

fluoropyrimidine vs.

oxaliplatin +

fluoropyrimidine

8.6 vs. 8.6 (HR, 0.96 [95%

CI, 0.82–1.12]; P = 0.60)

17.0 vs. 17.9 (HR, 1.04

[95% CI, 0.87–1.23]; P =

0.67)

64 vs. 57 (OR, 1.35 [95%

CI, 1.00–1.82]; P = 0.049)

OPUS (82, 83) 38 vs. 49 Cetuximab + FOLFOX vs.

FOLFOX

12.0 vs. 5.8 (HR, 0.53 [95%

CI, 0.27–1.04]; P = 0.0615)

19.8 vs. 17.8 (HR, 0.94

[95% CI, 0.56–1.56]; P =

0.80)

58 vs. 29 (OR, 3.33 [95%

CI, 1.36–8.17]; P = 0.0084)

TAILOR (69) 193 vs. 200 Cetuximab + FOLFOX vs.

FOLFOX

9.2 vs. 7.4 (HR, 0.69 [95%

CI, 0.54–0.89]; P = 0.004)

20.7 vs. 17.8 (HR, 0.76

[95% CI, 0.61–0.96]; P =

0.02)

61.1 vs. 39.5 (OR, 2.41

[95% CI, 1.61–3.61]; P <

0.001)

BELIEF (84) 45 vs. 48 Cetuximab +

FOLFOX/FOLFIRI vs.

FOLFOX/FOLFIRI

9.8 vs. 5.3 (HR, 0.52 [95%

CI, 0.33–0.81]; P = 0.002)

35.1 vs. 21.7 (HR, 0.44;

[95% CI, 0.23–0.83]; P =

0.009)

62.2 vs. 29.2

MACBETH

(85, 86)

59 vs. 57 Cetuximab + mFOLFOXIRI

(with cetuximab

maintenance) vs. cetuximab

+ FOLFOXIRI (with

bevacizumab maintenance)

10.1 vs. 9.3 (HR, 0.83 [95%

CI, 0.57–1.21])

33.2 vs. 32.2 (HR, 0.92

[95% CI, 0.57–1.47])

71.6% in the entire cohort

PEAK (63) 88 vs. 82 Panitumumab + FOLFOX

vs. bevacizumab + FOLFOX

13.0 vs. 9.5 (HR, 0.65 [95%

CI, 0.44–0.96]; P = 0.029)

41.3 vs. 28.9 (HR, 0.63

[95% CI, 0.39–1.02]; P =

0.058)

63.6 vs. 60.5

PRIME (65) 259 vs. 253 Panitumumab + FOLFOX

vs. FOLFOX

10.1 vs. 7.9 (HR, 0.72 [95%

CI, 0.58–0.90]; P = 0.004)

26.0 vs. 20.2 (HR, 0.78

[95% CI, 0.62–0.99]; P =

0.04)

Not reported for the RAS wt

population

PLANET (87) 27 vs. 26 Panitumumab + FOLFOX

vs. panitumumab + FOLFIRI

13 vs. 15 (HR, 0.7, 95% CI,

0.4–1.3; P = 0.307)

39 vs. 49 (HR, 0.9 [95% CI,

0.4–1.9]; P = 0.824)

78 vs. 73 (P = 0.691)

VOLFI (88) 63 vs. 33 Panitumumab +

mFOLFOXIRI vs. FOLFOXIRI

10.8 vs. 10.5 (HR, 1.11,

95% CI, 0.69–1.75; P =

0.6634)

NA 85.7% vs. 60.6% (OR, 3.90

[95% CI, 1.44–10.52]; P =

0.0096)

CALGB, Cancer and Leukemia Group B; CRYSTAL, Cetuximab Combined With Irinotecan in First-Line Therapy for Metastatic Colorectal Cancer; FIRE-3, FOLFIRI Plus Cetuximab vs.

FOLFIRI Plus Bevacizumab as First-Line Treatment For Patients With Metastatic Colorectal Cancer; FOLFIRI, leucovorin, fluorouracil, and irinotecan; FOLFOX, leucovorin, fluorouracil, and

oxaliplatin; FOLFOXIRI, leucovorin, fluorouracil, oxaliplatin, and irinotecan; HR, hazard ratio; mCRC, metastatic colorectal cancer; mFOLFOXIRI, modified FOLFOXIRI; NA, not applicable;

OPUS, Oxaliplatin and Cetuximab in First-Line Treatment of Metastatic Colorectal Cancer; PEAK, Panitumumab Efficacy in Combination With mFOLFOX6 Against Bevacizumab Plus

mFOLOFOX6 inmCRCSubjectsWithWild-Type KRAS Tumors; PFS, progression-free survival; PRIME, Panitumumab Randomized Trial in CombinationWith Chemotherapy for Metastatic

Colorectal Cancer to Determine Efficacy; OR, odds ratio; ORR, objective response rate; OS, overall survival.

panitumumab; however, the results did not reach statistical
significance (96). Although ∼86% of the currently published
data for first-line studies of anti-EGFR agents vs. bevacizumab
in left-sided tumors come from cetuximab trials, studies
suggest similar results with either cetuximab or panitumumab
compared with bevacizumab in patients with RAS wt,
left-sided mCRC.

Although patients with right-sided tumors consistently had
worse prognoses than patients with left-sided tumors, they
may still derive tumor shrinkage benefits with anti-EGFR-
mAb-based treatment, according to a meta-analysis by Wang
et al. (including the CRYSTAL, TAILOR, PRIME, and 20050181

trials) that demonstrated that anti-EGFR-mAb-based treatment
significantly improves response rates and PFS in patients
with RAS wt mCRC, independent of primary tumor location
(97). Additionally, a meta-analysis by Arnold et al. (including
the CRYSTAL, FIRE-3, CALGB 80405, PRIME, PEAK, and
20050181 studies) confirmed the prognostic value of primary
tumor location and demonstrated that patients with left-sided
tumors significantly benefited from an anti-EGFR antibody plus
chemotherapy vs. chemotherapy with or without bevacizumab.
For patients with right-sided disease, there was no significant
benefit in OS or PFS; however, an analysis of ORR showed that an
anti-EGFR plus chemotherapy doublet can be a treatment option
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when cytoreduction is the goal (68). The findings of both meta-
analyses support the preferential utilization of an anti-EGFR
mAb plus chemotherapy in patients with RAS wt, left-sided
mCRC, with most of the data being extracted from cetuximab-
based trials. Although patients with right-sided tumors tended
to derive limited benefit from available therapy, a pooled
analysis of prospective trials showed that some proportion of
patients with right-sided tumors could respond to cetuximab,
suggesting that some patients with right-sided disease may
benefit from an anti-EGFR agent plus chemotherapy as an initial
treatment (98).

Although cetuximab and panitumumab have not been
compared directly in first- or second-line mCRC, a limited
number of phase 2 studies exist for each that had comparable
trial designs. A phase 2 trial by Carrato et al. evaluated the
efficacy of second-line panitumumab plus irinotecan in patients
with KRAS wt mCRC who had received either 5-FU, oxaliplatin,
or irinotecan in the first line. Panitumumab plus irinotecan
yielded a PFS and OS of 4.5 and 15.1 months, respectively,
and an ORR of 23%. The outcomes observed by Hong et al.
with second-line cetuximab plus irinotecan, also in patients
with KRAS wt disease, were a median PFS and OS of 8.3
and 18.3 months, respectively, and an ORR of 45% (99, 100).
The only randomized, phase 3 trial to compare cetuximab and
panitumumab directly was ASPECCT, which confirmed the
non-inferiority of panitumumab compared with cetuximab as
a monotherapy in the third- and later-line setting in patients
with KRAS wt mCRC. Results of the RAS wt subset of the
ASPECCT study are still pending (101). In the final analysis,
median PFS and OS were 4.1 vs. 4.4 months and 10.4 vs.
10.0 months with panitumumab vs. cetuximab, respectively.
The ORR was 22.0% with panitumumab and 19.8% with
cetuximab. ASPECCT was a non-inferiority trial (rather than
a superiority trial), but a trial powered to investigate efficacy
differences between cetuximab and panitumumab in colorectal

cancer had not been conducted at the time of this article.
Therefore, the results from ASPECCT might not be extrapolated
to earlier lines of therapy and to treatment in combination
with chemotherapy. One other noteworthy study, the phase
2, randomized WJOG6510G trial, compared cetuximab plus
irinotecan and panitumumab plus irinotecan in patients with
KRAS wt mCRC in whom 5-FU–, oxaliplatin-, and irinotecan-
based therapy had previously failed. The results suggested non-
inferiority of panitumumab plus irinotecan compared with
cetuximab plus irinotecan in this setting (102). Additional
third- and further-line studies of cetuximab or panitumumab
monotherapy or in combination with irinotecan are difficult
to compare directly because many of the early trials with
cetuximab were conducted prior to the discovery of the KRAS
mutation biomarker, and therefore enrollment was determined
by EGFR expression status only (103–110). However, the phase
3 CO.17 trial demonstrated how mutation status of the KRAS
gene was associated with OS in mCRC patients treated with
cetuximab after prior chemotherapy (111). More recently, a
retrospective analysis of the EPIC study demonstrated that post-
study cetuximab was associated with improved OS in the RAS wt
population (112).

One final difference in clinical efficacy that has been
observed between cetuximab and panitumumab concerns
the effect of prior bevacizumab treatment on response to
subsequent anti-EGFR therapy. Recent evidence has suggested
that prior bevacizumab therapy, if administered within a
certain time interval of initiation of anti-EGFR therapy,
can compromise responsiveness to cetuximab but not to
panitumumab (101, 113–117). These findings not only underline
the fact that the two mAbs are non-interchangeable, but they
also have implications in treatment sequencing—namely, that
in order to maximize the potential number of therapeutic
lines of treatment, cetuximab should be administered prior
to bevacizumab.

TABLE 4A | Comparison of cetuximab- and panitumumab-associated grade 3/4 adverse events: evidence from (A) first-line and (B) third-line phase 3 trials.

Adverse event (%) Treatment regimen

RAS wt RAS wt KRAS wt*

CRYSTAL (66) (cetuximab +

FOLFIRI)

TAILOR (69) (cetuximab +

FOLFOX4)

PRIME (65, 118)

(panitumumab + FOLFOX4)

Any AE 81 94 57 with grade 3, 28 with grade 4*

Diarrhea 15 6 18

Hypomagnesemia NR 8 7

Infusion-related

reactions

2 10 <1

Neurotoxicity NR NR 16

Skin reactions 21 26 37

Acne-like rash 17 24 NR

*Data shown for PRIME, any AE, is from a RAS wt analysis. All other AE data shown for PRIME are from the KRAS wt population.

AE, adverse event; CRC, colorectal cancer; CRYSTAL, Cetuximab Combined With Irinotecan in First-Line Therapy for Metastatic Colorectal Cancer; FOLFIRI, leucovorin, fluorouracil, and

irinotecan; FOLFOX, leucovorin, fluorouracil, and oxaliplatin; PRIME, Panitumumab Randomized Trial in Combination With Chemotherapy for Metastatic Colorectal Cancer to Determine

Efficacy; wt, wild type.
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TABLE 4B | Evidence from the phase 3, head-to-head ASPECCT trial in 3L KRAS

wt mCRC patients (101).

Adverse event (%) Treatment

Cetuximab Panitumumab

Any AE 494 (98) 485 (98)

Grade 3/Grade 4 AEs

Diarrhea 9 (2)/0 7 (1)/3 (1)

Hypomagnesemia 10 (2)/3 (<1) 26 (5)/9 (2)

Infusion-related reactions 5 (1)/4 (<1) 1 (<0·5)/0

Neurotoxicity Not reported Not reported

Skin reactions 48 (10)/0 60 (12)/2 (<0·5)

Acne-like rash 14 (3)/0 17 (3)/0

SAFETY FINDINGS WITH CETUXIMAB AND
PANITUMUMAB IN COLORECTAL CANCER

The rates of grade 3/4 adverse events (AEs) considered related to
anti-EGFR therapy in patients treated with first-line anti-EGFR
plus chemotherapy are presented in Table 4A. Additionally,
the rates of grade 3/4 AEs from the third-line head-to-head
ASPECCT trial are presented in Table 4B.

Although a direct comparison is confounded by the lack
of AE rates for RAS wt patients in PRIME (the PRIME trial
did not present rates of individual AEs for the RAS subgroup),
the addition of cetuximab to chemotherapy was associated
with an increased incidence of grade 3/4 infusion-related
reactions, whereas the addition of panitumumab exacerbated
the incidence of grade 3/4 diarrhea (65, 66, 69, 118). A meta
analysis by Petrelli et al. concluded that while cetuximab and
panitumumab have a similar burden of overall toxicity in
terms of severe AEs, the individual safety profiles are distinct.
Panitumumab was associated with a higher rates of grade
3/4 skin toxicities, hypomagnesemia, fatal AEs, and treatment
discontinuations, while cetuximab was associated with a higher
rates of skin rash, infusion reactions, and gastrointestinal toxicity
(119). As noted in Petrelli et al., the third-line, anti-EGFR
monotherapy trial ASPECCT also identified increased rates of
grade 3/4 hypomagnesemia and decreased rates of infusion-
related reactions with panitumumab compared with cetuximab
(101). Finally, whereas the CRYSTAL and TAILOR trials reported
no treatment-related grade 3/4 neurotoxicity occurring at a rate
of ≥5% frequency in either arm, a rate of 16% was reported
in the patient population of the PRIME trial (118). Petrelli
et al. similarly identified a higher rate of grade 3/4 neurotoxicity
in panitumumab trials than in cetuximab trials (119). The
reasons for the increased incidence of (likely oxaliplatin-related)
neurotoxicity (120) in panitumumab trials remain unknown.

Regarding chemotherapy backbones for the two mAbs, the
selection of FOLFIRI vs. FOLFOX for first-line treatment can
depend on which toxicity profile is likely to be more tolerable
for the patient in question, because the two regimens are
considered to have similar activities in mCRC (2). Therefore,
differences in the toxicity profiles between the two chemotherapy
backbones in combination with panitumumab vs. cetuximab

are of substantial clinical relevance during treatment selection.
However, it is worth noting that a meta-analysis by Teng et al.
found a slight improvement in time to progression, and thus
in OS, with FOLFIRI followed by FOLFOX compared with the
reverse sequence (121). This finding reinforces the importance
of treatment sequencing and how the differential findings with
cetuximab and panitumumab can be applied, namely, that
cetuximab has been shown to pair well with either FOLFOX or
FOLFIRI vs. FOLFOX or FOLFIRI alone, whereas all available
phase 3 data for panitumumab efficacy in first-line mCRC are
in combination with FOLFOX. Notably, there are several small
studies, although without comparator arms, that have provided
evidence for the activity of panitumumab in combination with
FOLFIRI in mCRC (87, 90).

EFFICACY WITH CETUXIMAB AND
PANITUMUMAB IN HEAD AND NECK
CANCER

As previously mentioned, cetuximab has been approved for
use in combination with radiotherapy in locally advanced
SCCHN (LA SCCHN) and in combination with platinum and
5-FU, followed by cetuximab maintenance, for recurrent and/or
metastatic SCCHN (R/M SCCHN) (122, 123). Panitumumab
has been investigated in combination with radiotherapy in LA
SCCHN but has failed to improve upon the current standard-
of-care chemoradiotherapy treatment (124, 125), and it did not
demonstrate a significant improvement in OS when added to
platinum plus 5-FU chemotherapy in the R/M setting (126).
A caveat is that panitumumab maintenance was optional in
the SPECTRUM trial, following panitumumab plus platinum
and 5-FU in patients with first-line R/M SCCHN, whereas
cetuximab maintenance therapy in the EXTREME trial was
given to all patients who achieved stable disease or a response
during combination treatment (126, 127). Therefore, we are
unable to directly compare the two agents in the SCCHN
setting (Tables 5A,B). What can be said with certainty is that
cetuximab is highly active in SCCHN, and proposed explanations
include the increased potential contribution of cetuximab’s
immune actions in this tumor type, given the predominance of
EGFR-overexpressing cells and immunologic sensitivity in head
and neck tumors (25). Specifically, cetuximab’s stimulation of
ADCC and other immunostimulatory activities (DC maturation,
T-cell recruitment to the tumor, increased antigen presentation,
and cytotoxic T-cell priming) are dependent on cetuximab’s
simultaneous binding of the EGFR and the CD16 receptor
on NK cells (25). Indeed, evidence has suggested the link
between high baseline ADCC and EGFR overexpression and
better outcomes with cetuximab plus radiotherapy but not with
chemoradiotherapy (55). Thus, while it is difficult to prove
the clinical impact of cetuximab-driven immunostimulation on
tumor cell death, tumor shrinkage, and disease control, a wealth
of evidence suggests that it is, in fact, a contributing factor to
cetuximab’s antitumor activity in SCCHN (25), and it may be the
key differentiating aspect between cetuximab and panitumumab
in head and neck cancer.
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TABLE 5A | Clinical impact of cetuximab and panitumumab in LA SCCHN.

Study Treatment regimen Patients, n LRC rate

(2 years)

OS rate (2

years)

Safety findings

IMCL-9815

(Bonner trial) (128)

Radiotherapy vs.

radiotherapy +

cetuximab

213 vs. 211 41 vs. 50% 55 vs. 62% Grade 3–5 mucositis (52 vs. 56%), acneiform rash

(1 vs. 17%), radiation dermatitis (18 vs. 23%),

weight loss (7 vs. 11%), xerostomia (3 vs. 5%),

dysphagia (30 vs. 26%), asthenia (5 vs. 4%),

constipation (5 vs. 5%), pain (7 vs. 6%), and

dehydration (8 vs. 6%)

CONCERT-2 (124) Chemoradiotherapy vs.

radiotherapy +

panitumumab

61 vs. 90 61 vs. 51% 71 vs. 63% Grade 3/4 mucositis (40 vs. 42%), dysphagia (32

vs. 40%), radiation skin injury (11 vs. 24%). Serious

AEs were more frequent in the chemoradiotherapy

arm (40 vs. 34%)

Siu et al. (125) Chemoradiotherapy vs.

radiotherapy +

panitumumab

156 vs. 159 73 vs. 76%

(2-year PFS

rate)

85 vs. 88% Grade ≥ 3 non-hematologic AEs occurred at rates

of 88 vs. 91%, respectively

TABLE 5B | Clinical impact of cetuximab and panitumumab in R/M SCCHN.

Study Treatment regimen Patients, n Median PFS, months Median OS, months Safety findings

EXTREME

(127)

Cisplatin/carboplatin +

5-FU + cetuximab→

maintenance cetuximab vs.

Cisplatin/carboplatin +

5-FU

222 vs. 220 5.6 vs. 3.3 (HR, 0.54

[95% CI, 0.43–0.67];

P < 0.001)

10.1 vs. 7.4 (HR, 0.80

[95% CI, 0.64–0.99];

P = 0.04)

Grade 3/4 neutropenia (22 vs. 23%),

anemia (13 vs. 19%),

thrombocytopenia (11 vs. 11%), skin

reactions (9 vs. < 1%)

SPECTRUM

(126)

Cisplatin/carboplatin +

5-FU + panitumumab→

maintenance panitumumab

q3w (optional) vs.

Cisplatin/carboplatin +

5-FU

327 vs. 330 5.8 vs. 4.6 (HR, 0.78

[95% CI, 0.659–0.922];

P = 0.0036)

11.1 vs. 9.0 (HR, 0.873

[95% CI, 0.729–1.046];

P = 0.1403)

Grade 3/4 skin or eye toxicity (19%),

diarrhea (5%), hypomagnesemia

(12%), hypokalemia (10%), and

dehydration (5%) were more frequent

in the panitumumab arm vs. control.

4% treatment-related deaths

occurred in the panitumumab arm

5-FU, fluorouracil; AE, adverse event; CONCERT-2, Concomitant Chemotherapy and/or EGFR Inhibition With Radiation Therapy; EXTREME, Erbitux in First-Line Treatment of Recurrent

or Metastatic Head and Neck Cancer; HR, hazard ratio; LA, locally advanced; LRC, locoregional control; OS, overall survival; PFS, progression-free survival; q3w, every 3 weeks; R/M,

recurrent and/or metastatic; SCCHN, squamous cell carcinoma of the head and neck; SPECTRUM, Study of Panitumumab Efficacy in Patients With Recurrent and/or Metastatic Head

and Neck Cancer.

POTENTIAL OF ANTI-EGFR mAbs IN
COMBINATION WITH IMMUNOTHERAPY
REGIMENS

Cetuximab and panitumumab behave differently, despite their
therapeutic targeting of the same receptor; thus, available clinical
data for one should not be applied to the other. Looking to the
future in mCRC treatment, emerging immunotherapies have yet
to demonstrate paradigm-shifting clinical activity in mismatch
repair–proficient mCRC (129), suggesting that the way forward
will continue to be combinatorial, including chemotherapy
elements. In this respect, irinotecan’s and oxaliplatin’s synergistic
effects with cetuximab (130–132) and possible differences from
a treatment-sequencing standpoint suggest that cetuximab plus
either FOLFIRI or FOLFOX is a suitable combination partner
for checkpoint inhibitors and other immunotherapies. For
example, cetuximab induces NK cell–mediated ADCC, resulting
in increased immunogenic cell death, and cetuximab-treated cells
have been shown to be more susceptible to phagocytosis by DCs.

In the same study by Pozzi et al., even measurable immunogenic

cell death occurred when CRC cell lines and mouse CRC models

were co-treated with cetuximab plus FOLFIRI (31). Similarly,

oxaliplatin has been shown to have some immunostimulatory
properties, including immunogenic cell death (133–136) and the

ability to prime tumors for checkpoint blockade in preclinical

models (11, 136, 137). Cetuximab’s known immune actions,

including increasing immune infiltration and immune visibility
of the tumor, suggest that it will be the more potent combination
partner for either irinotecan- or oxaliplatin-based therapy, to
which checkpoint inhibitors may theoretically be added to
increase the immune antitumor response.

CONCLUSIONS AND FUTURE
DIRECTIONS FOR CETUXIMAB AND
PANITUMUMAB

Cetuximab and panitumumab are both currently used to treat
RAS wt mCRC. Clinical data for panitumumab in combination
with chemotherapy is mostly limited to FOLFOX in the first-
line setting, whereas cetuximab has demonstrated efficacy and
safety in phase 3 first-line trials with both FOLFOX and
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FOLFIRI. Additionally, their combinability with FOLFIRI and
known activity following prior bevacizumab treatment may have
implications for optimal treatment sequencing in the continuum
of care for mCRC.

Aside from the fact that panitumumab is a human
mAb and cetuximab is a mouse/human chimeric mAb,
the two anti-EGFR agents are composed of different IgG
isotypes. Because cetuximab is an IgG1 mAb, it has additional
immunogenic activity not demonstrated by panitumumab
(IgG2). Cetuximab, unlike panitumumab, can prime the tumor
microenvironment for an immune attack by enabling multiple
processes, including ADCC and activation of innate and
adaptive immune effector cells. Interestingly, both cetuximab
and panitumumab improve outcomes in CRC. Despite extensive
immune system activation induced by cetuximab, residual
tumor-associated cells can prevent the final attack of cytotoxic
T cells on the tumor by upregulation of PD-1, PD-L1, and
CTLA-4 on their surface or by releasing cytokines such as
TGF-β or chemokines such as CXCL12, which inactivate
effector cells (25). Whether cetuximab will be clinically superior

to panitumumab in the immunotherapy era remains to
be determined by future clinical trials employing immune

checkpoint inhibitors, which may complement the “immune
priming” activity of cetuximab (and chemotherapy). We
eagerly anticipate upcoming results from future and ongoing
clinical trials.
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