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Acute myeloid leukemia (AML) is a genetically heterogeneous malignancy for which

treatment options have been largely limited to cytotoxic chemotherapy for the past four

decades. Next-generation sequencing and other approaches have identified a spectrum

of genomic and epigenomic alterations that contribute to AML initiation andmaintenance.

The key role of epigenetic modifiers and the reversibility of epigenetic changes have

paved the way for evaluation of a new set of drug targets, and facilitated the design of

novel candidate treatment strategies. More recently, seven new targeted therapies have

been FDA-approved demonstrating successful implementation of the past decades’

research. In this review, we will summarize the most recent advances in targeted

therapeutics designed for a focused group of key epigenetic regulators in AML, outline

their mechanism of action and their current status in clinical development. Furthermore,

we will discuss promising new approaches for epigenetic targeted treatment in AML

which are currently being tested in pre-clinical trials.
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INTRODUCTION

Epigenetic regulation of the state of a cell involves various dynamic and reversible post-translational
modifications of DNA and histone proteins. These modifications in their totality regulate the
accessibility of DNA for the transcription machinery, thereby determining which specific genomic
loci are transcriptionally active or repressed (1). The best-researched chromatin modifications
include lysine acetylation, lysine mono-, di-, or tri-methylation, and arginine methylation. In
addition, DNA methylation is an important regulator of gene expression and other DNA-
dependent processes.

Normal hematopoiesis is regulated by the cooperative action of various transcription
factors and epigenetic modulators that drive cell type-specific transcriptional programs. Recent
advances in next-generation sequencing-based approaches and global projects, such as the
Encyclopedia of DNA Elements (ENCODE, 2003), The Cancer Genome Atlas (TCGA, 2006),
the International Cancer Genome Consortium (ICGC, 2008), and the European Community
initiative BLUEPRINT (2011) have been critical in defining the regulatory networks in
different normal hematopoietic cell types as well as how they are deregulated in myeloid
malignancies (2–4). The key role of epigenetic modifiers in diseases, such as leukemia and
the reversibility of epigenetic changes create an opportunity for development of targeted
therapies with significant implications for clinical prevention and treatment. Indeed, a plethora
of preclinical and clinical studies covering several hematologic malignancies show that targeting
these epigenetic regulators can restore normal epigenetic and transcriptional programs (5, 6).

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.00850
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.00850&domain=pdf&date_stamp=2019-09-06
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tim.somervaille@cruk.manchester.ac.uk
mailto:tim.somervaille@cruk.manchester.ac.uk
https://doi.org/10.3389/fonc.2019.00850
https://www.frontiersin.org/articles/10.3389/fonc.2019.00850/full
http://loop.frontiersin.org/people/796160/overview


Wingelhofer and Somervaille Epigenetic Therapy in AML

Acute myeloid leukemia (AML) represents a group of genetically
heterogeneous malignant clonal disorders which share the
common feature of a block to normal myeloid differentiation.
Various genetic and epigenetic mechanisms regulating the
pathophysiology of AML have been identified many of which
cluster in particular categories of genes including those coding
for signaling molecules (such as FLT3 and KIT), transcription
factors (such as CEBPA and RUNX1), chromatin modifiers (such
as MLL and ASXL1) or direct and indirect regulators of DNA
methylation (such as DNMT3A, IDH1, IDH2, and TET2) (7, 8).
Although the number of potential targets for novel therapeutics
has expanded in the last decade, a major challenge in AML is
the genetic heterogeneity; there remains a substantial lack of
understanding as to how mutations and their associated aberrant
patterns of epigenetic modification interact with one another to
confer malignant transformation. Perhaps as a result, with some
notable exceptions, certain clinical studies of candidate epigenetic
therapies have yielded disappointing results.

Until recently, FDA-approved targeted therapies in myeloid
malignancies were limited to all-trans retinoic acid (ATRA) and
arsenic trioxide (ATO) for treatment of acute promyelocytic
leukemia (9) and the DNA hypomethylating agents decitabine
and 5-azacitidine targeting DNA methyltransferases (DNMTs)
for the treatment of myelodysplasia (10, 11). However,
since 2017 seven new targeted therapies have been FDA-
approved in AML. These are the mutant IDH1 inhibitor
ivosidenib and the mutant IDH2 inhibitor enasidenib, for
patients with relapsed or refractory AML with the appropriate
mutation; the BCL2 inhibitor venetoclax in combination with
azacitidine or decitabine or low-dose cytarabine for newly-
diagnosed AML in the elderly; the smoothened receptor
inhibitor glasdegib in combination with low-dose cytarabine for
newly-diagnosed AML in the elderly; gemtuzumab ozagamicin
for newly-diagnosed CD33+ AML alone or in combination
with conventional chemotherapy; the multi-kinase inhibitor
midostaurin for newly diagnosed FLT3-mutated AML in
combination with conventional chemotherapy; and the FLT3,
AXL, and ALK inhibitor gilteritinib for relapsed or refractory
FLT3-mutated AML (12–19). IDH1 and IDH2 inhibitors are
excellent examples of what are presumed to be epigenetic
therapies, but with an indirect mechanism of action. Through
blockade of production of the putative oncometabolite D-
2-hydroxyglutarate, which is a competitive inhibitor of α-
ketoglutarate-dependent dioxygenases, such as the TET family
of 5-methylcytosine hydroxylases, the Jumonji family of lysine
demethylases and prolyl hydroxylases, they target altered
transcriptional programs in AML caused by global changes in
DNA methylation and histone modifications (12). As a general
principle these compounds have only moderate activity as single
agents (3, 20) and so research into their combinatorial use
remains an intense and active area of interest. As an aside,
it is worth noting that histone deacetylase (HDAC) inhibitors
vorinostat and panobinostat are approved for use in cutaneous
T-cell lymphoma and multiple myeloma, respectively, and that
the oral HDAC inhibitor pracinostat is currently being tested in a
phase 3 setting in combination with azacitidine in elderly patients
with AML (NCT03151408).

While these new developments in FDA approval are welcome,
there remains much to do to improve the outcome of patients
with myeloid malignancies. In this perspective, we will discuss a
discrete set of candidate epigenetic therapeutic targets currently
under evaluation in AML: the lysine demethylase LSD1, the
protein methyltransferases EZH2, DOT1L, and PRMT5, and the
BET bromodomain proteins. We will describe the importance of
these transcriptional activators and repressors in different AML
subtypes as well as their targeting potential, possible limitations
and potential toxicities. We will summarize their current status
in clinical development. For detailed review of other equally
important targets, such as DNMTs and HDACs the reader is
referred to recent comprehensive reviews (20–22). Finally, we
will discuss a number of novel epigenetic targets currently
undergoing pre-clinical evaluation.

TARGETING EPIGENETIC REPRESSORS IN
ACUTE MYELOID LEUKEMIA

LSD1
Histone methylation and demethylation are tightly regulated,
dynamic processes that regulate transcriptional activation or
repression depending on the location of the modification.
Methylation is generated by specific histone methyltransferases
(HMTs), such as MLL, DOT1L, and EZH2. As for other
histone modifications, methylation can be reversed by
two classes of demethylases (KDM): the larger Jumonji
domain family and the smaller lysine-specific demethylase
(LSD) family.

LSD1/KDM1A is a flavin-adenine dinucleotide (FAD)-
dependent histone demethylase (23, 24) with activity vs. mono-
and dimethyl-H3K4 and H3K9 marks as well as non-histone
proteins, such as DNMT1 and TP53 (25). LSD1 is typically
found as a component of repressive multi-subunit complexes,
such as CoREST and NuRD (26–30). More recent studies
have revealed that LSD1 also binds with high affinity to
N-terminal sequences of SNAG domain transcription factor
family members, an interaction facilitated by molecular mimicry
of the histone H3 tail by the SNAG domain (31–33). Indeed
physical association of LSD1 with the SNAG domain of GFI1
is essential for the activity of GFI1 as a transcription repressor
(34). In keeping with these observations, LSD1 has a critical
role in normal hematopoiesis as well as in hematological
malignancies (25, 35). In MLL-rearranged AMLs, LSD1 is critical
for maintenance of leukemic stem cell (LSC) potential by
sustaining an oncogenic transcriptional program and blocking
differentiation and apoptosis (36). Inhibition of LSD1 by
tranylcypromine sensitizes AML cells to differentiation induction
by all-trans-retinoic acid (ATRA) (35). An essential point is
that inhibitors of LSD1 both inhibit the demethylase activity
of the enzyme and block the physical interaction of LSD1 with
GFI1, thus impairing enzymatic and scaffolding functions of the
protein, and inactivating the transcription repressor activity of
SNAG domain transcription factors (Figure 1A).

In recent years, two tranylcypromine-derivative inhibitors,
GSK2879552 (NCT02177812) and iadademstat (ORY-1001;
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FIGURE 1 | Putative mechanisms of action of candidate epigenetic inhibitors. (A) LSD1 interacts with the SNAG domain of GFI1 recruiting repressors to chromatin.

Inhibitors of LSD1 (LSD1i) disrupt the interaction and inactivate GFI1 leading to enhancer acetylation and activation. LSD1 inhibitors also inactivate the histone

demethylase activity of LSD1 (not shown). (B) EZH2 catalyzes H3K27 methylation inducing transcriptional repression. This activity is blocked by

S-adenosyl-methionine (SAM)-competitive inhibitors of EZH2 (EZH2i). (C) MLL fusion proteins form complexes on chromatin with Polymerase Associated Factor

complex (PAFc) (which recruits Super Elongation Complex components), Positive Transcription Elongation Factor b (pTEFb) and other factors to facilitate the

expression of MLL-driven target genes, such as HOXA9 and MEIS1. DOT1L is ectopically recruited by MLL fusions and adds activating H3K79me2 marks while

reducing H3K9me2 repressive marks by inhibition of SUV39H1 and SIRT1. BRD4 recognizes H3K27ac marks and is essential for recruitment and stabilization of the

MLL complex on chromatin. Inhibitors of the enzymatic activities of DOT1L (DOT1Li) or BRD4 (BRD4i) are considered to disrupt the MLL fusion protein complexes

leading to the release of the differentiation block. (D) MLL may be fused to the histone acetyltransferases CBP or EP300 which are associated with H3/H4 acetylation

and active gene transcription. CBP/EP300 bromodomain inhibition (EP300i) decreases H3K27 acetylation and chromatin accessibility at target promoters and

enhancers. (E) The N-terminal part of the MLL complex associates with different proteins, such as LEDGF and Menin which stabilize the complex on chromatin.

Proteins, such as RBBP5, ASH2L, and WDR5 interact with the MLL C-terminus to facilitate SET domain-mediated H3K4 methylation. Inhibition of these interactions

(MEN1, WDR5i) disrupt the MLL complex and decrease expression of HOXA9 and MEIS1.
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EudraCT 2013-002447-29), have been evaluated in phase I trials
in patients with relapsed or refractory AML (Table 1). While
the former was terminated due to an unfavorable risk-benefit
assessment, preliminary results are available from the latter:
iadademstat was well tolerated and induced molecular and
morphologic blast cell differentiation in patients harboring MLL
gene translocations (37, 38). Preclinical data have suggested the
possibility of synergistic effects of LSD1 inhibitionwith ATRA. As
a result, tranylcypromine itself and derivatives, such as IMG-7289
are undergoing evaluation in trials in combination with ATRA
(NCT02717884, NCT02273102, NCT02261779, NCT02842827,
and EudraCT 2012-002154-23); results are awaited. Following
on from phase 1, GSK2879552 and iadademstat are now
being evaluated in combination with azacitidine in high
risk myelodysplasia (NCT02929498) and AML, respectively
(EudraCT 2018-000482-36).

EZH2
EZH2 is the catalytic subunit of Polycomb Repressive Complex
2 (PRC2) which is responsible for maintaining transcriptional
repression of its target genes through tri-methylation of H3 K27
(39, 40) (Figure 1B). This histone mark facilitates recruitment
of PRC1 and ubiquitination of H2A K119 to induce a higher
repressive state of chromatin (41, 42). EZH2 regulates normal
hematopoiesis by maintaining multipotency and self-renewal of
hematopietic stem cells (HSCs) (39, 40). However, conditional
knockout studies have shown that it is dispensable for HSCs
possibly because of redundancy with EZH1 (43). During the
last decade, EZH2 has generated much interest as a potential
anti-cancer therapeutic strategy. First, several studies have
implicated PRC2 complex components including EZH2 in
the pathogenesis of diverse cancers including hematopoietic
malignancies (44). More recently, distinct cancer-associated

TABLE 1 | Key clinical trials of novel epigenetic therapies in AML (March 2019).

Target Drug Trial number Phase Status

TRANSCRIPTIONAL REPRESSORS

LSD1 IMG-7289 NCT02842827 1 Completed

GSK525762 NCT02177812 1 Terminated

Tranylcypromine EudraCT 2012-002154-23 1/2 Completed

NCT02717884 1/2 Recruiting

NCT02273102 1 Recruiting

NCT02261779 1/2 Unknown

ORY-1001 EudraCT 2013-002447-29 1 Completed

EudraCT 2018-000482-36 1 Ongoing

EZH2 DS-3201b NCT03110354 1 Recruiting

TRANSCRIPTIONAL ACTIVATORS

DOT1L EPZ-5676 NCT02141828 1 Completed

NCT01684150 1 Completed

NCT03724084 1/2 Recruiting

PRMT5 GSK3326595 NCT03614728 1/2 Recruiting

BET proteins OTX015/MK-8628 NCT01713582 1 Completed

NCT02698189 1 Active, not recruiting

ABBV-744 NCT03360006 1 Recruiting

RO6870810 NCT02308761 1 Completed

PLX51107 NCT02683395 1 Terminated

FT-1101 NCT02543879 1/1b Recruiting

ABBV-075 NCT02391480 1 Active, not recruiting

CPI-0610 NCT02158858 1/2 Recruiting

INCB054329 NCT02431260 1/2 Completed

GSK525762 NCT01943851 1 Recruiting

EudraCT 2013-000445-39 1/2 Ongoing

CREBB/EP300 C646103 Pre-clinical

I-CBP112 Pre-clinical

CCS1477 Pre-clinical

Menin MI-463 Pre-clinical

MI-503 Pre-clinical

WDR5 MM401 Pre-clinical

OICR9429 Pre-clinical
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mutations in EZH2 have been reported, including gain-
of-function mutations in lymphoid malignancies and loss-
of-function mutations in myeloid malignancies where they
are also associated with a poor prognosis (42). Loss of
EZH2 activity in myeloid malignancies also results from
differential splicing in the presence of an SRSF2 mutation
or consequent upon ASXL1 mutation (45, 46). Interestingly
in certain pre-clinical studies using EZH2-deficient mouse
models, EZH2 is highlighted as required for the development
of myeloid malignancies including MLL-AF9 AML; mutation
or deletion leads to a significant loss of LSCs and increased
differentiation (47).

The greatest focus for the clinical development of EZH2
inhibitors has been in the setting of lymphoma and some
solid tumors (NCT02082977, NCT01897571, NCT02395601)
where S-adenosyl methionine-competitive inhibitors, such as
GSK2816126, CPI1205, and the most promising, tazemetostat
(EPZ-6438), have been evaluated. Another is MAK683 which
is an EED-binding complex disrupter under investigation in
refractory lymphoma and solid malignancies (NCT02900651).
Phase I data for tazemetostat demonstrated an acceptable safety
profile and some objective responses (NCT01897571) resulting in
initiation of a number of follow on single agent and combination
studies (e.g., NCT02875548). On the basis of pre-clinical studies
demonstrating the functional importance of PRC2 in MLL-
rearranged AML, the dual EZH1–EZH2 inhibitor DS3201b has
entered phase 1 as monotherapy in patients with refractory acute
leukemia (NCT03110354) (Table 1). However, given a recent
report implicating loss of EZH2 and subsequent reduction of
histone H3K27 trimethylation in acquired resistance to tyrosine
kinase inhibitors (TKIs) and cytotoxic drugs in AML due to
derepression of HOX genes (48), cautious selection of specific
patient groups is required.

TARGETING EPIGENETIC ACTIVATORS IN
ACUTE MYELOID LEUKEMIA

DOT1L
Chromosomal rearrangement of MLL (KMT2A) occurs in
around 5% of AML cases, predominantly resulting in an
MLL-AF9 fusion gene, although other partner genes occur less
frequently (49, 50). The resulting oncoprotein maintains its
ability to bind toMLL target genes throughN-terminal sequences
but recruits additional proteins to MLL target genes through C-
terminal sequences. These include members of transcriptional
elongation complexes, such as the super elongation complex
(SEC) and the H3K79 methyltransferase DOT1L (51).

DOT1L is the only protein methyltransferase responsible
for catalyzing methylation of H3K79 (52), a modification
generally associated with active transcription (53). Aberrant
recruitment of DOT1L results in abnormally high levels of
H3K79 methylation on promoters and gene bodies of MLL-
fusion target genes, including the HOXA cluster and the
homeobox gene MEIS1 (54, 55), which are associated with
hematopoietic transformation (Figure 1C). While the precise
mechanism by which DOT1L contributes to gene activation is

not fully understood, DOT1L inhibits recruitment of a repressive
SIRT1 and SUV39H1 complex, thus maintaining an open
chromatin state permissive for gene expression (56). Various in
vitro and in vivo experimental systems have shown that DOT1L
and the interaction between DOT1L and MLL fusion partners
is critical for development of leukemia in patients with MLL
translocations (57–59).

The S-adenosyl methionine-competitive DOT1L inhibitor
pinometostat (EPZ-5676) displays great specificity for DOT1L
over other histone methyltransferases (60–63). Preclinical
studies revealed that DOT1L inhibition specifically reduces
H3K79 methylation and expression of MLL target genes leading
to reduction of proliferation and viability as well as increased
differentiation of leukemia cells both in vitro and in vivo (61).
Phase I clinical studies of single agent pinometostat in adults
(NCT01684150) and children (NCT02141828) with advanced
or relapsed/refractory MLL-rearranged acute leukemia have
recently been completed (64) (Table 1). Despite its limited
pharmacokinetics, continuous intravenous administration
was sufficient to decrease H3K79 methylation levels and
expression of HOXA9 and MEIS1 in individual patients (64).
However, only 2 out of 51 adult patients exhibited a clinical
response (64) and no objective responses were reported in
children (65). These somewhat disappointing results could
perhaps be explained by the heterogeneity of MLL fusion
proteins which may be differentially sensitive to DOT1L
inhibition, uncertainties about optimal dosing, and biological
discrepancies between enrolled patients and the preclinical
models used to evaluate the effect of pinometostat. Further
evaluation of pinometostat in combination with conventional
chemotherapy in MLL-rearranged acute leukemia is currently
underway (NCT03724084).

PRMT5
Arginine methylation is increasingly appreciated as an important
post-translational modification involved in regulation of
transcription and chromatin organization, RNA processing
and DNA damage repair (66–68). Arginine methylation is
catalyzed by a family of nine protein arginine methyltransferases
(PRMTs). However, recent research has mainly focused on
the type II protein arginine methyltransferases PRMT1 and
PRMT5. PRMT1 promotes H3R4 methylation, which is
associated with an active chromatin state at critical promoters
during hematopoietic cell differentiation; it is essential for
recruitment of the acetyltransferase EP300 (69). PRMT1 can
also methylate RUNX1, a key transcription factor required
for definitive hematopoiesis, myeloid differentiation, and
lymphocyte development (70). PRMT5 modifies H4R3, H2AR3,
and H3R8, marks which are associated with transcriptional
repression (71–75), and also targets multiple non-histone
proteins including components of the spliceosome, PIWI
proteins, EGFR, E2F1, TP53, and the NFκB subunit p65 (76–
81). Multiple studies have implicated PRMT family members
in cancer (82). Importantly, CRISPR-Cas9 screens in MLL-
rearranged AML mouse models defined PRMT1 and PRMT5 as
essential genes and consequently potential targets in this type
of leukemia (83). Although PRMT1 is necessary for leukemic

Frontiers in Oncology | www.frontiersin.org 5 September 2019 | Volume 9 | Article 850

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wingelhofer and Somervaille Epigenetic Therapy in AML

transformation, it is not sufficient for MLL-translocation
dependent transformation. PRMT1 needs co-recruitment of
KDM4C, an H3K9 demethylase, to regulated expression of
MLL-fusion targets, such as HOXA9 (84, 85). Deletion or
pharmacologic inhibition of both KDM4C and PRMT1 inhibits
transcription and leukemic capacity of MLL fusions in vitro
and in vivo (84). In keeping with this, conditional deletion
or small molecule inhibition of PRMT5 impaired leukemia
development and implicated PRMT5 as an enforcer of the
leukemic differentiation block (86).

The first PRMT5 inhibitor to enter clinical trials is
GSK3326595, a peptide competitive, S-adenosyl methionine-
uncompetitive inhibitor. Although the mechanism of action
has not been completely determined, GSK3326595 binds to the
substrate recognition site of PRMT5 to inhibit methyltransferase
activity and this is associated with decreased proliferation
of leukemic cells (87). Results from phase 1 clinical trials
in subjects with solid tumors and NHL (NCT02783300)
as well as relapsed and refractory myelodysplasia, chronic
myelomonocytic leukemia and secondary AML with a
low proliferation fraction (NCT03614728) are awaited
(Table 1).

BRD4/BET Proteins
BRD4 is a member of the Bromodomain and Extra-Terminal
motif (BET) family of proteins, and was identified as a potential
cancer therapeutic based on results of a genome-wide shRNA
screening in MLL-dependent AML cells (88, 89). BRD4 contains
a bromodomain which enables its binding to acetylated lysines
in histone H3 and H4 (Figure 1C). As a result, BRD4 is
bound to active enhancers genome-wide, but is particularly
associated with super-enhancers which are regions characterized
by unusually high levels of H3K27 acetylation. BET proteins
have been found to maintain aberrant chromatin states in AML
and other hematologic malignancies (88, 90–92) in particular
through regulation ofMYC expression (88). Genetic and shRNA-
mediated silencing of BRD4 inMLL-AF9 driven leukemiamodels
not only resulted in the removal of BRD4 from super-enhancers,
including the MYC enhancer (93), but also in differentiation of
leukemia cells and decrease of leukemogenic potential in vitro
and in vivo.

The inhibition of BET proteins with preclinical inhibitors,
such as JQ1 showed promising results in several studies in
AML cell lines and ex vivo patient samples or mouse models,
in particular in specific subtypes with MLL rearrangement,
or those with mutations in NPM1, FLT3 or IDH2, or EVI1
overexpression (89, 94–97). Based on these observations, clinical
trials of a number of BET inhibitors in AML, lymphoma and
solid tumors were initiated including FT1101 (NCT02543879),
MK8628 (NCT02698189), RO6870810 (NCT02308761),
GSK525762 (NCT01943851, EudraCT 2013-000445-39), ABBV-
744 (NCT03360006), ABBV-075 (NCT02391480), CPI-0610
(NCT02158858), and INCB054329 (NCT02431260) (Table 1).
Few trial results have been published, but so far their clinical
activity as single agents for relapsed or refractory AML
appears in the main modest, despite the initial excitement
arising from preclinical study data. Alternative combinatorial

approaches may still capitalize on the clinical potential of
these inhibitors, and studies are underway (98, 99). It is
however noteworthy that some complete remissions were seen
in a phase 1 study of MK8628 (OTX015), an analog of JQ1
(NCT01713582) (99).

EMERGING THERAPEUTIC OPTIONS FOR
AML

CREBBP and EP300
Lysine acetyltransferases (KATs) and histone deacetylases
(HDACs) catalyze the dynamic and reversible acetylation of
histone and non-histone proteins, and are involved in major
epigenetic regulatory mechanism of gene transcription (100)
in normal hematopoiesis as well as various malignancies.
While HDAC inhibitors have been investigated quite
extensively in patients with myeloid malignancies, and
without much success, development of KAT inhibitors
has been largely neglected. The lysine acetyltransferase
paralogs CREBBP (CBP; KAT3A) and EP300 (KAT3B)
are transcriptional co-activators regulating a variety of
cellular processes. Studies in heterozygous and conditional
knockout mice have shown that CREBBP is an essential
regulator of HSC differentiation, quiescence, apoptosis and
self-renewal (101).

CREBBP and EP300 have been implicated in the development
of various malignancies, including solid tumors and hematologic
diseases (102). Indeed they are among the most frequently
mutated KATs in blood cancers, in particular in lymphoma,
with inactivating mutations mainly affecting the acetyltransferase
domain. Importantly, CREBBP and EP300 are also found as
oncogenic fusion partners of the histone acetyltransferase gene
MOZ or MLL in leukemia (103, 104) (Figure 1D). In the MLL-
CREBBP fusion, the bromo- and acetyltransferase domains of
CREBBP are retained and are required for transformation.
Additionally, downstream of fusion oncoproteins, recruitment
of CREBBP and EP300 to chromatin binding sites for the
transcription factor MYB is essential for the differentiation
block in leukemias initiated by a range of fusions including
AML1-ETO and MLL-AF9 (105, 106). In AML1-ETO AML,
EP300 interacts directly with the AML1-ETO protein to regulate
transcription of AML1-ETO target genes that are important for
leukemic stem cells proliferation and self-renewal (107). CREBBP
and EP300 have also been associated with transcriptional
activation in collaboration with other leukemogenic proteins,
such as NUP98-HOXA9 (108). Thus, there is quite some
evidence that CREBBP and EP300 serve important roles in
leukemic hematopoiesis and that their therapeutic targeting
might be beneficial.

The multidomain organization of CREBBP and EP300
paralogs has prompted several inhibitor development
projects. The most potent KAT inhibitors developed so far
have been C646 (109) and I-CBP112 (110), an acetyl-lysine
competitive protein–protein interaction inhibitor. Both induced
differentiation and impaired leukemia-initiating potential
in AML1-ETO+ or MLL-AF9+ AML cells in vitro and in
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vivo. More recently, a CREBBP and EP300 bromodomain
inhibitor (CCS1477) has been demonstrated to have potent
anti-proliferative and pro-differentiation activity in AML cell
lines and primary patient samples (111); a first-in-human
phase 1 study has commenced in castration-resistant prostate
cancer (NCT03568656) and a related study will shortly
commence in patients with multiple hematologic malignancies,
including AML.

MEN1 and WDR5
Recent reports have demonstrated that MLL-driven gene
expression is dependent on the interaction of MLL with
menin (MEN1) (112). MEN1 serves as an adaptor for the
interaction of MLL with LEDGF, a protein that tethers the MLL
complex to chromatin (112). This interaction is also crucial
for leukemic transformation, proliferation, and expression of
leukemia associated genes including the HOXA-cluster and
MEIS1 (113) (Figure 1E). Interestingly, while the interaction
of MEN1 with MLL1 is not essential for normal hematopoiesis
(114), genetic disruption of the MEN1-MLL fusion protein
interaction abrogates the oncogenic properties of MLL fusion
proteins and blocks the development of AML in vivo (113),
highlighting this interaction as an attractive therapeutic target
to develop targeted drugs for MLL leukemia patients. Another
potentially interesting approach to disrupt the MLL-fusion
complex is inhibition of the interaction between WD repeat
domain 5 (WDR5) and MLL1. WDR5 directly interacts
with SETD1A, SETD1B or one of four homologous MLL
methyltransferases (115, 116), which are components of the
MLL methyltransferase complex. This interaction is required
for the catalytic activity of the enzymes and is responsible for
H3K4-specific methylation, a histone mark generally associated
with transcriptional activation.

Several small molecules and tool compounds targeting
the interactions of components of the MLL complex have
been recently developed. Inhibitors targeting MEN1-MLL have
been shown to reverse HOXA and MEIS gene expression,
thereby releasing the differentiation block associated with
MLL-rearranged leukemia (117–121). Similarly MM401 and
OICR9429, two compounds which disrupt the MLL-WDR5
interaction, inhibit the proliferation of AMLs harboring MLL
translocations (122) or CEBPA mutations (123). However,
limited bioavailability and efficacy in vivo is still an important
hurdle to overcome.

CONCLUSION

Epigenetic regulators are central players in the initiation and
maintenance of hematopoietic malignancies, an observation
which has resulted in myriad opportunities for development of
targeted therapies. In particular, where epigenetic mechanisms
are specifically disordered in malignant but not normal blood
cells, there exists the potential for a significant therapeutic
window. Along these lines, there has been significant progress
in understanding the role of epigenetic modifications and their
modifiers in cancer in general and in AML in particular.
The discovery and development of small-molecule inhibitors
targeting certain epigenetic regulators has already led to
opportunities for clinical trial evaluation and potential patient
benefit; impending trial results will inform on efficacy and
safety. While the evaluation of many of these compounds for
their single agent activity is an essential first step, it will be
critical to test efficacy in combination with either standard-
of-care chemotherapies or novel therapeutics, to determine
their optimal role in the treatment of leukemia. In time,
personalization of therapeutic regimens according to patient
cytogenetics and molecular mutations may become of essential
importance. A final point is that the interdependence of cancer
epigenetics and immunological responses has to be taken in
consideration. In the setting of leukemia, this includes the
therapeutic modality of allogeneic stem cell transplantation. It
is clear that epigenetic therapies can induce cellular responses
in tumor cells that interact with the immune system and
which may contribute to their efficacy; for example, effects of
adoptive immunotherapies and immune checkpoint inhibitors
can be potentiated by epigenetic therapies (124). As such,
the combination of immunotherapies and epigenetic therapies
also holds potential promise for the development of additional
therapeutic options in AML.
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