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Purpose: To investigate whether a combination of radiomics and automatic machine

learning applied to dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI) of primary breast cancer can non-invasively predict axillary sentinel lymph node

(SLN) metastasis.

Methods: 62 patients who received a DCE-MRI breast scan were enrolled. Tumor

resection and sentinel lymph node (SLN) biopsy were performed within 1 week after

the DCE-MRI examination. According to the time signal intensity curve, the volumes of

interest (VOIs) were delineated on the whole tumor in the images with the strongest

enhanced phase. Datasets were randomly divided into two sets including a training

set (∼80%) and a validation set (∼20%). A total of 1,409 quantitative imaging features

were extracted from each VOI. The select K best and least absolute shrinkage and

selection operator (Lasso) were used to obtain the optimal features. Three classification

models based on the logistic regression (LR), XGboost, and support vector machine

(SVM) classifiers were constructed. Receiver Operating Curve (ROC) analysis was used

to analyze the prediction performance of the models. Both feature selection and models

construction were firstly performed in the training set, then were further tested in the

validation set by the same thresholds.

Results: There is no significant difference between all clinical and pathological variables

in breast cancer patients with and without SLN metastasis (P> 0.05), except histological

grade (P = 0.03). Six features were obtained as optimal features for models construction.

In the validation set, with respect to the accuracy and MSE, the SVM demonstrated the

highest performance, with an accuracy, AUC, sensitivity (for positive SLN), specificity (for

positive SLN) and Mean Squared Error (MSE) of 0.85, 0.83, 0.71, 1, 0.26, respectively.

Conclusions: We demonstrated the feasibility of combining artificial intelligence and

radiomics from DCE-MRI of primary tumors to predict axillary SLN metastasis in

breast cancer. This non-invasive approach could be very promising in application.
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INTRODUCTION

Breast cancer is a major disease that seriously threatens women’s
physical health and quality of life. In recent years, the incidence
rate of breast cancer has been increasing, with an estimated
1.7 million cases annually (1). With the development of
standardization and precise treatment, requirements for the
postoperative quality of life of breast cancer patients have also
increased. Axillary lymph nodes (ALNs) receive approximately
70% of the lymphatic drainage of the breast and are the most
important lymphatic metastatic pathways for breast cancer. The
status of ALNs is of great significance for judging the clinical
stage of breast cancer, selecting a treatment plan, and evaluating
the prognosis (2). The ALN status also plays an important role
in adjuvant treatment plan selection after surgery. The sentinel
lymph node (SLN) in breast cancer is the lymph node that is the
closest to the tumor in the direction of lymphatic drainage, the
first to receive lymphatic drainage and the earliest to metastasize.
The SLN status is used to predict the involvement of additional
ALNs and is an important indicator to guide the clinical need
for ALN dissection (ALND) (3). Histopathological examination
after SLN biopsy (SLNB) is the gold standard for the evaluation
of SLN metastasis. However, SLNB is an invasive operation, and
patients are at risk of lymphedema, decreased muscle strength,
and sensory disturbance as the result of the operation (4). If SLN
metastasis can be predicted with a non-invasive method before
surgery, the complications caused by SLNB can be avoided, and
the quality of the patient’s life can be greatly improved.

As a non-invasive method, medical imaging technology has
shown great potential in breast cancer detection and ALN
status assessment. Among the existing breast imaging modalities,
dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is considered the best tool for evaluating the extent of
the tumor and tumor heterogeneity by analyzing the patterns
of enhancement (5–7). For ALN metastasis staging, previous
reports have primarily focused on the node size, cortical
thickness, disappearance of lymph parenchyma, diffusion-
weighted imaging (DWI) signals, and enhancement mode.
However, this information is far from sufficient for the prediction
of SLNmetastasis. In addition, due to the limitations of subjective
factors such as the experience and knowledge level of clinicians,
the diagnosis of early SLN metastasis through MRI is still
not ideal.

Recently, growing attention has been focused on discovering
and using the quantitative image features of the original MRI,
with the emergence of “radiomics.” Radiomics was developed
by the Dutch scholar Philippe Lambin in 2012. This approach
utilizes an automated high-throughput extraction of a vast
(200+) number of quantitative features from original MRI
images, excavating latent data that are not visually discernible
(8–10). This method includes several processes, such as image
collection, lesion segmentation, feature extraction and screening,
and model construction. This technology greatly expanded the
guiding value of medical imaging in clinical practice. Radiomics
has been applied in the diagnosis and prognostic evaluation
of lung cancer, prostate cancer, liver cancer and breast cancer
(11–14). Specially, the radiomic features of primary tumors

have shown a close correlation to lymph node metastasis.
The radiomic features of primary colorectal cancer have been
reported to successfully predict lymph node metastasis prior
to surgery (15). In this study, we investigate whether the
combination of radiomics and the automatic machine learning
of original DCE-MRI images can predict SLN metastasis
before biopsy.

METHODS

Patients and Data Management
This study was approved by the Medical Ethics Committee of
our hospital, and all patients provided written consent for the
study. A total of 85 patients with histologically confirmed breast
cancer from March 2013 to December 2018 were enrolled. The
inclusion criteria were as follows: (1) patients had breast cancer
confirmed by pathology; (2) patients underwent a DCE-MRI scan
before tumor resection or biopsy; (3) patients received tumor
resection and SLNB within 1 week after MRI examination. The
exclusion criteria included the following: MRI examination data
were incomplete, or image quality was poor. Ultimately, a total
of 62 patients were included in this study (62 lesions containing
35 SLN metastasis and 27 non-SLN metastasis). The details
of the clinical and histopathological characteristics are shown
in Table 1.

TABLE 1 | Clinical and histopathological characteristics.

Group Patients with

positive SLN

(n = 35)

Patients with

negative SLN

(n = 27)

P-value

Number of lesions 35 27

Mean age (mean ± SD) 48.14 ± 8.35 49.78 ± 12.53 0.541

Mean size (mean ± SD) 3.60 ± 1.85 2.98 ± 1.45 0.157

Histological type

Invasive ductal carcinoma 35 27

Histological grade 0.03

I 6 14

II 11 9

III 18 4

ER 0.697

+ 23 19

– 12 8

PR 0.812

+ 21 17

– 14 10

HER-2 0.780

+ 27 20

– 8 7

Ki-67 0.094

+ 23 12

– 12 15

Two-tailed two-sample t-test with unequal variances was used to compare the age and

the primary tumor size. Chi-square cross-tabulation was used to test the histological grade

and immunohistochemical marker (ER, PR, HER2, and Ki-67). SLN, sentinel lymph node;

SD, standard deviation.
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MR imaging was performed on a 3.0-T MR scanner
(Discovery MR750, GE Medical Systems, Milwaukee, WI, USA)
equipped with a breast coil in the prone position by using
the following sequences: T2 weighted fat-suppressed axial-,
T2 weighted fat-suppressed sagittal-, T1 weighted fat-saturated
axial-, T1 weighted fat-suppressed axial-series in dynamic phase
and diffusion imaging. Images from a T1 weighted fat-suppressed
dynamic sequence using a 3D fast gradient echo sequence
(VIBRANT 3D, TR = 4.5, TE = 2.1; Flip = 10◦, Matrix 384 ×

256, NEX= 1, Fov= 34 cm, layer thickness= 1.2mm, interval=
0mm) were used in analysis. The first frame was acquired before
the injection of the contrast agent (Gd-DTPA, 0.1 mmol/kg
body) into the left elbow vein. The second phase began after
40 s with contrast injection, and five phases were then scanned
continuously. Each phase was acquired over 58 s, and the total
scan time was 6min and 46 s.

SLNB and Pathologic Assessment
SLNB was performed for all patients within 1 week after MRI
examination. Methylene blue tracer was used to identify the
SLN during operation. SLN metastasis was confirmed by final
histopathology. The SLN was defined as metastatic when there
were macrometastases (>2mm) or micrometastases (0.2–2mm
or deposits >200 cells). The results were confirmed by two
pathologists with 10 and 12 years of experience.

Histopathology of the initial breast tumor was performed after
primary tumor resection, and the expression levels of estrogen
receptor (ER), progesterone receptor (PR), human epidermal
growth factor receptor-2 (HER2), and proliferation marker Ki-67
in each breast cancer patient were determined using streptavidin-
peroxidase (SP) immunohistochemistry (IHC). The ER or PR
status was considered to be positive when at least 1% of the
tumor cell nuclei showed staining for ER or PR. The HER2 status
was determined to be positive when the IHC staining intensity
score was ≥3. An IHC HER2 score of 2+ was considered
with confirmation of gene amplification by fluorescence in situ
hybridization (FISH). A sample was considered positive if the
Ki-67 level was >14% and was otherwise considered negative.

Radiomics Workflow
The radiomics workflow is presented in Figure 1, including (1)
image collection, (2) lesion segmentation and radiomic feature
extraction, (3) features selection and models construction (in
training set), and (4) prediction performance evaluation.

Image Segmentation and Radiomic
Feature Extraction
Axial DCE-MRI Digital Imaging and Communications in
Medicine (DICOM) images were archived from the Picture
Archiving and Communication System (PACS). Time signal
intensity curves for tumor lesions in the DCE-MRI images were
calculated using a GE Advanced Workstation ADW4.4. Based
on these curves, the volumes of interest (VOIs) were delineated
on the whole tumor in the images with the strongest enhanced
phase. The VOIs were determined manually by a radiologist
with 10 years of experience who was blinded to the clinical
information of the patients, and all contours were reviewed

by another senior radiologist with 20 years of experience. If
the discrepancy was ≥5%, the senior radiologist determined
the tumor borders (9). Cohen’s kappa method was used to
assess inter-reader agreement. A total of 62 VOIs were manually
determined from 62 patient images.

A total of 1,409 quantitative imaging features were
automatically extracted from each VOI; these features were
categorized into four groups. Group 1 (first order statistics)
consisted of 18 descriptors that quantitatively delineate the
distribution of voxel intensities within the MR image through
commonly used and basic metrics. Group 2 (shape- and size-
based features) contained 14 three-dimensional features that
reflect the shape and size of the region. Calculated from Gray
Level Co-occurence Matrix (GLCM), Gray Level Run Length
Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),
Gray Level Difference Matrix (GLDM) and Neighborhood
Gray-Tone Difference Matrices (NGTDM) 75 textural features
that can quantify region heterogeneity differences were classified
into group 3 (texture features). Finally, group 4 (higher order
statistics features) included the intensity and texture features
derived from filters transformation of the original image, we
used seven types of filters: exponential, square, square root,
logarithm, gradient, lbp-2D and wavelet (wavelet-LLL, wavelet-
HHH, wavelet-HLL, wavelet-HHL, wavelet-LLH, wavelet-HLH,
wavelet-LHL, wavelet-LHH).

Feature Selection
Computer-generated random datasets were used to assign 80%
of datasets to the training set (49 patients with 27 positive SLN)
and 20% of datasets to the validation set (13 patients with 7
positive SLN).To reduce the dimensionality of the features, Select
K best and the least absolute shrinkage and selection operator
(Lasso) algorithm methods were used to obtain the optimal
features from the training set in Radcloud platform (Huiying
Medical Technology Co., Ltd). Select K Best can select features
based on relevance, retaining the k highest scores, based on the
select K best findings. The features that did not show statistical
differences (P > 0.05) were removed. This process can be viewed
as a preconditioning of the predictive model. The purpose of this
method was to minimize the Lasso cost function and to obtain
all features with non-zero coefficients. The minimized objective
function is:

min
w

1

2n

∥

∥Xw− y
∥

∥

2

2
+ α‖w‖1

where X is a matrix of radiomic features, y is a vector of sample
labels, n is the number of samples, w is a coefficient vector
of the regression model, and α‖w‖1 is the Lasso penalty with
the constant α and the ℓ1-norm of the coefficient vector ‖w‖1
(15, 16).

Data processing was performed as follows. First, all radiomic
features were standardized using the StandardScaler function by
removing the mean and dividing by its standard deviation, and
each set of feature values was converted to a mean of 0 with a
variance of 1. Then, a 10-fold cross-validation was performed
based on standardized features, and the optimal α parameter was
obtained from the minimum of the average mean square error.
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FIGURE 1 | Radiomics workflow.

Finally, the Lasso function was used to select the relevant features
based on the optimal α parameters, and the coefficients were
calculated for each feature; then, radiomic features with non-zero
coefficients were obtained.

Performance of the Radiomics Signature
The predictive performance of models was assessed in the
validation set by the same thresholds determined in the
training set.

Statistical Analysis
Two-tailed two-sample t-test with unequal variances was used
to compare the age and the primary tumor size of the
patients with and without SLN metastasis. Chi-square cross-
tabulation was used to compare the histological grade and
immunohistochemical markers (ER, PR, HER2, and Ki-67)
levels. Statistical Package for Social Sciences (SPSS) software
version 23.0 (SPSS Inc., Chicago, IL, USA) was used. P-
values < 0.05 were considered statistically significant.

Classification models based on logistic regression (LR),
support vector machine (SVM), and XGboost were constructed

using Radcloud platform (Huiying Medical Technology Co.,
Ltd). The Receiver Operating Curve (ROC) analysis was
used to illustrate the prediction performance. The AUC,
accuracy, sensitivity, specificity and Mean Squared Error (MSE)
were calculated.

RESULTS

Clinical and Histopathological
Characteristics
The result of clinical and histopathological characteristics
were shown in the Table 1. All the clinical and pathological
variables between the patients with and without SLN metastasis
had no significant differences (P > 0.05), except histological
grade (P = 0.03).

Feature Extraction and Selection
In the training set 35 features out of 1,409 features were
selected using select K best method. Then six optimal features
were obtained with the Lasso methods (Figure 2), including six
higher-order statistics features (Table 2).
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FIGURE 2 | Lasso algorithm for feature selection. The Lasso path (A) showed coefficient profiles along the full path of possible values for radiomic features. The

optimal α value of 0.27 with -log(a) = 1.31 was selected. The MSE path (B) showed that the dotted vertical line was plotted at the value selected using 10-fold

cross-validation in (A). The coefficients in the Lasso model (C) resulted in 6 features corresponding to the selected optimal values.

TABLE 2 | Description of the selected radiomic features and their associated

feature types and filters.

Radiomic features Types Associated filters

Idn glcm Logarithm

GrayLevelNonUniformity glszm Logarithm

GrayLevelNonUniformity glrlm Logarithm

Minimum first order statistics Logarithm

GrayLevelNonUniformity glrlm Squareroot

SmallAreaLowGrayLevelEmphasis glszm Wavelet-HHL

glcm, level cooccurrence matrix; glrlm, gray level run length matrix; glszm, gray-level size

zone matrix.

Prediction Performance of Classification
Models
In the training set, the accuracy, sensitivity (for positive SLN),
specificity (for positive SLN) and AUC of SVM, LR and GXboost
were 0.76, 0.75, 0.76, 0.82; 0.71, 0.71, 0.71, 0.82; 0.84, 0.89, 0.76,
0.92, respectively. In the validation set, the overall accuracy,
sensitivity (for positive SLN), specificity (for positive SLN) and
AUC of SVM, LR and XGboost were 0.85, 0.71, 1, 0.83; 0.77, 0.71,

0.83, 0.88; 0.85, 0.86, 0.83, 0.83, respectively. MSE of SVM, LR,
and XGboost were 0.20, 0.19, 0.17 in the training set and 0.26,
0.28, 0.34 in the validation set (Figure 3, Table 3). With regard to
accuracy and MSE, the SVM demonstrated the best performance
among the three models.

DISCUSSION

The accurate detection of ALN metastases in breast cancer
is critical for surgical planning, adjuvant therapy planning,
and prognostication. The determination of a negative ALN
status can eliminate the need for ALN dissection. Until
now, SLNB and pathological biopsy have been the most
popular methods for determining ALN status. However,
the side effects of SLNB should not be neglected. For
example, lymphedema is reported in 5–8% of patients after
a SLNB (17, 18). Other common complications include pain,
paresthesia, decreased arm strength and shoulder stiffness
(19). Therefore, in this study, we attempted to establish
a new non-invasive method with high accuracy to prevent
node-negative patients from undergoing unnecessary invasive
staging procedures.
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FIGURE 3 | ROC curves of the XGboost (A), LR (B), and SVM (C) classifiers in training set. ROC curves of the XGboost (D), LR (E), and SVM (F) classifiers in

validation set.

Radiomics is a relatively new technique (9) that can be
used to characterize intratumor heterogeneity and to improve
diagnostic and predictive accuracy. This approach utilizes an
automated high-throughput extraction of a vast number of
quantitative features from medical images, excavating latent data
that are not visually discernible. This method is different from
traditional practice in which images are subjected to only visual
interpretation (10, 20). In this study, we aimed to predict SLN
metastasis by selecting an optimal artificial intelligence model
based on the radiomic features of primary tumors. Compared
with the LR and XGboot classifiers, we found that the SVM
results based on the strongest enhanced DCE-MRI images gave
the best classification efficacy, with accuracy (0.85) and MSE
(0.26) in the validation set. Our results suggest that the SVM and
radiomics can be combined as a new approach for predicting
ALN metastasis, which can guide further treatment planning.
This method can prevent unnecessary invasive SLNB and its
associated complications. Thus, this approach is a valuable means
to help clinicians determine the appropriate treatment for their
patients, with wide applicability in clinical practice. Previously,

other studies have reported the clinical application of radiomics
predicting lymph node metastasis in bladder and lung cancer.
Wu et al. (21) demonstrated that radiomic features extracted
from T2-weightedMR images can predict lymph node metastasis
in bladder cancer. Another study successfully used radiomic
features from CT scans to predict mediastinal lymph node
metastasis of lung adenocarcinoma and obtained a promising
AUC of 0.97 (22).

Radiomic features can reveal minute changes in the tumor
histological anatomy that are difficult to quantitatively identify
with the naked eye. In this study, we found that these radiomic
features extracted from DCE-MRI of primary tumors are
correlated with axillary SLN metastasis and can be used for
artificial intelligence model development. This result indicates
that these features are characteristic of breast cancer and may
reflect the biological tumor behavior. All six features were
higher-order statistics features, which were obtained through
an image transformation of the original image. These features
are indices of intensity and texture features that can better
display intratumor heterogeneity and subtle alterations in tissue
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TABLE 3 | The results of radiomic analysis for classifications.

Classifiers SLN metastasis Training set Validation set

ACC SEN SPE AUC MSE ACC SEN SPE AUC MSE

SVM Positive 0.76 0.75 0.76 0.82 0.20 0.85 0.71 1 0.83 0.26

Negative 0.76 0.75 1 0.71

XGboost Positive 0.84 0.89 0.76 0.92 0.17 0.85 0.86 0.83 0.83 0.34

Negative 0.76 0.89 0.83 0.86

LR Positive 0.71 0.71 0.71 0.82 0.20 0.77 0.71 0.83 0.88 0.28

Negative 0.71 0.71 0.83 0.71

SVM, support vector machine; LR, logistic regression; ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the curve; MSE, mean squared error; SLN, sentinel lymph node.

morphology (23). An image transformation with a filter can
eliminate noise in the image or sharpen the image and does
not alter the semantic meaning of the features. For example,
glcm_Idn is an measure of the local homogeneity of an
image, glrlm_GrayLevelNonUniformity (GLNU) can effectively
reflect the similarity of gray-level intensity values in the
image and glszm_GLNU measures the variability of gray-
level intensity values in the image. Logarithm_glszm_GLNU,
squareroot_glrlm_GLNU, and logarithm_glrlm_GLNU were all
calculated from gray-level intensity features. Thus, these results
suggested that the gray-level intensity values might be of
greater importance.

DCE-MRI is an effective modality to diagnose breast cancer
by evaluating the morphology and hemodynamics of tumors.
This method can provide images with high temporal resolution,
high spatial resolution and a high signal-to-noise ratio. DCE-
MRI has many scanning phases, and currently, there is no
consensus on which phase of feature extraction offers the best
prediction. Recently, Liu et al. (24) applied radiomic features
extracted from the first enhancement phase of primary tumors
to predict SLN metastasis, with an AUC of 0.806. In this
study, we used the strongest phases of tumor enhancement and
obtained a higher accuracy. Compared to the first enhanced
phase, delineating the VOIs in the strongest enhanced phase
according to the time signal curve showed the lesion boundaries
more clearly. Moreover, the strongest enhanced phase can
better reflect the tumor’s heterogeneity and invasiveness (25).
In this study, we did not include the routine T2-weighted
imaging and DWI in the data analysis and artificial intelligence
model development. Most lesions on T2WI and DWI images
show unclear lesion borders, and it is difficult to completely
segment the lesions, especially for tumors with severe hyperplasia
of the mammary glands. In fact, Yu et al. (26) applied
T2-WI and DWI texture features to predict SLN metastasis
and obtained relatively low AUC values of 0.770 and 0.787,
respectively. DCE-MRI can provide more information about
tumor heterogeneity, and DCE-MRI-derived features can better
predict SLN metastasis.

In conclusion, in this study, we demonstrated the feasibility of
combining artificial intelligence and radiomics from the DCE-
MRI of primary tumors to predict SLN metastasis in breast

cancer by delineating the VOIs in the strongest enhanced phase.
This approach is a non-invasive and highly accurate method
for the preoperative prediction of SLN metastasis; it can guide
further treatment planning and prevent unnecessary invasive
SLNB. The current study also has some limitations. First, we
delineated only VOIs in the strongest enhanced phase using the
time signal curve. Second, the number of patients enrolled in
our study was limited, although the results are promising. In
future work, we will further confirm our results with larger and
more homogenized samples, and we will analyze all the different
enhanced phases of DCE-MR images.
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