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We extracted image features from serial 18F-labeled fluorodeoxyglucose (FDG) positron

emission tomography (PET) / computed tomography (CT) scans of anal cancer patients

for the prediction of tumor recurrence after chemoradiation therapy (CRT). Seventeen

patients (4 recurrent and 13 non-recurrent) underwent three PET/CT scans at baseline

(Pre-CRT), in the middle of the treatment (Mid-CRT) and post-treatment (Post-CRT) were

included. For each patient, Mid-CRT and Post-CRT scans were aligned to Pre-CRT scan.

Comprehensive image features were extracted from CT and PET (SUV) images within

manually delineated gross tumor volume, including geometry features, intensity features

and texture features. The difference of feature values between two time points were also

computed and analyzed. We employed univariate logistic regression model, multivariate

model, and naïve Bayesian classifier to analyze the image features and identify useful

tumor recurrent predictors. The area under the receiver operating characteristic (ROC)

curve (AUC) was used to evaluate the accuracy of the prediction. In univariate analysis, six

geometry, three intensity, and six texture features were identified as significant predictors

of tumor recurrence. A geometry feature of Roundness between Post-CRT and Pre-CRT

CTs was identified as the most important predictor with an AUC value of 1.00 by

multivariate logistic regression model. The difference of Number of Pixels on Border

(geometry feature) between Post-CRT and Pre-CRT SUVs and Elongation (geometry

feature) of Post-CRT CT were identified as the most useful feature set (AUC = 1.00)

by naïve Bayesian classifier. To investigate the early prediction ability, we used features

only from Pre-CRT and Mid-CRT scans. Orientation (geometry feature) of Pre-CRT SUV,

Mean (intensity feature) of Pre-CRT CT, andMean of Long Run High Gray Level Emphasis

(LRHGLE) (texture feature) of Pre-CRT CT were identified as the most important feature

set (AUC = 1.00) by multivariate logistic regression model. Standard deviation (intensity
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feature) of Mid-CRT SUV and difference of Mean of LRHGLE (texture feature) between

Mid-CRT and Pre-CRT SUVs were identified as the most important feature set

(AUC = 0.86) by naïve Bayesian classifier. The experimental results demonstrated the

potential of serial PET/CT scans in early prediction of anal tumor recurrence.

Keywords: serial PET/CT, chemoradiation therapy, recurrence prediction, image analysis, anal cancer

INTRODUCTION

Anal cancer is a relatively uncommon malignancy. In the
United States, the National Cancer Institute estimated
8,580 new cases and 1,160 deaths from anal cancer in
20181. Chemoradiation therapy (CRT) is preferred over
abdominoperineal resection for the treatment of anal cancer
patients because of sphincter preservation, although surgery can
be an effective salvage option (1–4). After CRT, early detection
of tumor recurrence is important for initiating salvage surgery
and preventing the spread of disease to distant sites (5, 6).
Current guideline recommendations for treatment response
evaluation after CRT includes serial digital rectal examination
with biopsy of clinically progressive lesions, beginning 8–12
weeks after therapy is completed. However, early detection of
residual and progressive disease can sometimes be challenging
because of treatment-related mucositis and dermatitis that may
limit adequate physical examination (5). Alternatively, as a
non-invasive evaluation tool, anatomical imaging techniques
(CT, ultrasound, and MRI) have been widely used in the tumor
staging and treatment response evaluation. Because the region
of anal tumors has similar intensity to the surrounding normal
structures in the anatomical images and tumor margins may
blend with surrounding normal tissues (5), these techniques may
fail to accurately assess the presence of tumor.

Positron emission tomography (PET) scans provide metabolic
information of tumors and can assist in differentiating recurrent
tumors from surrounding tissue. As such, 18F-FDG PET scans
obtained after CRT has been increasingly used for the anal
cancer recurrence prediction (7, 8) alongside CT scans (18F-FDG
PET/CT), which provide corresponding anatomic information.
However, there are few reports in the literature about the usage
of interim PET/CT scans (Mid-CRT) obtained during CRT to
assess treatment response for anal cancer. In a recent paper of
Hong et al. (9), they reported a anal cancer chemoradiation
treatment evaluation study using pretreatment and interim
PET/CT scans. Some commonly used standardized uptake
value (SUV) based image features were evaluated, including
maximum SUV (SUVmax), mean SUV (SUVmean), metabolic
tumor volume (MTV), and total lesion glycolysis (TLG).
However, no correlation between tumor recurrence and relative
change of those image features was detected.

Recent studies have shown that spatial PET/CT features are
more informative than the commonly used SUV based measures
(10, 11). In this study, instead of conventional SUV image
features, comprehensive image features from both CT and SUV

1http://seer.cancer.gov/statfacts/html/anus.html

of serial PET/CT scans (Pre-CRT, Mid-CRT, and Post-CRT) were
analyzed to identify useful image features for the prediction
of anal cancer recurrence. In particular, we investigated the
image features from Pre-CRT and Mid-CRT PET/CT scans
only to explore their potential in the early prediction of tumor
recurrence. The image features we used in this study include
geometry, intensity, and texture features.

MATERIALS AND METHODS

Patients and PET/CT Scans
IRB approval was obtained from both institutions involved in
the analysis. The PET/CT scans used in this study were collected
from Department of Radiation Oncology of one major cancer
center in the United States for patients with non-metastatic
squamous cell carcinoma of the anal canal treated with definitive
CRT between 2008 and 2010. Seventeen patients were included in
this study, including 4 recurrent and 13 non-recurrent. Clinical
characteristics of the patients were shown in Table 1. One of the
recurrent patients developed a locoregional recurrence and the
other three were diagnosed with distant metastasis. The typical
approach and clinical outcomes for managing anal cancer with
CRT from this institution have been previously published (12).
Patients received CRT for 32–50 total elapsed days (median
43 days) with initial prescription gross tumor volume (GTV)
dose of 36–50Gy and GTV boost dose of 0–22Gy. The median
GTV total dose was 56Gy (range 50–62.5Gy). Pre-CRT PET/CT
imaging was performed 6–46 days before CRT (median 20 days),
Mid-CRT PET/CT was performed 22–38 days (median 32 days)
after the starting of CRT, and Post-CRT imaging was performed
42–141 days (median 88 days) after completion of CRT. All
PET/CT scans were acquired with a Discovery-VCT (DVCT)
scanner (GE Medical System, Milwaukee, USA). Each patient
fasted for a minimum of 6 h before intravenous injection of 10
mCi 18F-FDG. Whole-body PET and CT imaging was started
90min after tracer injection. The CT scans were acquired with
110 mAs and 120 kVp. Each slice had a matrix size of 512 × 512
pixels; the pixel was 1.37 × 1.37mm with a 12-bit gray-level in
Hounsfield Units (HU). The slice thickness was 3.27mm. PET
images were attenuation corrected with a matrix size of 128 ×

128 pixels; the pixel was 5.47 × 5.47mm. The slice thickness
was 3.27mm. To compare the PET-based image features between
patients, standardized uptake value (SUV) was calculated on
a voxel-by-voxel basis and a SUV image was created for each
PET scan.

An experienced radiation oncologist (MC) contoured the
GTVs in the Pre-, Mid-, and Post-CRT PET/CT scans,
respectively, using mainly CT while referring to PET. In general,
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TABLE 1 | Clinical characteristics of patients.

Non-recurrent

patients

Recurrent

patients

n 13 4

Gender

Male 5 1

Female 8 3

Age

Median 53 49

Range 36 ∼ 78 45 ∼ 76

BMI 20.6 ∼ 35.7 19.8 ∼ 28.2

HIV+ 2 0

Weight decrease during CRT (%) −1.7 ∼ 12.9 −1.9 ∼ 22.4

ECOG performance status

0 10 3

1 3 1

T stage

1 3 0

2 6 1

3 4 1

4 0 2

N stage

0 10 2

1 0 1

2 2 1

3 1 0

AJCC stage (TNM stage)

2 3 0

3 7 1

4 0 2

5 3 1

anal tumors have similar intensity to the surrounding normal
structures in CT scans. Thus, it would be hard for the radiation
oncologists to contour the tumors accurately. FDG uptake of the
tumors in PET scans could help in identify the tumor regions.
However, high FDG uptake caused by non-tumor lesions, such
as tissue inflammation, could affect the accuracy of delineated
GTVs. In this study, we did not find such difficult cases.

Image Registration
A rigid image registration followed by a B-Spline deformable
image registration was used to align the Mid-CRT CT and
Post-CRT CT to the Pre-CRT CT, respectively by maximizing
their normalized cross correlation. To achieve higher registration
accuracy in the tumor area, registration was constrained within a
cuboid region, excluding irrelevant structures. The region ranged
from the top of femoral head to the inferior pubic ramus, from
the right lateral aspect of the right femoral head to the left lateral
aspect of the left femoral head, and from the anterior border of
the pubis to the most posterior border of sacrum.

The registration results were visually evaluated, and no
obvious misalignments were observed. The resulting registration

transform was applied to warp the manually delineated
GTVs from Mid-CRT and Post-CRT scans to Pre-CRT scan,
respectively. The Mid-CRT and Post-CRT SUV images were
similarly warped to the Pre-CRT SUV image using the same
transform as above, respectively. The following image analysis
was performed in the same frame of reference, i.e., the Pre-CRT
coordinate system.

Extraction of Image Features
Weused the Insight Segmentation and Registration Toolkit (ITK,
National Library of Medicine; Bethesda, MD) to extract image
features. Nineteen geometry features, nine intensity features,
eight texture features based on co-occurrence matrix, and ten
texture features based on run-length matrix were computed
within the GTVs in the Pre-, Mid-, and Post-CRT CT and SUV
images, respectively. The difference or change of feature values
between two time points were also computed, including Diff1 =
Mid-CRT - Pre-CRT, Diff2 = Post-CRT - Mid-CRT, and Diff3
= Post-CRT - Pre-CRT. The detailed definition of these features
was described in Appendix A.

Geometry Features
Geometry features described the shape, size, or relative position
of a tumor. Nineteen geometry features were computed (13,
14), including volume, major axis length, minor axis length,
eccentricity, elongation, orientation, bounding box volume,
oriented bounding box volume, equivalent spherical perimeter,
equivalent spherical radius, ferret diameter, number of lines,
number of pixel on border, perimeter, perimeter on border,
perimeter on border ratio, physical size, region elongation, and
roundness. For instance, Roundness (R) is defined by

R = A/v

where v is the surface area of the GTV, A is the surface area of the
hyper-sphere with the same volume of the GTV.

Intensity Features
Nine intensity features were computed based on the intensity
(CT number in CT images and SUV in PET images) of all voxels
within the GTV, including minimum, maximum, mean, standard
deviation, sum, median, skewness, kurtosis, and variance.

Texture Features
Texture features quantify the spatial patterns of tumor from
images (15). In each CT or SUV image, the intensity was
first normalized into 64 gray levels. The texture features were
computed based on the gray level co-occurrence matrix (GLCM)
(16–18) and gray level run-length matrix (GLRM) (18, 19).

An element of a GLCM measures the number of two
specified gray levels separated by a given distance in a specified
direction (16–18). After the construction of the GLCM, the
following eight frequently used features were computed (16–
18): Energy, entropy, correlation, inverse difference moment,
inertia, cluster shade, cluster prominence, Haralick correlation.
Each GLCM feature was computed in 13 directions (in 3D)
with a distance of one voxel between the pair of voxels. The
feature was then averaged over the 13 directions. The standard
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deviation of each feature over the 13 directions was computed
as well.

An element of a GLRM measures the number of “runs”
with a specific length and specific gray level (18, 19), where
a “run” is defined as a block of consecutive voxels with the
same gray level in a specific direction. In this study, we set
the maximum allowed length of runs to the length of the
minimum bounding box of the GTV. After the construction
of the GLRM, the following ten frequently used features were
computed: short run emphasis (SRE), long run emphasis (LRE),
gray level non-uniformity (GLN), run length non-uniformity
(RLN), low gray level run emphasis (LGLRE), high gray level
run emphasis (HGLRE), short run low gray level emphasis
(SRLGLE), short run high gray level emphasis (SRHGLE), long
run low gray level emphasis (LRLGLE), long run high gray level
emphasis (LRHGLE). Each GLRM feature was also computed
in 13 directions. The feature was then averaged over the 13
directions. The standard deviation of each feature over the 13
directions was computed as well.

Predictive Model Construction
For this study the binary response variable of interest is the
recurrence of anal cancer, coded 1 = recurrence and 0 = non-
recurrence. The area under the receiver operating characteristic
(ROC) curve (AUC) was used to evaluate the accuracy of
the prediction.

Firstly, we used a univariate logistic regression model (20)
to identify individually significant image features for predicting
recurrence. The AUC of each image feature was obtained and p-
value was calculated with Wilcoxon rank-sum test (21). A cut-off
p-value of 0.05 was used to identify significant tumor recurrence
predictors, i.e., an image feature was identified as a significant
predictor, if its p-value was lower than 0.05.

Secondly, we used a multivariate logistic regression model
(20) to select the most significant feature set (as single feature
or multiple features) for predicting recurrence. The initial
null hypothesis was that there was no relationship between
the image features and recurrence. When multivariate logistic
regression was used, null hypotheses of adding image features
to the multiple logistic regression do not improve the prediction
accuracy any more than expected by chance were tested. Again,
p-value of 0.05 from the null hypotheses was used to select the
most significant feature set.

Lastly, we used an advanced pattern classification framework
of naïve Bayesian classifier (22) for predicting recurrence using
the identified feature set as input. Due to the small patient
cohort, leave-one-out cross-validation was used. Let C be the
outcome (recurrence) class, which is modeled as a random
variable, and let X be a vector of random variables denoting the
input features. Further, let c and x represent particular class of
C and particular observed value of X. Our model uses Bayes’
rule to compute the probability of each class given the observed
values as,

p (C = c |X = x ) =
p (C = c) p (X = x |C = c )

p (X = x)
(1)

Because in naïve Bayesian classifier the features are assumed to
be conditionally independent, we have

p (X = x |C = c ) =
∏

i

p (Xi = xi |C = c )

which is simple to estimate from training data as well as
to compute for test data. For example, for each recurrent
class and continuous image feature, we will estimate the
mean and standard deviation of the feature given the class.
Traditionally a single Gaussian distribution assumption was used
when estimating the mean and standard deviation. Here this
assumption was eliminated in favor of kernel density estimation,
but still maintaining the independence assumption (22). Finally,
the probability computed from (1) is used to determine the most
probable class.

RESULTS

Univariate Analysis of Logistic Regression
Model
Six geometry features, three intensity features, and six texture
features (three co-occurrence matrix features and three run-
length matrix features) were identified as individually significant
predictors (p ≤ 0.05) to differentiate recurrence and non-
recurrence using the univariate logistic regression model. The
identified predictors were listed in Table 2.

Multivariate Analysis of Logistic
Regression
By applying the multivariate logistic regression model, the Diff3
of roundness of CT, i.e., the difference in tumor roundness

TABLE 2 | Selected anal cancer recurrence predictors from all the image features

by univariate logistic regression model.

Features aAssociation AUC p-value

Diff3 Roundness + 1.00 0.00

Post-CRT Roundness – 0.96 0.00

Diff2 Roundness + 0.90 0.01

Diff3 Perimeter on Border Ratio – 0.77 0.02

Diff3 CT Minimum + 0.85 0.02

Post-CRT CT SD of Correlation – 0.77 0.03

Post-CRT Major Axis Length – 0.81 0.03

Diff3 CT Mean of Inverse Difference Moment – 0.83 0.03

Post-CRT CT Elongation – 0.83 0.04

Diff3 CT Mean of Short Run Emphasis + 0.83 0.04

Post-CRT CT Minimum + 0.62 0.04

Post-CRT CT Mean of Inverse Difference

Moment

– 0.63 0.05

Post-CRT SUV SD of Cluster Shade + 0.69 0.05

Diff3 CT Mean + 0.79 0.05

Diff1 CT SD of Long Run High Gray Level

Emphasis

– 0.83 0.05

aAssociation = “+” indicates the larger a feature, the more likely tumor recurrent;

Association = “−” indicates the larger a feature, the less likely tumor recurrent.
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between Post-CRT and Pre-CRT, was identified as the most
powerful predictor with an AUC of 1.0. Using Pre-CRT andMid-
CRT scans only, Orientation of Pre-CRT SUV and LRHGLE of
Pre-CRT CT were selected as the most important feature set with
a high AUC of 1.00. The results were shown in Table 3.

Naïve Bayesian Classifier Based Analysis
By applying the naïve Bayesian classifier, Diff3 of Number of
Pixels on Border of SUV and Elongation of Post-CRT CT were
identified as the most useful feature set with AUC = 1.00. Using
Pre-CRT and Mid-CRT scans only, standard deviation of Mid-
CRT SUV, Diff1 of Mean of LRHGLE of SUV were selected as the
most important feature set with an AUC of 0.86. The results were
shown in Table 4.

DISCUSSION

Almost all the predictors identified by univariate logistic
regression model, multivariate logistic regression model, and
naïve Bayesian classifier were derived from Post-CRT scans
or from Diff3 (Post-CRT - Pre-CRT). To investigate the early
prediction ability of the features, we applied the multivariate
logistic regression model and naïve Bayesian classifier by using
features from Pre-CRT and Mid-CRT scans and Diff1 only. As
shown in Table 3, Orientation of Pre-CRT SUV, Mean of Pre-
CRTCT, andMean of LRHGLE of Pre-CRTCTwere identified as
the most useful feature set by the multivariate logistic regression
model with an AUC of 1.0. As shown in Table 4, standard
deviation of Mid-CRT SUV and Diff1 of Mean of LRHGLE
of SUV were identified as the most useful feature set by the
naïve Bayesian classifier with an AUC of 0.86. These results
demonstrated the potential of Pre-CRT and Mid-CRT PET/CT
scans for the early predication of anal cancer recurrence.

TABLE 3 | Selected anal cancer recurrence predictors (correlation to the

recurrence in parentheses) by multivariate logistic regression model.

Using Pre-CRT, Mid-CRT, and

Post-CRT

Using Pre-CRT and Mid-CRT

Features Diff3 CT Roundness (0.83) Pre-CRT SUV Orientation

(−0.31), Pre-CRT CT Mean

(−0.15), Pre-CRT CT Mean of

Long Run High Gray Level

Emphasis (0.41)

AUC 1.00 1.00

TABLE 4 | Selected anal cancer recurrence predictors (correlation to the

recurrence in parentheses) by naïve Bayesian classifier.

Using Pre-CRT, Mid-CRT, and

Post-CRT

Using Pre-CRT and Mid-CRT

Features Diff3 SUV Number of Pixels on

Border (−0.07) and Post-CRT

CT Elongation (−0.28)

Mid-CRT SUV Standard

Deviation (−0.15), Diff1 SUV

Mean of Long Run High Gray

Level Emphasis (0.16)

AUC 1.00 0.86

One geometry feature Diff3 of roundness, has been identified
as the most useful predictor by both univariate and multivariate
logistic regression models. Roundness measures how similar the
shape of a tumor is to a sphere with range [0, 1]. A larger value
of roundness means higher similarity to a sphere. As shown in
Figure 1 and Table 5 the roundness of all four recurrent tumors
increased from Pre-CRT to Post-CRT by 0.05 or more, with a
mean increase of 0.08, whereas the roundness of the 13 non-
recurrent tumors either decreased (11 tumors), or did not change
(2 tumors), or increased slightly by 0.01 (1 tumor), with a mean
decrease of 0.06. Therefore, by using Diff3 of roundness only, we
were able to correctly predict all cases with an AUC of 1.0.

As shown in Table 5, the roundness of many of the non-
recurrent tumors decreased from Pre-CRT to Post-CRT and
the roundness of recurrent tumors increased from Pre-CRT to
Post-CRT. The difference in roundness may reflect that the
normal anal canal has a low roundness value, which would be
consistent with decreased anal tumor burden; to the contrary,
higher gross tumor burden would have a higher roundness value.
Figure 2 shows an example of the comparison between Pre-
CRT and Post-CRT of a non-recurrent tumor. Its roundness
decreased from 0.70 to 0.58. The tumor regressed significantly
in coronal direction. However, it enlarged in axial direction
on CT. We further investigated all the tumors in our dataset.
For non-recurrent patients, the changes of tumor size were
mainly in superior-inferior direction. However, the changes
were not consistent, i.e., some tumors decreased, and other
tumors increased in superior-inferior direction. On the other
hand, the changes in axial plane were generally quite small.
For recurrent patients, changes could be observed in both axial
plane and superior-inferior direction. However, we did not find
a consistent pattern in the trend of size changes either. It is
important to note that the radiation oncologist who delineated
the tumor volumes was blinded to the prior contours while
contouring the follow up scans, which could have affected
the consistency of the volumes over time including perceived
enlargement of delineated tumor regions in follow up scans
of non-recurrent patients. Therefore, the recurrence prediction
purely based on the geometry measurements, such as roundness,
volume, etc., may not be reliable enough. Intensity and texture-
based imaging features would be useful complementary to
the geometry measurements in the recurrence prediction. In
addition, this experimental result could raise a hypothesis—
tumors may regress in a non-uniform manner after CRT.
The tumors with positive response to the treatment may have
regressed asymmetrically, which also may have contributed to
their roundness measurement decreasing. We were unable to
find other published literature about directional tumor regression
after CRT and therefore warrant further evaluation.

In addition to roundness, some other features were identified
as recurrence predictors by multivariate logistic regressionmodel
(Table 3) and by naïve Bayesian classifier (Table 4). Each of
these features had low correlation (<0.50) to tumor recurrence
and was weak classifier by itself. However, the performance
can be improved significantly by systematically combining a
number of weak classifiers (23) and using well-designed training
procedure, such as the multivariable logistic regression model
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FIGURE 1 | Manually delineated tumor contour (white) in Pre-CRT, Mid-CRT, and Post-CRT scans of a non-recurrent patient (A–C) and a recurrent patient (D–F)

Post-CRT. Roundness showed different changing patterns (in Diff3 = Post-CRT – Pre-CRT) between recurrent and non-recurrent groups.

TABLE 5 | The roundness of each patient at Pre-CRT, Mid-CRT, and Post-CRT

and their differences.

Recurrent Status

(1 = recurrent, 0 =

non-recurrent)

Pre Mid Post Diff1 Diff2 Diff3

0 0.78 0.70 0.67 −0.08 −0.04 −0.12

0 0.68 0.64 0.69 −0.04 0.05 0.01

0 0.80 0.61 0.75 −0.19 0.14 −0.05

0 0.72 0.73 0.70 0.01 −0.04 −0.03

0 0.80 0.64 0.70 −0.15 0.05 −0.10

0 0.72 0.70 0.62 −0.01 −0.08 −0.09

0 0.70 0.78 0.58 0.08 −0.20 −0.12

0 0.84 0.67 0.76 −0.17 0.09 −0.09

0 0.78 0.73 0.78 −0.04 0.04 0.00

0 0.73 0.80 0.70 0.06 −0.10 −0.03

0 0.88 0.76 0.77 −0.12 0.01 −0.11

0 0.75 0.72 0.74 −0.02 0.02 0.00

0 0.76 NA 0.72 NA NA −0.04

1 0.68 0.66 0.76 −0.02 0.10 0.08

1 0.78 0.69 0.83 −0.09 0.14 0.05

1 0.67 0.71 0.78 0.04 0.07 0.11

1 0.72 0.73 0.80 0.01 0.07 0.08

Mean of non-recurrent 0.76 0.71 0.71 −0.06 0.00 −0.06

Mean of recurrent 0.71 0.70 0.79 −0.01 0.10 0.08

Diff1 = Mid-CRT – Pre-CRT; Diff2 = Post-CRT – Mid-CRT; Diff3 = Post-CRT – Pre-CRT.

FIGURE 2 | The CT images with manually delieated tumor contour of anal

cancer patient with no tumor recurrence. The tumor regressed in coronal

directions (B) vs. (D). However, it progressed in axial direction (A) vs. (C). The

roundness of this tumor was changed from 0.70 (Pre-CRT) to 0.58 (Post-CRT).

and the naïve Bayesian classifier in this study. By use of these
combined features, relatively high performance in the tumor
recurrence prediction was achieved (high AUC values) as shown
in Tables 3, 4.
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Traditional naïve Bayesian classifier assumes that numeric
features are generated by a single Gaussian distribution. It is
a reasonable approximation to many real-world applications,
but not always the best. Our approach extended the traditional
naïve Bayesian by eliminating the single Gaussian assumption,
which certainly could be violated in cancer recurrence prediction.
Another advantage of the method is that it does not suffer
from the high dimensionality of the model. This is because
features are assumed to be conditionally independent in Naïve
Bayesian classifier, so that the curse-of-dimensionality can be
avoided by allowing the join distribution to be decomposed.
Naïve Bayesian classifier is also closely related to the widely used
logistic regression classifier. While naïve Bayesian classifier fits a
probability that optimizes the joint likelihood, logistic regression
fits the same probability model that optimizes the conditional
probability. It has been shown that in some practical cases naïve
Bayesian can outperform logistic regression because it converges
faster (24).

One limitation of this study was that this was a retrospective
analysis of a small patient cohort (n = 17), particularly only 4
patients with recurrence. This was a small, unbalanced dataset
for reliable prediction. Although we used cross-validations to
avoid potential over fitting, the predictive accuracy and stability
of the model should be validated in a larger and independent
patient cohort. Another limitation is the lack of standard
dose prescription for each patient. The total dose a patient
received was based subjectively on tumor response as per Mid-
CRT PET. Finally, it was hard to provide biological or clinic
explanations for why the extracted image features were important
for recurrence prediction.

CONCLUSIONS

Early prediction of tumor persistence or recurrence using
PET/CT scans obtained prior to or during CRT for anal
cancer may be possible through analysis of quantitative imaging
features. Additional study is warranted in a larger patient
population to confirm our findings. A future study to investigate
the correlation between clinical characteristics (e.g., T staging,

N staging, radiation dose, etc.) and the image features is needed
as well.
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