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A novel deep learning architecture was explored to create synthetic CT (MRCT) images

that preserve soft tissue contrast necessary for support of patient positioning in Radiation

therapy. A U-Net architecture was applied to learn the correspondence between input

T1-weighted MRI and spatially aligned corresponding CT images. The network was

trained on sagittal images, taking advantage of the left-right symmetry of the brain

to increase the amount of training data for similar anatomic positions. The output CT

images were divided into three channels, representing Hounsfield Unit (HU) ranges of

voxels containing air, soft tissue, and bone, respectively, and simultaneously trained

using a combined Mean Absolute Error (MAE) and Mean Squared Error (MSE) loss

function equally weighted for each channel. Training on 9192 image pairs yielded resulting

synthetic CT images on 13 test patients with MAE of 17.6+/−3.4 HU (range 14–26.5 HU)

in soft tissue. Varying the amount of training data demonstrated a general decrease in

MAE values with more data, with the lack of a plateau indicating that additional training

data could further improve correspondence between MRCT and CT tissue intensities.

Treatment plans optimized on MRCT-derived density grids using this network for 7

radiosurgical targets had doses recalculated using the corresponding CT-derived density

grids, yielding a systematic mean target dose difference of 2.3% due to the lack of the

immobilization mask on the MRCT images, and a standard deviation of 0.1%, indicating

the consistency of this correctable difference. Alignment of MRCT and cone beam

CT (CBCT) images used for patient positioning demonstrated excellent preservation

of dominant soft tissue features, and alignment comparisons of treatment planning CT

scans to CBCT images vs. MRCT to CBCT alignment demonstrated differences of −0.1

(σ 0.2) mm, −0.1 (σ 0.3) mm, and −0.2 (σ 0.3) mm about the left-right, anterior-posterior

and cranial-caudal axes, respectively.

Keywords: synthetic CT, MRCT, deep learning, MRI, radiation oncology

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.00964
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.00964&domain=pdf&date_stamp=2019-09-25
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dinankg@umich.edu
https://doi.org/10.3389/fonc.2019.00964
https://www.frontiersin.org/articles/10.3389/fonc.2019.00964/full
http://loop.frontiersin.org/people/789904/overview
http://loop.frontiersin.org/people/252023/overview
http://loop.frontiersin.org/people/764957/overview


Gupta et al. 3-Channel U-Net Synthetic CT

INTRODUCTION

While MRI has shown significant value for Radiation Oncology
treatment of intracranial tumors due to its superior soft tissue
contrast and ability to map quantitative biological features
such as diffusion and perfusion, it has inherent limitations in
providing electron density maps necessary to support calculation
of radiation dose distributions, as well as in supporting most
existing clinical workflows for patient positioning that rely on
alignment of treatment planning CT images with Cone Beam
CT (CBCT) scans acquired at the time of patient positioning.
While the former issue has been reasonably resolved by a
variety of synthetic CT approaches (1–6), the latter has received
little attention.

Many CBCT-CT alignment mechanisms rely on reasonably
similar intensity distributions, especially those that align soft
tissue features. Recent reports have demonstrated the potential
of “machine learning” approaches to generate synthetic CT
(“MRCT”) scans, but have shown rather large errors in intensity
differences of the soft tissues of the brain. While not specifically
analyzed in most of these investigations, the structural details
of soft tissue features are often misrepresented, thus potentially
confounding alignment with similar features displayed on CBCT
image volumes. This may present challenges for precise local
alignment of tissues, as the potential for local changes between
simulation and treatment is enhanced due to the temporal
periods associated with frameless radiosurgery techniques (7).

The objective of this investigation was to investigate whether
a Neural Network could be optimized to preserve the soft tissue
contrast features necessary for precision alignment of intracranial
tumors. Attempts to maximize local contrast include use of a U-
Net architecture trained on aligned MR and CT pairs, training
on sagittal planes to increase data diversity for the same number
of input patients, and separation of the CT images into three
intensity regions, preserving the narrow intensity range wherein
most of the soft tissue contrast falls on CT. The impact of
numbers of training images is briefly explored.

MATERIALS AND METHODS

Training Data
Under an Institutional Review Board approved protocol, 60
patients who underwent CT-based simulation for treatment

FIGURE 1 | Example sagittal CT image with tissue windows: (A) original CT image (B) air window (C) tissue window, (D) bone window.

of intracranial tumors further underwent an MR simulation
scan while immobilized with their fixation devices. CT image
volumes were all acquired using the same in-house CT simulator
(Brilliance big bore, Philips Medical Systems, Andover MA)
and had initial voxel sizes ranging from 0.6 by 0.6 by 1mm
to 1.17 by 1.17 by 3mm. MR images were acquired on an
in-house 3 Tesla MR Simulator (Skyra, Siemens Healthineers,
Erlangen, Germany), and included a T1-weighted acquisition
as the in phase images of a Dixon scan series. These images,
with sampled voxel sizes of ∼1 by 1.25 by 1.25mm, were used
for training.

CT image volumes were rigidly aligned to corresponding MR
images using an open source package dipy (8) and the resulting
transforms applied to the CT and resampled to match the native
MR image resolution.

The range of Hounsfield Units of typical human tissues
is roughly −1,000 to 2,000. The majority of this intensity
range is occupied by air and/or skeletal tissues. Most soft
tissue falls within a narrow subset of HU values (∼−100
to 100 HU). As a result of this very limited region of the
intensity range wherein soft tissue contrast lies, training loss
functions will have HU differences an order of magnitude
higher in air or bone regions than in locations consisting of
primarily soft tissue contrast. As a result, the training might
prioritize errors in bone or air over those of soft tissue.
This leads to a potential challenge to preserving local soft
tissue structures, especially with limited amounts of training
data. To attempt to capture soft tissue contrast, we split
training CT images into 3 separate output “channels” that
can facilitate easier learning from limited data sets (Figure 1).
These channels were defined by using intensity thresholds of
< −100 HU to define voxels containing air, −100 HU to
100 HU to primarily identify soft tissue and >100 HU for
voxels containing bone. The regions outside of the threshold
masks were set to 0 HU for each channel. This 3-channel
approach forces the network to learn the 3 regions of
interests separately, thus capturing the tissue intensity contrasts
independently for air, tissue and bone. As the tissue intensities
were consistent across the MR scans due to a standard
image acquisition methodology and coil configuration, and the
HU value ranges of tissues were similarly consistent, a fixed
normalization was applied to the input and separately each of the
output channels.
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FIGURE 2 | U-net architecture. Each block represents a convolution operation, followed by batch normalization and Leaky ReLU. Last convolution operation converts

64 dimensional channel to 3 channel synthetic CT.

FIGURE 3 | Normalized training and validation loss curves.

Network Architecture
A U-Net neural network architecture (1, 9) (Figure 2) was
implemented for translating T1-weighted MRI images into
corresponding MRCT images. This network involves a series
of downsampling operations that squeezes the input image by
factors of two while increasing the number of filters by factors
of two. Once this downsampling shrinks the input image 5
times, the same number of upsampling operations successively
increase the image dimension by factors of 2, while reducing
the number of channels by factors of two. This upsampling is
also supported by padding of weights from the corresponding
dimension image in the downsampled layer. This allows for

easy flow of gradient information and avoids the “vanishing
gradient” problem (10). Each convolution layer is followed by
a Batch Normalization (11) and Leaky ReLU (12) activation.
We perform downsampling in our convolution operation and
upsampling with a transpose convolution operation. The very
last convolution layer converts a 64 channel input to a 3-channel
output image. We employ Adaptive stochastic gradient descent
(Adam) (13) as our optimizer. The U-Net architecture was
chosen due to its lower complexity and data requirements than
recently used adversarial networks that might overfit the training
dataset, since the data sufficiency problem has not been addressed
in deep learning based synthetic CT literature.
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FIGURE 4 | Split window display of MRCT aligned with CBCT for an example patient, demonstrating the preservation of dominant soft tissue interfaces such as major

sulci and ventricles as seen in axial, coronal, and sagittal cross sections through the image volumes.

Of the 60 patients, 47 were used for training. To increase the
diversity of imaging features on similar anatomic cross sections,
sagittal planes were used for training. A total of 9,192 images were
used for training. We also implemented data augmentation by
random rotation of image by 90 degrees and also by randomly
cropping a section of each image for training. To explore
the impact of magnitude (and by implication, diversity) of
training data, subsets of 10, 20, and 50% of total images were
also tested, and the resulting MRCT images from test subjects
qualitatively reviewed.

Loss Function
The choice of loss function (L) for our task was a combination
of mean absolute error (MAE) and mean squared error (MSE)
losses between the CT and MRCT images.

MAE (X,Y) =

∑n
i=1 |Xi − Yi|

n
(1)

MSE (X,Y) =

∑n
i=1 (X

2
i − Y2

i )

n
(2)

L (X,Y) = MAE (X,Y) +MSE (X,Y) (3)

where X,Y are the images being compared, n is the total number
of pixels in the image and Xi represents the ith pixel for image X.

We compare the loss L for each region separately which is
backprojected for training the network:

Ltot(X,Y) = L(Xair ,Yair) + L(Xtissue,Ytissue) + L(Xbone,Ybone)

(4)

TABLE 1 | MAE values between MRCT and CT image volumes from the fully

sampled network.

Patient MAE (HU)

all voxels

MAE (HU)

air

MAE (HU)

tissue

MAE (HU)

bone

Patient 1 73.80 213.5 13.97 170.02

Patient 2 76.88 227.54 14.39 182.83

Patient 3 88.31 234.27 17.11 217.24

Patient 4 77.53 229.34 17.87 174.08

Patient 5 99.28 271.21 17.8 227.25

Patient 6 69.17 220.9 15.11 169.53

Patient 7 118.14 293.7 26.5 302.54

Patient 8 83.20 218.69 23.51 188.98

Patient 9 58.13 197.96 15.56 154.99

Patient 10 71.45 216.57 17.15 181.51

Patient 11 75.66 200.88 16.7 158.48

Patient 12 89.04 274.47 16.97 214.17

Patient 13 72.66 239.77 16.29 169.13

Mean 81.02 233.75 17.61 193.13

Standard deviation 14.60 28.02 3.41 38.33

Minimum 58.13 197.96 13.97 154.99

Maximum 118.14 293.7 26.5 302.54

Network Training
The U-net was initialized with a normal distribution with mean 0
and standard deviation 0.01. Training was done in mini-batches
of 32 random slices. Five-fold cross validation was used, and
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FIGURE 5 | Dose distributions for intensity modulated treatment plans for two targets. The original plan was optimized using the MRCT-derived density grid (left), and

the resulting beam fluences were used to recalculate doses on the CT-derived density grid (right). Dose volume histograms (DVHs) for the Brainstem (yellow), Optic

chiasm (brown), eyes (green), and two targets (light and dark blue) are shown. Squares represent MRCT plan DVH curves, and triangles come from recalculated plans

using CT.

training was stopped after 150 epochs where loss function was
observed to reach a plateau as shown in Figure 3. The 3 channel
images were summed along the channels dimension to generate
corresponding MRCT slices.

MRCT Evaluation
MRCT volumes were compared with corresponding CT volumes
by various methods. MAE comparisons were done on voxel wise
basis, as well as for voxels primarily containing air, soft tissue
and bone. These regions were defined within an automatically
generated mask that encompassed the head to the inferior border
of the skull by using dipy (8).

Dosimetric comparisons were made on 11 targets from 7 of
the test patients. Using a commercial treatment planning system
(Eclipse, VarianMedical Systems, Palo Alto, CA), treatment plans
for these radiosurgical targets were generated using the clinical
treatment planning directives and with electron density maps
derive using MRCT images. The beam fluences generated from
these plans were used to recalculate doses by applying the aligned
treatment planning CT image volumes as attenuation maps.

For these patients, the MRCT and treatment planning CT
image volumes were individually aligned to the Cone Beam
CT (CBCT) images acquired for treatment positioning. The

alignment transformations were subsequently applied to the
center of the planned treatment targets, and the differences in
transformed coordinates compared.

RESULTS

The network training times were 928, 634, 302, and 161min
using 9192, 4096 (50%), 1838 (20%), and 919 (10%) image pairs,
respectively, on 2 NVIDIA K40 GPUs. Generation of 3-channel
MRCT images took∼1 s.

The preservation of major soft tissue interfaces is
demonstrated in example images in Figure 4, which further
shows support for soft tissue-based alignment between MRCT
and CBCT. The MAE for the 13 test patients is reported in
Table 1. The MAE for all voxels ranged from 58.1–118.1 HU
with mean 81.0 HU and standard deviation 14.6 HU. Error
values for each of the 3 channels are reported in Table 1. Mean
MAE values for air, tissue and bone were 234, 22, and 193
HU, respectively.

Figure 5 shows an example treatment plan comparison. The
PTV mean dose values had a systematic difference of 2.3% (σ
0.1%) between the plans generated using the MRCT-defined
density grids and recalculated using the CT-defined grids. As can
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FIGURE 6 | Mean Absolute Error (MAE) values between Synthetic and actual CT image volumes as a function of amount of training data used, tested across 13 tested

patients. The maximum (orange), mean (purple), and minimum (blue) values all demonstrate a gradual decreasing trend with increased numbers of training images.

be seen on the images, the MRCT was not trained to reproduce
the immobilization device present on the CT, and thus these
differences are expected due to the added attenuation of themask.

Alignment results from CT to CBCT as well as corresponding
MRCT-CBCT alignment showed a mean difference of −0.1 (σ
0.2) mm, −0.1 (σ 0.3) mm, and −0.2 (σ 0.3) mm about the left-
right, anterior-posterior and cranial-caudal axes, respectively.
The range of differences was (−0.3, 0.4), (−0.4, 0.3), and (−0.7,
0.2) mm about the same axes.

Figure 6 shows error for training the U-net with subsampled
data for air, tissue and bone, respectively. While the difference
between training on 10% (912) and 20% (1824) of available
images is not clearly discernable, increasing the number of
training images beyond 20% of the total 9192 available samples
for training yielded a gradual decrease in average MAE for
all three classes intensities, with the most significant trend
observed in bony tissues. No plateau was observed, indicating
that potential further improvements might be possible with a
larger base set of training images.

DISCUSSION

In this report, we suggest an update to the design of neural
networks used for generating synthetic CT from MRI. The goal
of a 3-channel network is to allow learning of subtle contrast
changes in HU values that might not be accurately learned due
to the vast range of intensities in CT images. We implemented

the 3-channel structure in a U-Net architecture and saw that
soft-tissue contrast can be learned with good precision.

Two previous investigations reported MAE differences
between synthetic and actual CT images within soft tissue
regions. Emami (4) reported a MAE of 41.85 +/– 8.58 HU in
soft tissue using a GAN trained on 15 patients, and Dinkla (6)
reported a MAE of 22 +/– 3 HU using a dilated convolutional
neural network trained on 52 patients. While we observed error
values that are comparable or better (at least in soft tissue)
than those reported in these and other investigations (1, 14), we
would nonetheless argue that lowMAE values are not enough for
clinical implementation of MRI-only radiotherapy. Alignment of
CT and CBCT is a crucial step that requires correct soft-tissue
contrast, and a 3-channel network optimizes for it. We show that
the 3-channel output network potentially reduces the problem of
faithfully preserving soft tissue features by separately training on
CT images within an appropriate intensity range. This process
also allows us to scale the loss function to incur heavier penalties
separately for errors for each of the different intensity regions.

We observed a gradual trend toward decreasing MAE with
increasing amounts of training data. Many prior investigations
used far fewer patient images for training than the 47 we had
available, and it may be possible that their results are potentially
limited by the amount of data available. It is likely that our
results are limited by the amount of available data as well,
and future investigations will focus on increasing the training
data set to incorporate ideally hundreds of patients. A critical
question for future investigations will be the elucidation of
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the necessary complexity of training information and robust
estimation of resulting uncertainty from trained networks. While
we chose to focus on a U-Net for training our data in part to
limit the potential overfitting due to degeneracy associated with
optimizing a network with a larger number of degrees of freedom
from limited data, it is also possible that use of a generative
adversarial network (GAN) may better reveal the relationship
between volume and by inference complexity of training data
and accuracy of final results. We will explore the use of GANs
as we increase our training data in the future. Of note, a recently
published study using a GAN trained on 77 patients with mutual
information as a loss function reported an average MAE of 47.2,
compared to a MAE of 60.2 when MAE was used as the loss
function using the same network (14). While we combined L1
(MAE) and L2 (MSE) in our loss function, we clearly see the value
in evaluating loss functions that are better designed to preserve
local features, and will consider optimizing such functions in
future investigations.

While we chose to train on 2-dimensional images in this
investigation, other investigators have shown interesting results
using “2.5 dimensional” groupings of multiple images in the same
or orthogonal orientations, as well as through training on several
3-dimensional patches. These techniques, as well as nominally
fully three-dimensional training, will be part of our future focus.

CONCLUSION

A deep learning approach, consisting of simultaneous training
of conversion of T1-weighted MR images to 3 separate
intensity regions of corresponding spatially aligned CT images
representing HU values typically found in voxels containing
mostly air, soft tissue and bone, respectively, was investigated.

Results indicate potential promise in preserving local soft
tissue features. Furthermore, the potential advantage of
increasing the volume of training data indicated potential further
improvements with additional number of patients.
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