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Spine metastases affect more than 70% of terminal cancer patients that eventually

suffer from severe pain and neurological symptoms. Nevertheless, in the overwhelming

majority of the cases, a spinal metastasis represents just one location of a diffuse

systemic disease. Therefore, the best practice for treatment of spinal metastases

depends on many different aspects of an oncological disease, including the assessment

of neurological status, pain, location, and dissemination of the disease as well as

the ability to predict the risk of disease progression with neurological worsening,

benefits and risks associated to treatment and, eventually, expected survival. To

address this need for a framework and algorithm that takes all aspects of care into

consideration, we reviewed available evidence on the multidisciplinary management

of spinal metastases. According to the latest evidence, the use of stereotactic

radiosurgery (SRS) or stereotactic body radiotherapy (SBRT) for spinal metastatic

disease is rapidly increasing. Indeed, aggressive surgical resection may provide the

best results in terms of local control, but carries a significant rate of post-surgical

morbidity whose incidence and severity appears to be correlated to the extent of

resection. The multidisciplinary management represents, according to current evidence,

the best option for the treatment of spinal metastases. Noteworthy, according to

the recent literature evidence, cases that once required radical surgical resection

followed by low-dose conventional radiotherapy, can now be more effectively treated by

minimally invasive spinal surgery (MISS) followed by spine SRS with decreased morbidity,

improved local control, and more durable pain control. This combination allows also

extending this standard of care to patients that would be too sick for an aggressive

surgical treatment.
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INTRODUCTION

Metastatic involvement of the spine represents a threatening
extension of neoplastic disease. Bone is the third common
site of metastases in patients with systemic cancer and the
spine is the most commonly involved skeletal segment (1).
Postmortem examinations have shown that spine metastases
affect more than 70% of terminal cancer patients. Vertebral
and/or epidural(extradural) involvement is seen in 90–95% of the
cases. Intradural extra-medullary and intra-medullary seeding of
systemic cancer is unusual (2). Lepto-meningeal disease occurs
in about 10% of patients. Symptomatic spinal metastases may be
the initial manifestation of malignancy in 12–20% of cases (3).
Spinal cord compression develops in 10–20% of patients with
spinal disease and in 5–10% of all cancer patients (4). While pain
is the most frequent symptom, 10% of cancer patients develop
weakness, sensory disturbances, bowel or bladder dysfunction,
and gait disturbance from instability or spinal cord compression
(5, 6). In a study of over 15,000 patients with metastatic spinal
cord compression, the most common histologies were lung
cancer (25%), prostate cancer (16%), and multiple myeloma
(11%) (7, 8). Approximately 60% of cases involve the thoracic
spine, 25% the lumbosacral spine and 15% the cervical spine (9).

In the overwhelming majority of the cases, a spinal metastasis
represents just one location of a diffuse systemic disease.
Therefore, the best practice for treatment of spinal metastases
depends on many different aspects of an oncological disease,
including the assessment of neurological status, pain, location,
and dissemination of the disease as well as the ability to predict
the risk of disease progression with neurological worsening,
benefits and risks associated to treatment and, eventually,
expected survival.

Multiple prognostic scoring systems have been developed
to support care providers in determining the neurological,
oncological, biomechanical status of the patients as well the
patient fitness, prognosis and response to therapy.

These scoring systems should be included into a framework
for better decision-making in the management of spinal
metastases, as well as provide a practical and reliable guidance to
clinicians. To address this need for a framework and algorithm
that takes all aspects of care into consideration, we reviewed
available evidence on the multidisciplinary management of
spinal metastases.

PATIENT AND DISEASE ASSESSMENT

The assessment of performance status, systemic burden of
disease, mechanical stability, neurological risk, and eventually life
expectancy is a crucial step in the selection of the best treatment
for patients with spinal metastases. Based on the literature review,
we analyzed how this assessment can be objectively obtained and
successfully integrated into a decision making process.

Burden of Disease and Performance Status
Assessing the prognosis of patients before treatment for
metastatic spine tumor is one key point for an optimized
treatment selection. A renowned method to assess the prognosis

TABLE 1 | Revised Tokuashi Score.

Predictive factor Score (points)

General conditions (KPS)

Poor (KPS 10–40%) 0

Moderate (KPS 50–70%) 1

Good (KPS 80–100%) 2

Number of extraspinal bone metastatic foci

>3 0

1–3 1

0 2

Number of metastasis in the vertebral bodies

>3 0

1–3 1

0 2

Metastases to major internal organs

Resectable 0

Unresectable 1

No metastases 2

Primary site of the cancer

Lung, osteosarcoma, stomach, bladder, esophagus, pancreas 0

Liver, gallbladder, unidentified 1

Others 2

Kidney, uterus 3

Rectum 4

Thyroid, prostate, breast, carcinoid tumor 4

Spinal cord palsy

Complete (Frankel A, B) 0

Incomplete (Frankel CD) 1

None (Frankel E) 2

Total points Mean survival

0–8 <6 months

9–11 ≥6 months

12–15 ≥12 months

was proposed by Tokuhashi et al. (10) and Uei and Tokuhashi
(11) who presented in 1989 a scoring system for the pre-operative
prognostic evaluation of patients with metastatic spinal disease.
A revised version has been published in 2005 (12), and the
results of a prospective study which applied this revised version
for treatment selection, was reported in 2009 (13). This scoring
system consists of 6 items potentially influencing the outcome
(general condition, number of bone metastases other than spinal
metastases, number of spinal metastases, type of the primary
lesion, presence or absence of metastases to major organs, and
state of paralysis). According to the revised version of the scoring
system, the staging of the primary lesion was changed from 3 (0–
2) to 6 (0–5) levels, and the survival period was predicted to be
≤6 months when the total score was 0–8,≥6 when the total score
was 9–11, and ≥1 year when the total score was ≥12 (Table 1).

Another graded prognostic assessment introduced for brain
metastases to aid clinicians in selecting the best treatment option
for individual patients is the recursive partitioning analysis (RPA)
(14, 15) (Table 2). Few studies have tested this classification
system to identify patients who are most likely to benefit from
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TABLE 2 | Recursive Partitioning Analysis scoring system for patients with spinal

metastases.

RPA class Description

I KPS ≥70

Age ≥ 65

Controlled primary tumor

No extracranial Metastases

II KPS ≥70

Age ≥ 65

Uncontrolled primary tumor

Presence of extracranial Metastases

III KPS < 70

TABLE 3 | Tomita scoring system.

Prognostic factors Points

Primary tumor

Slow growth (breast, thyroid, etc.) 1

Moderate growth (kidney, uterus, etc.) 2

Rapid growth (lung, stomach, etc.) 4

Visceral metastases

Treatable 2

Untreatable 4

Bone metastases

Solitary or isolated 1

Multiple 2

Total points Predicted prognosis

2–4 >2 years

4–6 1–2 years

6–8 6–12 months

8–10 <3 months

intensive treatments for spine metastases. In 2012, Chao et al.
(16) applied the RPA scoring to a cohort of 176 patients.
Balagamwala et al. (15) updated the analysis based on a dataset
of 444 patients and reported that patients in RPA class 1 and
2 had a good and moderate overall survival of 26.7 and 13.4
months, respectively (15). Patients in RPA class 3, however, had a
poor survival with a survival of only 4.5 months. This analysis
suggests that patients in RPA class 1 and 2 are candidate for
an intensive procedure, not only in the salvage setting but also
upfront, whereas patients in RPA class 3 are best suited for
conventional radiotherapy and/or palliative care.

Other scales have been proposed to assess outcome. Tomita
et al. (17) and Kawahara et al. (18) retrospectively evaluated 67
patients including those treated conservatively and developed
a new scoring system in 2001 (Table 3). The Tomita scoring
system interestingly includes the evaluation of the histology of
the primary tumor as prognostic factor.

According to the original data, the expected survival was 2
years or longer after en bloc excision with a score of 2–4; 1–2
years including debulking with a score of 4–6; 6–12 months with
palliative decompression when the score was 6–8; and 3 months
or less with supportive care when it was 8–10 (17, 18).

Histology, Sensitivity to Radiations, and
Systemic Treatments
As mentioned above, histology is one major factor in decision
making for SMs. Sarcoma, Melanoma and renal cell carcinoma
are considered radioresistant tumors, with an indication for
primary surgical treatment in most circumstances. In contrast,
very radiosensitive histologies such as myeloma, germ cell
tumors, hematologic tumors and small-cell carcinoma should be
treated by radiotherapy techniques with a minor role for surgical
resection (19, 20).

Furthermore, due to the increasing efficacy of systemic
treatments, such as bisphosphonates, immunotherapies or
targeted therapies with potential effect on spine metastases,
ascertaining histological characteristics of primary tumor is
increasingly important. Indeed, at least in selected clinical
scenarios, systemic therapy might become the first line treatment
for spinal cord compression due to Hodgkin’s and non-Hodgkin
lymphomas, germ-cell neoplasms, neuroblastoma, breast cancer,
and prostate cancer (21, 22).

Spinal Instability
Spinal instability may cause severe disability and neurological
deficits that eventually impact on survival of patients. The
Spine Oncology Study Group defines this spinal instability as
a “loss of spinal integrity as a result of a neoplastic process
that is associated with movement-related pain, symptomatic
or progressive deformity, and/or neural compromise under
physiologic loads” (23). Also, the mechanical status of a
metastatic spine can be graded and, therefore, included into an
evaluation algorithm. One of the most widely adopted systems
is the “Spine Instability Neoplastic Score (SINS)” that is a spine
instability scale specific to patients with cancer (Table 4). The
scoring is based on six radiographic or clinical features, with total
scores ranging from 0 to 18. According to this scale, spine can be
classified as stable (0–6), potentially unstable (7–12), or unstable
(13–18). In a study (24) examining the use of this scoring system,
interobserver and intraobserver reliability was high (0.846 and
0.886). The accuracy of this scale was satisfactory, with a 80%
specificity and 95% sensitivity (24).

Risk of Neurological Deficits
As a matter of fact, both current neurological function (i.e.,
signs or symptoms of myelopathy, radiculopathy, motor, or
sensory deficits) and potential neurological compromise based
on the amount of epidural disease or cord compression must be
considered. A disease limited to bone, actually, poses relatively
little immediate risk for the patient neurological status, and the
treatment for this as compared to spinal cord compression is
clearly different.

Assessment of the degree of epidural disease is crucial
to determine the most suitable treatment. Bilsky et al. (25)
proposed a systematic grading of the degree of epidural spinal
cord compression (ESCC), which is now widely used amongst
spinal oncologists.

The ESCC scale consists of six grades: grade 0, bone
involvement alone; grade 1, epidural impingement; grade 2, the
retention of cerebrospinal fluid is visible despite spinal cord
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compression; and grade 3, cerebrospinal fluid is not visible due to
marked spinal cord compression. Grade 1 is classified into three
subgroups: grade 1a, epidural impingement without deformation

TABLE 4 | Spine Instability Neoplastic Scale (SINS).

Location within the spine Points

Junctional (C0-C2, C7-T2, T11-L2, L5-S1) 3

Mobile spine (C3-C6, L2-L4) 2

Semi-rigid (T3-T10) 1

Rigid (S2-S5) 0

Pain relief with recumbence and pain with movement or loading of

the spine

Yes 3

No (occasional pain but not mechanical) 1

Pain-free lesion 0

Bone lesion quality

Lytic 2

Mixed lytic or blastic 1

Blastic 0

Radiographic spinal alignment

Subluxation or translation 4

De-novo deformity (kyphosis or scoliosis) 2

Normal alignment 0

Vertebral body collapse

>50% collapse 3

<50% collapse 2

No collapse with 50% body involvement 1

None of the above 0

Postero-lateral involvement of spinal elements (facet, pedicle,

costo-vertebral joint fracture or replacement with tumor)

Unilateral 3

Bilateral 1

None of the above 0

A score of 0–6 is classified as a stable spine, and no action is needed. A score of

7–12 receives a classification of indeterminate, and indicates potential instability, which

warrants surgical consultation. A score of 13–18 indicates spinal instability that warrants

surgical consultation.

of the thecal sac; grade 1b, compression of the thecal sac without
spinal cord abutment; and grade 1c, deformation of the thecal
sac with spinal cord abutment in the absence of spinal cord
compression (25) (Figure 1).

Even though this Bilsky scoring system is increasingly
recognized and adopted, Oshima et al. (26) based on a
retrospective analysis of T2-weighted MR studies suggested that
post-operative gait function could be predicted on the basis of
the circumferential ratio of cord compression (CRCC). They
emphasized that nerve function depended on the grade of CRCC
suggesting that spinal cord compression is not simply due to
mechanical compressive force (26). Although the authors found
that a CRCC of more than 50% was correlated with poor
ambulatory function, in a study by Uei et al. (27), circumferential
spinal cord compression and spinal deformity were seen in some,
but not all, cases of severe paralysis.

In the study byUei et al., patients with ESCC grade 1b or worse
spinal cord compression at the C1-T2 level developed ASIA grade
D or worse in 50% of the cases, whereas 50% of patients with
ESCC grade 1c or worse at the T3-L5 level developed ASIA grade
A to D paralysis (27).

TREATMENT

External Beam Radiotherapy
Radiation therapy (RT) is an established treatment for patients
with SM without vertebral collapse or significant neurological
deficit (28). Three-dimensional conformal radiation therapy (3D-
CRT) is the standard of practice to treat bone metastases.
Three-dimensional treatment planning with multiple carefully
shaped fixed fields, allows to conform dose distribution to
the target volume, as well as to minimize the dose to the
surrounding critical tissues. In recent years, intensity modulated
radiation therapy (IMRT) and volumetric modulated arc therapy
(VMAT) have increasingly gained importance for the delivery
of conformal therapy. Nevertheless, conventionally fractionated
or hypofractionated radiotherapy should be considered a
“palliative” treatment of spinal metastases due to the dose
limitation by the close proximity of the spinal cord. Radiotherapy

FIGURE 1 | Bilski classification of epidural spinal cord compression (ESCC).
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allows, to some extent, improvement in pain, neurological
deficit and functional outcome (9), especially in radiosensitive
tumors (29).

In the last two decades, a series of randomized controlled
trials (RCTs) showed similar results in terms of pain relief when
comparing a single fraction of 8Gy and multifraction treatments,
including 30 Gy/10 fractions, 24 Gy/6 fractions and 20 Gy/5
fractions (30–35). Recently, a meta-analysis of 25 RCTs provided
more robust evidence for optimal RT fractionation schedule
(36). Actually, patients who received the treatment in one single
fraction had higher recurrent pain rates when compared to those
who received fractionated treatments (20 vs. 8%, p < 0.001).
On the other hand, single fraction was associated to improved
patient and caregiver compliance, lower acute toxicity, such as
nausea/vomiting, fatigue, diarrhea, and skin complications. On
the other hand, single fraction was apparently associated with
a higher probability of pathological fracture and spinal cord
compression, but without reaching a statistical significance [odds
ratio [OR] 1.10, 95% confidence interval [CI] 0.65–1.86, p =

0.72 and OR 1.44, 95% CI 0.90–2.30, p = 0.13, respectively].
However, the value of this study has been questioned because
of the primary end-points heterogeneity of the parent studies
(36). Furthermore, these studies concern mostly generic bone
metastases. Nonetheless, an analysis of the RTOG phase III trial
comparing 30 Gy/10 fractions vs. 8 Gy/1 fraction specifically
for spine metastases confirmed that single fraction treatment
produced less acute toxicity and a higher rate of retreatment than
multifraction radiotherapy. Single fraction and multifraction
RT resulted in comparable pain relief and narcotic use at 3
months (37).

Post-operative RT has been shown to improve tumor control
and reduce re-operation rates (38). More recent evidence
suggested that improved outcomes for metastatic spinal cord
compression are actually achieved when RT follows surgical
decompression (4, 39, 40). Indeed, more patients were able to
walk and retained the ability to walk, maintained continence
and muscle strength, while dexamethasone and morphine doses
were reduced. Radiation exposure is known however to increase
the risk of subsequent surgical wound complications, even after
intervals of months to years (41–45). Despite the relevance of
this topic, the timing between surgery and RT has not yet been
investigated thoroughly. Itshayek et al. (46) recommended a
minimum interval of 1 week between pre-operative or post-
operative RT and surgery based on a literature review (46).
When urgent surgery is indicated after RT, Ghogawla et al. (47)
have reported a wound complication in 46% of cases when the
procedure is done within a week from RT. Postoperative RT
also influences wound healing in a time dependent manner.
Radiotherapy delivered 2–3 days post-operatively significantly
affects healing more than RT delivered at 5–8 days post-
operatively (48–50). Most authors recommend to delay post-
operative RT about 3–4 weeks, to ensure adequate wound
healing (51), as well as delay elective surgery for 6 weeks to
minimize wound complications when RT has been delivered
pre-operatively (51–53).

Despite all these recommendations, patients who recently
received RT may develop an abrupt neurological deterioration

requiring urgent surgical decompression. Postoperative wound
problems secondary to recent pre-operative RT can be recorded
in these patients, but modern linear accelerators (LINACs) and
optimized methods using arc therapy may reduce toxicity rates
typical of 3D-CRT in patients receiving surgery and radiation for
spinal cord compression.

Stereotactic Radiosurgery
The concepts of high-dose delivery and conformality that
are typical of single fraction stereotactic radiosurgery (SRS)
could be applied to the spine in the last two decades, after
a refined image-guidance system was available. Since the
initial description of image-guided spinal radiosurgery, also
indicated as stereotactic body radiotherapy (SBRT) using two
to five fractions, a steady increase in published reports has
occurred and selection criteria for spinal radiosurgery are
continuously evolving. Currently available literature strongly
suggests that spinal radiosurgery of non-collapsed spinal levels
is associated with higher rates of tumor control, independently
from histology, and lower levels of marginal failures (54–58).
This body of evidence will likely change the practice of post-
surgical treatment of spinal metastases, with a shift toward
radiosurgery, especially for radioresistant histologies in patients
with limited systemic disease. The NRG Oncology/RTOG
(Radiation Therapy Oncology Group) 0631 (“Image-Guided
Radiosurgery or Stereotactic Body Radiation Therapy in Treating
Patients With Localized Spine Metastasis,” clinicaltrials.gov
identifier NCT00922974) is a currently ongoing RCT comparing
spinal SABRT with 3DCRT aimed to provide necessary evidence
(59). Another ongoing study is the Canadian Study Comparing
Stereotactic Body Radiotherapy vs. Conventional Palliative
Radiotherapy (CRT) for Spinal Metastases (NCT02512965). This
is a Phase III trial comparing a SBRT dose of 24Gy in 2 daily
fractions. Preliminary results of this dose/fraction scheme are
already available (60).

Cyberknife image-guided robotic radiosurgery has been
widely used to treat spinal metastases, also upfront (Figure 2).
At the University of Pittsburgh Medical Center, in an early
large clinical series, patients were treated with single-fraction
radiosurgery (55). The study involved more than 500 lesions in
393 patients; lesions were secondary to different tumors, mostly
moderately or highly radioresistant. The mean maximum dose
to the tumor was 19Gy delivered in single session. Sixty-seven
patients had not been previously irradiated. In 48 of these cases,
a significant decrease in pain was observed during the follow-up
period of 6–48 months (median 16 months). Authors reported
long-term local control in 88% of cases. A higher rate of local
control (up to 100%) was reported for breast, lung and renal
cell carcinoma when radiosurgery was the primary treatment. An
overall long-term improvement in pain was obtained in 290/336
cases for whom pain was a primary indication for treatment
(86%) (55).

One major problem in SRS of spinal metastases is the
correct identification of the target volume when the vertebra is
partially involved by tumor invasion. Patel et al. (61) evaluated
the difference in clinical outcomes for patients with metastatic
spine disease treated with a whole vs. partial vertebral body
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FIGURE 2 | A representative primary Cyberknife treatment case showing (A) the CT scan of the lesion before and 18 months after the treatment visualizing the stable

lesion and (B) the Cyberknife therapy planning.

irradiation evaluating retrospectively 154 metastatic lesions
in 117 patients. Contouring the whole vertebral body for
stereotactic body radiation therapy of metastatic spinal lesions
showed potential benefits by reducing the risk of recurrence,
improving symptomatic relief and providing improved local
tumor control. Cox et al. (62) in a consensus study proposed
target volume definitions using common scenarios in intact
metastatic spine radiosurgery (Table 5) (62).

In a recent international consensus survey on post-operative
radiosurgery practice, the gross tumor volume (GTV) was
represented by the post-operative residual tumor based on MRI.
The majority of participants identified the clinical treatment
volume (CTV) as: the post-operative resection cavity (namely
the entire extent of pre-operative tumor) plus any relevant
anatomical compartment and any residual disease. The CTV
margin was represented by the thecal sac rather than by the
previously compressed dura. The planning treatment volume
(PTV) consisted of an expansion ranging 0–2mm. The marginal
expansion in the paraspinal tissue was controversial, ranging
from no additional expansion required to up to a 5-mm
expansion for other clinicians. The definition of the spinal cord
received a consensus considering the true cord based on either
T2-weighted MRI, although the practice varies and many used
a 1.5–2mm expansion of the true cord or used the thecal sac
without expansion (59).

Concerning the maximum volume suitable for spinal
radiosurgery, there are reports (55) showing that spinal
radiosurgery could be safely delivered to target volumes as
large as 200 cm3. It appears that conventional volume limits
of stereotactic radiosurgery could be less strict by adopting
multisession treatments. However, there is a general consensus
that the extent of the disease should be limited to <3 contiguous
vertebral levels to be considered still suitable for radiosurgery.

TABLE 5 | Summary of contouring guidelines for GTV, CTV, and PTV in spinal

stereotactic radiosurgery.

Target volume Guidelines

GTV • Contour gross tumor using all available imaging

• Include epidural and paraspinal components of the

tumor

CTV • Include abnormal marrow signal suspicious for

microscopic invasion

• Include bony CTV expansion to account for subclinical

spread

• Should contain GTV

• Circumferential CTVs encirclincg the cord should be

avoided except in rare instances were the vertebral

body, bilateral pedicles/lamina, and spinous processes

are all involved or when there is extensive metastatic

disease along the circumference of the epidural space

without spinal cord compression

PTV • Uniform expansion around the CTV

• CTV to PTV margins <3 mm

• Modified dural margin adjacent critical structures to

allow spacing at discretion of the treating physician

unless GTV compromised

• Never overlaps with cord

• Should contain entire GTV and CTV

CTV, clinical target volume; GTV, gross tumor volume; PTV, planning target volume. From

Cox et al. (62).

Concerning the dose to be delivered, a correlation between
dose and outcome has been found. Pain recurredmost commonly
in patients receiving <14Gy in a single session (63). In an
international survey on post-operative SRS, half of the responders
used an integrated boost to areas of residual tumor. Exemplarily,
for patients with radiosensitive tumors, integrated boost doses to
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TABLE 6 | Calculated nBED (Gy2/2) for different probabilities of RM based on

logistic regression models.

nBED (Gy2/2) AUC

Probability

1% 2% 3% 4% 5%

Volume

Pmax 25.68 33.78 38.56 41.99 44.68 0.87

0.1 cc 12.88 20.79 25.46 28.81 31.44 0.83

0.2 cc 9.29 17.20 21.87 25.22 27.75 0.81

0.3 cc 6.08 14.14 18.90 22.32 25-00 0.79

0.4 cc 3.52 11.74 16.61 20.09 22.83 0.78

0.5 cc 0.76 9.26 14.28 17.89 20.71 0.77

0.6 cc N/A 6.78 12.02 15.78 18.73 0.76

0.7 cc N/A 4.00 9.53 13.50 16.60 0.73

0.8 cc N/A 1.41 7.23 11.40 14.67 0.72

From Sahgal et al. (66).

In regard to nBED 1%probability at volumes 0.6 cc or larger, algebraically they are negative

doses and therefore left as not applicable (N/A). The area under the curve (AUC) for each

model calculated for each volume indicates the fit of the logistic regression model.

the GTV were 16–22Gy in a single fraction whereas for patients
with radioresistant tumors, integrated boost doses to the GTV
were 18–25Gy in a single fraction or 50Gy in 5 fractions.

Recently, Yamada et al. (64) published a very larger series of
811 vertebral metastases in 657 patients treated between 2003
and 2015 at their institution. According to results, high-dose
single-session SRS provided long-term local control, regardless
of tumor size, or histology. In this study, the only significant
factor predictive of local control was the treatment dose. Lesions
irradiated to higher doses (median GTV D95 of 23.6Gy with
a minimum of 18.3Gy) had a significantly higher probability
of long-lasting local control than those treated with lower
doses (median PTV D95 of 22.3Gy with a minimum dose of
17.4Gy) (p < 0.001). The high-dose cohort had cumulative
rate of local failure as low as 2% independently from histology,
suggesting that this treatment modality is particularly suited for
radioresistant metastases.

On the other hand, as mentioned above, the spinal cord is
extremely radiosensitive. Respecting dose constraints is therefore
of utmost importance. Benedict et al. (65) suggested that 10Gy
can be delivered to <10% of a spinal cord subvolume (5–6mm
above and below level treated) or to an absolute volume of <0.35
cc; a dose of 7Gy must be limited to <1.2 cc, and a maximum
dose of 14Gy should be delivered to <0.035 cc of the spinal cord.
In treatment planned in three fractions, 18Gy is the maximal
dose that can be delivered to <10% of the spinal cord subvolume
or to a volume of the spinal cord <0.35 cc; a dose of 12.3Gy
is allowed to <1.2 cc of this critical organ. A maximum dose
of <21.9Gy is allowed to <0.035 cc. Sahgal et al. (66) analyzed
dose-volume histogram (DVH) results for 9 cases of post- spine
SBRT radiation myelopathy (RM) as compared with a cohort
of 66 spine SBRT patients without RM and provided a model
yielding estimates for the probability of human RM specific to
SBRT (Table 6) (66).

The steep dose fall off necessary in proximity of the spinal
cord may results, however, in treatment failures. In a study
from M. D. Anderson Cancer Center (54), the pattern-of-
failure analysis showed two primary mechanisms of failure:
(1) recurrence in the bone adjacent to the site of previous
treatment, and (2) recurrence in the epidural space adjacent to
the spinal cord. In-field failures occurred in 25% of recurrences
and half of them in the epidural space, which was actually
attributed to an underdosing of this region to maintain spinal
cord constraints. This can, in specific circumstances, a major
drawback of radiosurgery, which is a unique treatment modality
for spine metastases and suggests the necessity of combined
treatment that will be discussed later.

Another issue concerns the risk of vertebral compression
fracture (VCF) after SBRT. The first major report on SBRT-
induced VCF was by the Memorial Sloan-Kettering Cancer
Center, who reported VCF in 27 (39%) of 71 sites treated with
SBRT (67). This risk of VCF was alarming, and the median time
to VCF was 25 months. Subsequently, it has been suggested in
studies from the MD Anderson Cancer Center and University of
Toronto that the risk may be closer to 11–20%, with a median
time to VCF of 2–3 months (68, 69). The UofT, MDACC, and
Cleveland Clinic pooled their clinical data specific to SBRT-
induced VCF for this first multi-institutional report observed 57
fractures (57 of 410, 14%), with 47% (27 of 57) new fractures
and 53% (30 of 57) fracture progression (23, 68, 69). The median
time to VCF was 2.46 months (range, 0.03–43.01 months),
and 65% occurred within the first 4 months. The 1- and 2-
year cumulative incidences of fracture were 12.35 and 13.49%,
respectively. Multivariate analysis identified dose per fraction
(greatest risk for≥ 24Gy v 20 to 23Gy v≤ 19Gy), in addition to
three of the six original SINS criteria: baseline VCF, lytic tumor,
and spinal deformity, as significant predictors of VCF (70).

Another point deserving attention is a potential difference
of efficacy, in terms of pain control and local control, between
the two regimens, single vs. hypofractionated treatments (64).
As regard as EBRT, it appears that there is not a significant
difference between single and multiple fraction schemes in terms
of pain control. This point has been explored also for SRS:
a retrospective study reported results of 348 metastatic spinal
lesions in 228 consecutive patients treated at University of
Pittsburg and University of Georgetown between 2000 and 2008
(71). One hundred ninety-five lesions were treated using single
fraction radiosurgery (mean dose 16.3Gy), whereas 153 lesions
were treated using a hypofractionated SRT (mean doses 20.6
Gy/3 fractions, 23.8 Gy/4 fractions, and 24.5 Gy/5 fractions).
The primary end point of the study was the pain control
whereas subsidiary end points included: neurological function,
toxicity, local control (LC), retreatment rate, and overall
survival (OS).

Results turned out to be interesting and somewhat surprising.
Pain control was significantly improved by a treatment delivered
in one single fraction for all measured time points up to 1
year post-treatment (100 vs. 88%). Toxicity and neurological
functions were not statistically different. On the other hand,
the rate of LC, was significantly better in the hypofractionation
group (96 vs. 70%, p= 0.001). Similarly, the retreatment rate was
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significantly lower in the hypofractionation group (1 vs. 13%, p
< 0.001). Finally, one-year OS was significantly greater in the
hypofractionation than the single fraction group (63 vs. 46%, p
= 0.002) (71). According to the abovementioned data, whether
single or multiple fraction treatments results in better tumor
control remains to be further investigated. Actually, better results
obtained after single fraction may simply reflect the outcomes of
patients with less extensive disease (71, 72). Furthermore, most
of the reported cases of radiation myelopathy reported had single
fraction SBRT in the series by Sahgal et al. (66).

Reirradiation
Salvage treatment is often necessary for patients in whom
the first treatment failed. Reirradiation is a valid option,
but often compromised by previous radiation to this highly
radiosensitive structure. Repeated external beam radiotherapy
has a risk of exceeding spinal cord constraints while reaching
inferior local control compared to SRS. Maximal spinal cord
doses used in clinical practice are considered to be 50Gy for
fractionated radiotherapy (TD 5/5, defined as tolerance dose with
a subsequent risk of developing grad 3 myelopathy in 5% of
treated patients after 5 years (73).

Clinical studies on reirradiation have usually proposed rather
conservative approaches. An important RCT evaluated re-
irradiation doses of 20Gy in 5 fractions and 8Gy in 1 fraction
using EBRT techniques for painful bony metastases requiring
retreatment (74). The study confirmed that the response was
suboptimal with these doses, with only 30% of patients achieving
an overall pain response to treatment. This clinical result
highlighted the need for more effective retreatment modalities.

Modern radiotherapy techniques may have the potential
to shake the universal dogma of 50Gy maximal dose.
Indeed, radiosurgery represents an appealing salvage
treatment modality for patients who have already undergone
EBRT yet demonstrating persistent symptoms and/or
radiological progression.

The first issue of reirradiation is dose that can be used to
retreat the spine.Mahadevan et al. (58) prescribed radiation doses
based on the extent of spinal canal involvement; the dose was 3
× 8Gy = 24Gy when the tumor did not touch the spinal cord
and 5 × 5 or 6Gy = 25–30Gy if the tumor abutted the cord.
However, the choice of the dose to the spine is dependent on
the dose received by the spinal cord. Thus, it is always the spinal
dose constraint that should lead the selection of the dose to be
prescribed to the vertebral PTV.

The largest series on the reirradiation of spinal metastases (75)
reports results of 162 patients affected by 237 spinal lesions. The
retreatment was performed after a median of 10.2 months from
the first irradiation. The median reirradiation dose was 16Gy in
one single fraction if the first irradiation was performed using
an EBRT technique and a dose of 3Gy × 10 fractions (30Gy).
Accordingly, the median tumor equivalent dose in 2Gy fractions
(the so-called EQD2) for the SRS was 34.7Gy (considering an
α/β = 10) while the median tumor EQD2 for EBRT was 32.5Gy
providing a median total tumor EQD2 of 67.2Gy (75). Overall
pain, neurological, and radiographic response rates were 81, 82,
and 71%, respectively. Adverse effects occurred in 11 (6.8%)

TABLE 7 | Predicted maximal dose for 1–5 fractions that results in 1–5%

probability of radiation myelopathy after radiosurgical reirradiation.

1 Fraction

(Gy)

2 Fractions

(Gy)

3 Fractions

(Gy)

4 Fractions

(Gy)

5 Fractions

(Gy)

1% Probability 9.2 12.5 14.8 16.7 18.2

2% Probability 10.7 14.6 17.4 19.6 21.5

3% Probability 11.5 15.7 18.8 21.2 23.1

4% Probability 12.0 16.4 19.6 22.2 24.4

5% Probability 12.4 17.0 20.3 23 25.3

From Sahgal et al. (76).

patients. Vertebral compression fractures (VCFs) were observed
in 77 cases, 22 of which may be attributed to RT. Hashmi et al.
reported amulticenter series of 215 patients with 247 spinal target
volumes treated at 7 institutions. The median total dose/number
of fractions of the initial EBRT was 30 Gy/10. The median SBRT
total dose and number of fractions were 18Gy and 1, respectively.
Sixty percent of spinal target volumes were treated with single-
fraction SBRT (median, 16.6Gy and EQD2/10 = 36.8Gy), and
40% with multiple-fraction SBRT (median 24Gy in 3 fractions,
EQD2/10 = 36Gy). The 6- and 12-month local control rates
were 93 and 83%, respectively. There were no cases of radiation
myelopathy, and the vertebral compression fracture rate was
4.5% (73).

The results of these studies are in line with the dose
limits proposed by Sahgal et al. (76) who suggested the
use of radiosurgery for retreatment at least 5 months after
conventionally fractionated RTwith a reirradiationmaximal dose
to thecal sac corresponding to EQD2 of 20–25Gy provided that
the cumulative EQD2 does not exceed 70Gy (considering an α/β
of 2Gy for spinal cord), and that the radiosurgery EQD2 to the
thecal sac encompasses no more than 50% of the cumulative
dose. Table 7 summarizes dose constraints for the spinal cord for
different fractionation schemes for reirradiation according to the
study by Sahgal et al. (76).

Surgery vs. Radiotherapy for Metastatic
Spinal Cord Compression
The surgical treatment of SM has a number of potential
advantages: it can actually achieve immediate decompression
of the neural structures, spinal stability as well as histological
diagnosis while relieving neurological symptoms (77). According
to the data summarized in the previous sections of this study,
indications for surgery are: evidence of neurological function
deterioration or tumor progression despite radiotherapy,
neurological deficit persisting after RT, radioresistant tumors,
no proven cancer histology, significant metastatic spinal cord
compression, spinal canal invasion, spine instability due to
fracture and causing pain and neurological deficit, and a life
expectancy of at least 3 months (77).

Notwithstanding these general concepts, there are some
studies that help to clarify the differences of RT vs. surgery
for the treatment of SM. Witham et al. (40) conducted an
extensive review to compare those two treatments. Radiotherapy
resulted in a mean neurological improvement of 36% while
surgical management provided improvement rates of 42, 64, and
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FIGURE 3 | A representative case for a hybrid therapy with a prior surgery including decompression and stabilization followed by a radiosurgical treatment by

Cyberknife. (A) Representative MRI images (left in sagittal view and right in axial view) of the metastatic lesion in thoracic vertebra 8. (B) Postoperative CT scan

demonstrating the decompression in the lesional segment and dorsal spinal fusion of thoracic vertebra 7 and 9. (C) The Cyberknife treatment planning of the lesional

vertebra body after surgery.

75% with laminectomy, laminectomy plus fusion, and anterior
corpectomy plus fusion, respectively. On the other hand, surgical
morbidity was in the range of 21–26% (78, 79), andwas correlated
with the extent of the surgical procedure (78) and the use of pre-
operative RT (79). The mean mortality rate for posterior and
anterior corpectomy were 5–6% and 10%, respectively (40).

In 2005, Patchell et al. (39) published a pivotal multi-center
RCT comparing surgery plus radiation with RT only (Figure 3).
This study showed a clear benefit of surgical treatment for
ambulation regaining or maintenance, corticosteroids intake,
and analgesia. The surgical group included 50 patients who
received an individualized treatment including circumferential
decompression and stabilization if deemed necessary. The
radiotherapy was started 2 weeks after surgery using the same
treatment modality than the radiation-only group (51 patients).
Ambulation was maintained by 84% of patients in the surgery
groups as compared to 57% of the radiation only group.
Among non-ambulating patients before the treatment, 62% in
the surgical group vs. 19% in the radiation only group regained
ambulation (p < 0.001). Patients who received also surgical
decompression had an advantage in terms of neurological
function, pain scores, and sphincters control maintenance.
Surgical treatment warranted slightly better median survival (126
vs. 100 days). As a consequence of prolonged immobilization,
morbidity was higher in the radiation therapy only group (39).

Incidentally, this study excluded highly radiosensitive tumors
where the results of RT may be more comparable to surgery.
Nevertheless, this is a sufficiently strong evidence to conclude
that in acute paraplegia, immediate surgical debulking combined
with RT is superior to RT alone (80).

A meta-analysis of non-randomized cohorts (4) similarly
showed that surgery was 1.3 times more likely to maintain
ambulation and twice as likely to restore ambulation. Pain
improved in 90% of patients who received surgical treatment and
70% of those receiving only radiation treatment. The OS at 1
year ranged 12–62% (mean 41%) in the surgery group and 20–
28% (mean 24%) in the radiation only group. Other more recent
studies confirm that best results follow surgery combined with RT
(4, 39, 40).

To make surgical management an effective option, surgical
morbidity needs to be kept as low as possible, especially when
further oncological treatment is planned. This is the rationale
for the application of principles of “minimally invasive spinal
surgery” (MISS) to spinal metastatic disease. Actually, MISS
potentially reduces morbidity and allows earlier administration
of post-operative RT and chemotherapy.

A NEW MODEL: MINIMALLY INVASIVE
SURGERY PLUS RADIOSURGERY

Different approaches have been used to treat spinal metastases
including: costotransversectomy, transpedicular, lateral
extracavitary, transthoracic, or retroperitoneal approach
based on the level of the lesions, extent of bone involvement,
and surgeon preference. The aim of these approaches is to resect
as much as possible of the tumor and involved vertebral levels.
Nonetheless, this surgical treatment of metastatic disease has
largely failed its oncological purposes. Surgery alone, indeed,
cannot eradicate the disease with durable local control in most
cases. In one series (81), showed that the recurrence rate at
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4 years after surgery reached 96% and with no significant
differences in OS between those who received complete vs.
incomplete surgical resection.

On the other hand, the introduction of spine SRS into
the standard treatment process allowed a paradigm shift in
the treatment of metastatic disease. Actually, recent evidence
demonstrates that complex surgeries provide fewer benefits than
a multidisciplinary spine oncology management combined with
MISS (82).

Minimally invasive procedures can be used at different stages
of the patient care and include: CT-guided biopsy, local ablative
techniques, cement or device vertebral augmentation, tumor
embolization and, above all, microneurosurgical techniques
consisting of microsurgical decompression and percutaneous
pedicle-screw fixation.

Minimally invasive surgical techniques allow, indeed, the
starting of adjuvant treatment as soon as 1 week after surgery,
providing a significant oncological advantage compared with
adjuvant radiotherapy delivered, conventionally, 1 month after
open surgery to allow time for adequate wound healing.

A modern approach to metastatic spine is summarized
by the concept of “separation surgery” that consists of the
microsurgical restoration of the anatomical distance between
the tumor and the spinal cord without attempting extensive
tumor debulking and reconstruction. Separation surgery consists
of a circumferential decompression of the spinal cord using
microsurgical techniques. The aim of the decompression is to
create a 2/3mm corridor between the sac and the tumor to
allow high-dose single-fraction irradiation of the tumor tissue
minimizing the exposure of the spinal cord (83) Moreover,
the spinal column is percutaneuously instrumented above and
below the level of decompression to provide biomechanical
stability and prevention of post-operative kyphosis (84–89).
The benefits of this approach are intuitively derived from a
reduced demolition of the diseased vertebral body without en
bloc resection, by the limited duration of surgery and amount of
surgical trauma (90).

The concept was initially introduced by a couple of studies.
Moulding et al. (91) described this approach in patients who
underwent decompression of the thecal sac through a posterior
segmental approach followed by SRS (91). The study showed
a 1-year local progression risk of 9.5%, with lower progression
rates in patients undergoing high-dose single-fraction SRS. A
larger study on the impact of “separation surgery” followed
by adjuvant post-operative SRS was subsequently performed by
Laufer et al. (83), who retrospectively analyzed 186 patients with
spinal metastases and epidural spinal cord compression. The
local progression rate at 1-year for single-fraction SRS was 9%,
which is comparable to the results obtained by Moudling et al.
(91). In an interesting study, Jakubovic et al. (92) co-registered
pre-operative MRI to post-operative planning CT to delineate
the pre-operative epidural GTV. The GTV was then digitally
shrunk by a series of fixed amounts away from the cord (up to
6mm) simulating incremental tumor resection and reflecting an
optimal dosimetric endpoint. The dosimetric effect on simulated
GTVs was analyzed using metrics such as minimum biologically
effective dose (BED) to 95% of the simulated GTV (D95) and

compared to the unresected epidural GTV. Epidural GTV D95
increased at an average rate of 0.88 ± 0.09 Gy10 per mm of
resected disease up to the simulated 6mm limit. Mean BED
to D95 was 5.3 Gy10 (31.2%) greater than unresected cases.
Accordingly, it is possible to quantify the dosimetric advantage
prior to surgery (92).

One of the main surgery complication, at moderate term,
is the hardware failure. It has been demonstrated that the rate
of hardware failure in MISS approaches is substantially similar
to that of open surgical approaches (84–89). In a retrospective
study reporting data of 318 patients who received separation
surgery only 9 patients (2.8%) had signs and symptoms of
hardware failure requiring revision surgery (93). When looking
to predictors for hardware failure, previous chest wall resection,
initial construct >6 contiguous spinal levels, and female gender
were associated to a significant risk (87).

Differently from open surgical treatments, MISS allows
earlier post-surgical irradiation (i.e., 1 week after), with patients
anecdotally treated as early as 3 days after surgery using a
stereotactic technique (94). The efficacy of a combination of
MISS and stereotactic body radiotherapy has been adopted also in
patients with malignant primary tumors of the spine, for whom
en bloc resection was not considered because of the encasement
of the spinal cord or vascular structures (95).

A recent systematic review (96) analyzed results of nine
studies comparing MISS and open techniques for the treatment
of symptomatic vertebral metastases. In this article, the authors
collected 183 patients treated by MISS that were compared with
163 patients treated by open surgical decompression and fusion.
A reduced blood in MISS loss was reported by 6 studies (97–
102), three described shorter operative times (97, 100, 101),
four reported shorter recovery times (98, 99, 101, 102), two
reported a lower complication rate (97, 101), and four reported
similar or superior improvements in post-operative pain scores
(97, 99, 100, 102). Furthermore, five studies showed that MISS
techniques provide similar results than open surgery with regards
to neurological function (97, 99–102).

Results of this review are derived from retrospective studies
(9 studies provide level III evidence; 25 studies provide level IV
evidence) and, therefore, their applicability remains uncertain.
Nevertheless, MISS represents a promising strategy for the
palliative management of spinal metastases, especially if MISS is
combined with stereotactic radiosurgery. Actually, the scope of
combining MISS with spinal SRS is to reduce morbidity and fast
operative recovery and create a corridor between the tumor and
the spinal cord for the radiation dose fall-off. As above analyzed,
radiosurgical doses are more effective for local control while
carry a certain risk of complications, including radioinduced
myelopathy and vertebral body collapse. Separation surgery
and other MISS technique clearly help preventing these risks
(83, 91, 103, 104).

CONCLUSIONS

Spinal metastatic disease remains a complicated
multidisciplinary challenge. Early diagnosis is essential,
because treatment outcome depends on pretreatment neurologic
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FIGURE 4 | Algorithm for spinal metastasis treatment. In turquoise, the assessment steps. In orange, the best treatment option for each assessment category (in

purple) according to the literature review.
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function. The use of SRS/SBRT for spinal metastatic disease is
rapidly increasing. Aggressive surgical resection may provide
the best results in terms of local control. Nonetheless, it
carries a significant rate of post-surgical morbidity whose
incidence and severity are correlated with the extent of
resection. Complications and amount of surgical impact on
oncological patients often cause a delay of adjuvant treatment
that, indeed, abolishes any advantage of an aggressive surgical
management. A multidisciplinary management represents,
according to current evidence, the best option for the treatment
of spinal metastases. Figure 4 summarizes an algorithm for
multidisciplinary management we have drawn on the base
of available clinical data. Noteworthy, according to evidence,
cases that once required radical surgical resection followed by
low-dose conventional radiotherapy, can now be more effectively
treated by separation surgery and spine SRS with decreased
morbidity, improved local control, and more durable pain
control. This combination allows also to extend this standard of
care to patients that would be too sick for an aggressive surgical

treatment. Future efforts are needed to prospectively compare the
effectiveness of these available treatment approaches, focusing
primarily on outcomes of tumor control, treatment-related
morbidity, and quality of life.
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