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Chronic myelogenous leukemia (CML) is a malignancy of the myeloid cell lineage

characterized by a recurrent chromosomal abnormality: the Philadelphia chromosome,

which results from the reciprocal translocation of the chromosomes 9 and 22. The

Philadelphia chromosome contains a fusion gene called BCR-ABL1. The BCR-ABL1

codes for an aberrantly functioning tyrosine kinase that drives the malignant proliferation

of the founding clone. The advent of tyrosine kinase inhibitors (TKI) represents a landmark

in the treatment of CML, that has led to tremendous improvement in the remission and

survival rates. Since the introduction of imatinib, the first TKI, several other TKI have

been approved that further broadened the arsenal against CML. Patients treated with

TKIs require sensitive monitoring of BCR-ABL1 transcripts with quantitative real-time

polymerase chain reaction (qRT-PCT), which has become an essential part of managing

patients with CML. In this review, we discuss the importance of the BCR-ABL1 assay,

and we highlight the growing importance of BCR-ABL1 dynamics. We also introduce

a mathematical correction for the BCR-ABL1 assay that could help homogenizing the

use of the ABL1 as a control gene. Finally, we discuss the growing body of evidence

concerning treatment-free remission. Along with the continuous improvement in the

therapeutic arsenal against CML, the molecular monitoring of CML represents the

avant-garde in the struggle to make CML a curable disease.
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INTRODUCTION

CML is a malignant proliferation driven by a characteristic fusion gene called BCR-ABL1 (1). The
BCR-ABL1 gene results from the reciprocal translocation between chromosome 22 and 11 (the
Philadelphia chromosome – Ph+) (2, 3). BCR-ABL1 codes a constitutionally active tyrosine kinase
that inflicts growth advantage to the leukemic clone harboring the mutation. Based on cytology and
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cytogenetic studies, CML is further subdivided into chronic
phase (CP), accelerated phase (AP), and blast phase (BP) CML
(4). In CML, the presence of the Ph+ cells can be detected both in
the peripheral blood and in the bone marrow using cytogenetic-
based protocols that have been extensively used in the past for
monitoring treatment response (5, 6). Moreover, cytogenetics is
also important for detecting additional chromosomal alterations
(ACA) such as trisomy eight, isochromosome 17q, second Ph,
and trisomy 19 that bear prognostic value (7, 8).

The introduction of imatinib, the first tyrosine kinase inhibitor
(TKI), has improved the treatment outcomes to such an
extent that in many patients the disease burden decreases
quickly below the detection limit of classical assays such as
bone marrow cytogenetics (9–11). Therefore, the presence of
measurable residual disease (MRD) must be monitored using
quantitative polymerase chain reaction (qRT-PCR) of the BCR-
ABL1 transcript, an assay which can detect as few as one
malignant cell in 100.000 non-malignant ones (12–16). As the
number of patients on long term therapy has increased, the MRD
status evaluation has become increasingly important. Moreover,
MRD can also be used as a convenient surrogate outcome in
clinical trials (17).

The main goal of TKI therapy is to achieve a complete
cytogenetic response (CCyR), defined as the lack of any
detectable Ph+ cells in the bone marrow, within 12 months
after starting treatment. CCyR is roughly equivalent to BCR-
ABL1 IS≤1%. The therapy for CP-CML is mainly represented by
TKIs, which have improved the treatment outcomes compared
to previous therapies. For instance, in the IRIS trial, a phase
III trial that included more than 1,000 CML patients, and
which eventually led to the approval of imatinib, the rate of
complete cytogenetic response (CCyR) at 18 months in patients
treated with imatinib was 76 vs. 15% for patients treated with
interferon (IFN) plus cytarabine (10). Ever since, several other
TKIs have been approved, namely dasatinib, nilotinib, bosutinib,
and ponatinib (18–21). The front line TKI therapy for CP-CML
includes imatinib and next-generation front-line TKIs: dasatinib,
nilotinib and bosutinib. Next generation TKIs result in faster
and deeper responses as well as in a lower risk of progression
to advanced CML (13–15, 22). Nonetheless, randomized control
trials showed no overall survival benefit for next-generation TKIs
(13, 22). Next-generation TKIs are more appropriate for high-
risk patients as well as in young and/or female patients for
which treatment discontinuation is particularly important for
fertility purposes. The TKI of choice for primary treatment is also
dictated by the comorbidity profile of the patients. Hematopoietic
stem cell transplantation (HSCT) is no longer recommended for
CP-CML (23–25). Resistance to TKIs is determined by aberrant
expressions of drug transporters (26, 27), plasma protein binding
of TKIs (28–31), andmutations in the BCR-ABL1 tyrosine kinase
domain that prevent the proper binding of the TKIs to their
epitopes (31–36). There are more that 100 point mutations
described so far, which have to be specifically treated with
certain TKI: Y253H, E255K/V, or F359V/C/Imutations should be
treated with dasatinib, F317L/V/I/C, T315A, or V299Lmutations
should be treated with nilotinib, while E255K/V, F317L/V/I/C,
F359V/C/I, T315A, or Y253Hmutations respond to ponatinib or

omacetaxine (13, 37–44), the latter being a synthetic analog of a
natural product isolated from the Japanese plum yew (45–49).

AP or BP CML should be treated by allogeneic HSCT after
inducing remission with TKI and/or chemotherapy, regardless
of whether the event occurred at diagnosis or progressed from
CP-CML (50). Depending whether the BP is dominated by
myeloid or lymphoid cells, acute myeloid leukemia or acute
lymphocytic leukemia type protocols should be employed (51–
53). Accelerated phase CML patients that progressed on TKI
therapy also benefit from omacetaxine (54, 55).

THE BCR-ABL1 IS ASSAY

In the era of TKIs, for most patients only qRT-PCR is sensitive
enough for detecting residual disease in the long term. CML
burden monitoring via qRT-PCR was considered even before
the advent of TKI (56, 57), but it was the unprecedented
response to TKIs that pushed toward the implementation and
standardization of the BCR-ABL1 assay.

The implementation of the BCR-ABL1 assay in the clinical
practice was also aided by the development of an international
scale (IS). The IS reference is represented by the median value
of 30 samples collected from patients with newly diagnosed
CP CML who were enrolled in the IRIS trial (58). Since these
samples have been exhausted, the calibration to IS is currently
achieved by either exchanging a set of samples with reference
laboratories that maintain strict quality control or by using the
World Health Organization (WHO) primary reference standard
of four reference reagents (stably stored lyophilized cell line
mixtures) assigned a fixed BCR-ABL1 IS value (10, 1, 0.1, 0.01%)
BCR-ABL1 RNA (59, 60). It should be noted that BCR-ABL1 IS
= 100% is just a reference ratio between BCR-ABL1 mRNA and
control mRNA and it does not mean that the number of BCR-
ABL1 mRNA is equal to that of control mRNAs. Alternatively, it
is customary to express response as the log reduction compared
to BCR-ABL1 IS = 100%. For example, a BCR-ABL1 IS = 0.1%
represents a log three reduction compared to baseline (MR 3.0).

The reference gene for the BCR-ABL1 assay is usually
represented by the ABL1. The ABL1 gene was chosen through an
international initiative out of a panel of 14 candidate genes and
has since become the standard control gene for most laboratories
performing BCR-ABL1 quantification (61). The major criteria
for selecting the control gene were the following: (i) absence
of pseudogenes; (ii) not very high or very low expression; (iii)
no significantly different expression levels between normal and
leukemic samples; (iv) no significantly different expression levels
between peripheral blood and bone marrow. Despite fulfilling
these criteria, the ABL gene has an important drawback in that
the amplicons also include the BCR-ABL1 gene. Thus, when
ABL is used as a reference, the BCR-ABL1 assay expresses
not the BCR-ABL1/ABL ratio but the proportion of BCR-
ABL1 transcripts, i.e., BCR-ABL1/BCR-ABL1+ABL. The two
are approximately equal however when BCR-ABL1<< ABL. In
other words, the BCR-ABL1/BCR-ABL1+ABL is an acceptable
proxy for the BCR-ABL1/ABL for BCR-ABL1 IS values below
10%. We will show below that this bias can be mitigated based
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FIGURE 1 | ELN-based guidelines threshold values, labeled as Optimal, Warning, or Failure (A). BCR-ABL1 IS “trajectories” designated as Failure, Warning, or

Optimal (B).

on a mathematical correction, allowing the ABL1 gene to be used
as control even for BCR-ABL1 IS values >10%.

THE ROLE OF BCR-ABL1 IS IN
MONITORING CML

The evidence for the prognostic and predictive value of BCR-
ABL1 IS is compelling and serial assessment of BCR-ABL1 IS
is now an integral part of CML guidelines. According to the
ELN guidelines, BCR-ABL1 testing should be performed every
3 months for 2 years and then every 3–6 months thereafter,
provided that the patient fulfilled all required milestones (4). In
the case of each milestone, the ELN guidelines define threshold
values, based on which the response to the treatment can be
labeled as Optimal, Warning, or Failure (Figure 1A).

By uniting the threshold values defined by the ELN guidelines,
there is a whole spectrum of BCR-ABL1 IS “trajectories” that
can be designated as Failure, Warning, or Optimal (Figure 1B).
The ELN guidelines also define special conditions for attempting
treatment-free remission (TFR) (see below the discussion o TFR).

According to the ELN guidelines, the optimal response
threshold at 12months is BCR-ABL1 IS< 0.1% [also calledmajor
molecular response (MMR)]. Achieving MMR is associated with
a negligible risk of disease progression compared to patients that
failed to achieve this milestone (62–66). However, the prognostic
significance of MMR has been challenged by the lack of statistical
significance when adjusting for multiple comparisons (62, 64,
65). Thus, there is an ongoing research regarding the appropriate
management of patients having BCR-ABL1 IS between 1 and
0.1% in the long run. This issue has been recently tackled by
the German CML Study IV group, which showed evidence
suggesting that the optimal waiting time for patients to achieve
MMR is about 2.5 years (67), after which a change in the
treatment should be considered.

Beyond MMR, achieving deeper remission is an important
concept as well. Deep molecular remission (DMR) is variably
defined as either BCR-ABL1 IS < 0.01% (MR 4.0) or BCR-ABL
IS < 0.0032% (MR 4.5). In the German CML study IV, the life
expectancy of patients with MR4 or MR4.5 was the same as that
of age-matched population (68). The same study also showed
that among 792 patients who achieved MR4, only four patients
(5%) displayed disease progression. MMR and DMR also corelate
with improved EFS, PFS and OS (69, 70). Thus, DMR has been
taken into consideration as a treatment goal in itself and a proper
surrogate endpoint in clinical trials (17).

The absence of any detectable BCR-ABL1 transcripts is termed
complete molecular remission (CMR) or molecular undetectable
leukemia and it corelates with better outcomes in terms of
event-free survival (EFS), progression-free survival (PFS), and
overall survival (OS) (69, 70). Designating CMR must always
be accompanied by the sensitivity and the control gene of the
assay. However, one of the most important implication of DMR
and CMR regards the achievement of treatment-free remission,
which was shown to be feasible in selected patients.

At the other end of the spectrum, there is an ongoing research
regarding the role of early molecular response (EMR) as a means
of predicting outcomes and treatment responses. EMR is defined
as BCR-ABL1 IS<10% at 3 months. Achieving EMR is associated
with improved PFS and OS compared to patients not achieving
this milestone (71–73).

DYNAMICAL PARAMETERS

Several studies have shown that the dynamics of the BCR-
ABL1 values can be used for devising independent predictors
of outcome (74–76). For instance, Branford et al. have shown
that for patients with >10% BCR-ABL1 IS after 3 months of
imatinib, the rate of BCR-ABL1 decline at 3 months defines
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distinct prognostic subgroups. Patients with a BCR-ABL1 decline
by at least one-half at 76 days (74 out of 95 patients, 78%) had
significantly superior outcomes compared with the patients (21
out of 95 patients, 22%), where the halving time was >76 days in
terms of OS, PFS EFS, and MMR (77).

Similarly, Hanfstein et al. showed that that the velocity of
the BCR-ABL1 decay successfully predicts outcome and that a
0.35-fold reduction of BCR-ABL1 compared to baseline levels at
3 months (0.46-log reduction, that is, roughly half-log) defines
distinct risk subgroups in terms of overall survival (78). In
order to calculate the fold decrease compared to baseline, the
authors had to use beta glucuronidase (GUSB) as control gene,
since many BCR-ABL1 IS values were above 10% at the time
of diagnosis. Thus, the authors suggested that implementing
dynamical parameters will require abandoning ABL1 as the
control gene and using alternative control genes such as GUSB.
However, we believe that the substituting ABL1 as the control
gene is not required and that the situation can be mitigated using
a mathematical transformation.

MATHEMATICAL CORRECTION OF
BCR-ABL1 >10%

The reasoning behind the mathematical transformation lies in
the distinction between ratio and proportion. The aim of the
BCR-ABL1 assay is to calculate the ratio between the BCR-ABL1
transcripts and the ABL1 transcripts (i.e., BCR-ABL1/ABL1).
However, the actual results of the assay are represented by the
proportion of BCR-ABL1 transcripts from the total number
of BCR-ABL1 plus ABL1 transcripts (i.e., BCR-ABL1/BCR-
ABL1+ABL1). The distinction between ratio and proportion is
unimportant when the results of the assay is small, as it is most
often the case in clinical practice due to the excellent response
to TKIs. In a situation when out of the total number of BCR-
ABL1 plus ABL1 transcripts, the BCR-ABL1 transcripts represent
1 part, and the ABL1 transcripts represent 99 parts (Figure 2 top,
green box). In this case, the proportion of BCR-ABL1 transcripts
is 1% (1/99+1), while the ratio between BCR-ABL1 transcripts
and ABL1 transcripts is 1.01% (1/99). Thus, the proportion
and ratio of BCR-ABL1 transcripts are almost equal, since the
number of BCR-ABL1 transcripts is negligible compared to the
ABL1 transcripts.

Still, a sample from a patient might have an equal number
of BCR-ABL1 transcripts and ABL1 transcripts (Figure 2 top,
yellow box). The BCR-ABL1 transcripts represent 50 parts and
the ABL1 transcripts also represent 50 parts. In this case, the
BCR-ABL1 represent 50% of the total number of BCR-ABL1
plus ABL1 transcripts (50/50+50), while the ratio between the
two is 100% (50/50). Fifty percent differs significantly from
100%, whereas 1% is very close to 1.01%. The threshold for
deciding whether the proportion of BCR-ABL1 transcripts is
an acceptable proxy for the ration between BCR-ABL1 and
ABL1 transcripts has been arbitrarily set to BCR-ABL1 IS =

10%. The relation between the mathematically corrected and
experimental BCR-ABL1 values is shown in Figure 2 (below).
The red curve in Figure 2 is the depiction of Equation (1) and
it can be considered a nomogram for correcting the results of the

BCR-ABL1 assay. The correction can be applied for the whole
range of experimental BCR-ABL1 results, but the correction
will be significant only when the experimental results of the
BCR-ABL1 assay are large (i.e., BCR-ABL1 IS >10%).

The mathematical transformation proposed here is a method
of extracting the ratio of two numbers when the proportion
of one of the numbers is known. In other words, we
describe a strategy of retrieving the BCR-ABL1/ABL1 from the
BCR-ABL1/(ABL1 + BCR-ABL1) ratio using a mathematical
correction, such that the ABL1 control gene could be used even
for BCA-ABL1 IS values higher than 10% (see below).

It can be showed that the BCR-ABL1/ABL1 ratio (X)
can be extracted from the BCR-ABL1/(ABL + BCR-
ABL1) proportion (Y) by the following transformation (see
Supplementary Materials for the deduction of the formula):

X =
Y

1− y
(1)

The relation between the mathematically corrected and
experimental BCR-ABL1 values is shown in Figure 2 (bottom).
The red curve in Figure 2 is the depiction of Equation (1) and it
can be considered a nomogram for correcting the results of the
BCR-ABL1 assay. The correction can be applied for the whole
range of experimental BCR-ABL1 results, but the correction
will be significant only when the experimental results of the
BCR-ABL1 assay are large (i.e., BCR-ABL1 IS >10%).

Thus, we propose a mathematical correction to help removing
the bias caused by counting both malignant and non-malignant
transcripts in the denominator of the BCR-ABL1 assay when
using ABL1 as a control gene. This corrected BCR-ABL1 values
represent the hypothetical results of the BCR-ABL1 assay is
the ABL1 amplicon would not be contained in the BCR-ABL1
amplicon. For further explanations on the bias caused by the
ABL1 gene, see the argument described in the study by Hanfstein
et al. for employing an alternative gene as control (namely
GUSB) (78).

With increasing evidence in support of the predictive and
prognostic value of dynamical parameters, it is expected that
situations when calculation of BCR-ABL1 IS values higher 10%
is required will be more and more often. Using the mathematical
transformation presented here, BCR-ABL1 transcripts values
above 10% could be reliably calculated without changing ABL1
as the control gene, thus spearing laboratories from the effort
of redesigning their assays and helping to translate dynamical
parameters in the clinical setting.

TREATMENT-FREE REMISSION

The possibility to achieve treatment free remission (TFR), a term
defined as sustained MMR after TKI treatment discontinuation,
was put forward more than a decade ago (79–82). Since then,
the concept was validated in several trials involving patients
who were on sustained DMR. The results showed that treatment
discontinuation leads to sustained MMR in around 50% of
patients (83). Consequently, in the United States the Food and
Drug Administration (FDA) has updated the label of nilotinib to
reflect the possibility to achieve TFR.
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FIGURE 2 | Scenario when out of the total number of BCRABL1 plus ABL1 transcripts, the BCR-ABL1 transcripts represent 1 part, and the ABL1 transcripts

represent 99 parts.

The ELN guidelines consider that discontinuing therapy is
feasible in low-risk CP CML patients achieving MR4.5 that
remained in DMR (at least MR4.0) for>2 years after having been
on first line TKI therapy at least 5 years. Attempting treatment
discontinuation also requires no history of accelerated or blast
phase CML and no history of TKI treatment resistance, among
others. Access to reliable and quick BCR-ABL1 IS assay with a
sensitivity of at least 4.5 MRD is also important.

Interestingly, the mechanism behind TFR is not yet fully
understood. Several studies brought strong evidence for the
fact that TKI therapy does not directly eliminate CML stem
cells (84, 85). Another possibility is that TKI therapy eliminates
CML stem cells indirectly, or that the immune surveillance
can take care of MRD. This later hypothesis is supported
by several studies linking successful TKI discontinuation with

mechanistic insights of the immune system such as an increased
proportion of mature NK cells or decreased PD-1 and immune
suppressors (86, 87). However, a direct cause-effect relation
is yet to be proven. Moreover, epidemiologic studies in
immunocompromised patients failed to attribute immunity a
pivotal role in CML progression (88).

Another possible explanation for successful TFR is that the
time for developing a full-blown CML can take several years
and that the process could be delayed by stochastic events
(89, 90). As data from TFR clinical trials mature, the lengths
of remission after treatment discontinuation will certainly bring
more insights regarding the role of disease latency. In the
meanwhile, treatment-free remission continues to be looked
upon with care outside the setting of clinical trials. The
manuscript has its limitations and this correction typically is
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more impactful for transcript levels above 10% and the question
is of the clinical applicability as below this is more meaningful
disease response criteria of major molecular remission, deep
molecular remission, and complete molecular remissions.
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