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Angiogenesis is a crucial process for organ morphogenesis and growth during

development, and it is especially relevant during the repair of wounded tissue in adults.

It is coordinated by an equilibrium of pro- and anti-angiogenic factors; nevertheless,

when affected, it promotes several diseases. Lately, a growing body of evidence is

indicating that non-coding RNAs (ncRNAs), such as miRNAs, circRNAs, and lncRNAs,

play critical roles in angiogenesis. These ncRNAs can act in cis or trans and alter gene

transcription by several mechanisms including epigenetic processes. In the following

pages, we will discuss the functions of ncRNAs in the regulation of angiogenesis and

neovascularization, both in normal and disease contexts, from an epigenetic perspective.

Additionally, we will describe the contribution of Next-Generation Sequencing (NGS)

techniques to the discovery and understanding of the role of ncRNAs in angiogenesis.

Keywords: angiogenesis, non-coding RNA, epigenetics, neovascularization, next generation sequencing,miRNAs,

lncRNAs, circRNA

INTRODUCTION

In the vascular network, blood vessels act as channels for nutrients, oxygen delivery, and metabolic
waste evacuation. The growth of new capillary vessels, known as angiogenesis, plays key roles in
embryonic development and in tissue homeostasis and remodeling in adults, as well as in cancer
initiation and progression (1, 2). The balance between pro- and anti-angiogenic factors (such as
VEGF, PDGF, and TSP-1/2) coordinates angiogenesis and other neovascularization mechanisms
such as intussusceptive angiogenesis, vasculogenesis, lymphangiogenesis, vessel co-option, and
vasculogenic mimicry (3–5).

Over the last few decades, the study of angiogenesis has helped researchers to understand
vascular physiology and its implications for several diseases. For instance, in atherosclerosis,
ischemia, and retinopathy, excessive or insufficient vascular growth can affect the behavior of
endothelial and smooth muscle cells (6, 7). Studies of the neovascularization processes have also
provided molecular targets for the development of therapies to delay cancer progression, since it is
well-known that angiogenesis is an essential process that is altered in tumors (8).

Nowadays, the study of the molecular mechanisms involved in angiogenesis is being built on
different experimental approaches, such as cell migration, proliferation, and metabolic assays or
histological and tri-dimensional models, that approach specific stages of angiogenesis; however,
only pieces of the puzzle have been elucidated (9). With advances in high-throughput genomic
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technologies such as microarrays, next-generation sequencing
(NGS), and bioinformatic analyses, a genome-wide perspective
of the elements involved in the angiogenic process is now being
taken. Some of the newest players revealed by these approaches
are non-coding RNAs (ncRNAs), which have gained relevance
in the field of epigenetics (10–12). Therefore, in this review, we
will describe the epigenetic regulatory functions of ncRNAs in
physiological angiogenesis and vascular diseases, as well as the
contribution of NGS technologies to the discovery of new roles
for ncRNAs that are associated with angiogenesis.

AN OVERVIEW OF EPIGENETICS

In 1939, the term “epigenetics” was coined by Conrad Hal
Waddington (13). Today, one of the most accepted definitions
of the term explains that “epigenetics is the study of the
heritable changes in gene expression that cannot be explained
by alterations in the DNA sequence” (14). Among the epigenetic
components that coordinate nucleus organization and gene
transcription are DNA methylation, histone post-translational
modifications (PTMs), and histone positioning, but recently,
ncRNAs have been incorporated as epigenetic modifiers, because
many of these can function as scaffolding elements to transport
proteins with epigenetic functions (15). Each of these processes
is stimulated by the signals derived from a dynamic epigenetic
code that is established on the chromatin depending on the
physiological and extracellular context. The writers, readers,
and erasers of this code are proteins that place, recognize,
or remove chemical modifications of DNA nucleotides and
within the amino-terminal regions of histones. Most chromatin
“writers” are methyltransferases that catalyze the transfer of
methyl groups. DNA methylation occurs predominantly in
regions enriched in CpG sites. The occurrence of methylation at
the promoter regions of genes is associated with gene silencing.
PTMs alter the regulation of gene transcription by changing the
structure of chromatin depending on the particular residue that
is modified (16, 17). The “readers” are proteins that recognize and
associate with the epigenetic modifications, interpret them, and,
in many cases, promote the assembly of protein complexes. The
erasers remove the modifications and, therefore, alter signaling

Abbreviations: BDNF, Brain-Derived Neurotrophic Factor; BRG1, Brahma
related gene-1; CAD, Coronary Artery Disease; circRNA, circular RNAs; DEGs,
Differentially Expressed Genes; DNMT, DNAmethyltransferase; EIciRNAs, Exon-
intron circular RNAs; EPCs, Endothelial Progenitor Cells; EZH2, Enhancer
of Zeste Homolog 2; GRO-Seq, Global run-on sequencing; HDAC, Histone
deacetylase; HDL, High-density lipoprotein; HF, Heart Failure; HIF1, Hypoxia
Inducible Factors 1; HUVEC, Human Umbilical Vein Endothelial Cells; IH,
Infantile hemangioma; lincRNAs, intergenic lncRNAs; lncRNAs, long non-
coding RNAs; LOXL2, Lysyl oxidase-like 2; MeCP2, Methyl-CpG-binding protein
2; miRNAs, microRNAs; MMP, Matrix metalloproteinase; mRNA, messenger
RNA; ncRNAs, non-coding RNAs; NGS, Next-Generation Sequencing; PB-
EPCs, Peripheral Blood EPCs; PRC, Polycomb Repressive Complex; pre-miRNA,
precursor hairpin miRNA; REST, Repressor Element-1 Silencing Transcription;
RNA-seq, RNA sequencing; SIRT1, NAD-dependent deacetylase sirtuin1; smRNA-
seq, small RNA-seq; SNPs, Single Nucleotide Polymorphisms; SUZ12, Suppressor
of Zeste 12 Protein Homolog 2; TF, Transcription Factor; TGF-β, Transforming
Growth Factor; TSS, Transcription Start Sites; UC-EPCs, Umbilical Cord EPCs;
UHRF1, E3 ubiquitin ligase with PHD and RING finger domain 1; VASH1,
Angiogenesis inhibitor vasohibin 1; VEGF, Vascular Endothelial Growth Factor.

components that contribute to the regulation of gene expression.
Recently, it has been reported that ncRNAs can mediate
the binding of epigenetic proteins to their target sequences.
Though they do not function alone as “classic” epigenetic
modifiers, they play a vital role in both the recruitment and
transcriptional regulation of epigenetic modifiers (18). In fact,
multiple chromatin-remodeling enzymes have been shown to
directly contact ncRNAs, including Enhancer of Zeste Homolog
2 (EZH2) and Suppressor of Zeste 12 Protein Homolog (SUZ12)
(writer and eraser within the Polycomb repressive complex
2/PRC2, respectively), and nuclear architectural proteins like Yin
Yang 1 and CTCF, among others (19–22). The incorporation
of ncRNAs as epigenetic elements has opened up new fields of
study in which they have been shown to regulate gene expression.
In the following pages, we will provide an overview of the
ncRNAs involved in angiogenesis, focusing on those involved in
epigenetic processes.

MiRNAs AND THEIR EPIGENETIC
TARGETS IN NEOVASCULARIZATION AND
ANGIOGENIC PROCESSES

MicroRNAs (miRNAs) are short ncRNAs with a length of 19–
23 nucleotides that are conserved in animals, plants, and some
viruses (23–25). MiRNAs are transcribed as long pri-microRNAs
(pri-miRNA) and are subsequently processed to ∼70-nucleotide
precursor hairpins (pre-miRNA) by the RNase Drosha (26). Pre-
miRNAs are then exported to the cytoplasm and recognized
by the RNase DICER, which removes the loop linking the 3′

and 5′ ends of the hairpin, producing a ∼20-nucleotide miRNA
duplex (27). Later, one of these strands is fused into the RNA
Induced Silencing Complex (RISC), where both the miRNA and
its messenger RNA (mRNA) target interact (28).

MiRNAs have two main functions: post-transcriptional gene
regulation and RNA silencing. They act by pairing bases with a
complementary sequence located in the 3′UTR region of target
mRNA (29, 30). Consequently, these mRNAs are regulated by
one or more mechanisms that include the inhibition of mRNA
translation to proteins by ribosomes and by mRNA strand
cleavage into two fragments and poly(A) tail shortening that
results in mRNA disruption (29, 31). In the last 10 years, the
field of miRNA biology has ignited, revealing amazing functions
in angiogenesis. These miRNAs have been termed angiomiRs,
and they target key angiogenesis molecular drivers, such as
metalloproteinases, hypoxia inducible factor 1 (HIF1), cytokines,
and growth factors, such as EGFL7, FGF11, PDGFRB, and the
vascular endothelial growth factor (VEGF) family (32–34).

MiRNAs are not considered epigenetic components, but
some of them are modulated by epigenetic mechanisms. This
mainly affects their regulatory region through the incorporation
of DNA methylation, repressive histone marks, or the loss
of transcriptional factors, as has been reported for miR-125b1
and miR-124 (35, 36). Others, known as Epi-miRNAs, can
also regulate the gene expression of epigenetic elements, DNA
methyltransferases (DNMTs) (such as miR-152, miR-30, and
miR-148a/b), histone deacetylases (HDACs) (such as miR-140,
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miR-1, and miR-449a), and the Polycomb Group of genes (such
as miR-101 and miR-26a) (37–44), and some of them have been
considered angiomiRs (39, 40). MiRNAs and their identified
epigenetic targets in angiogenesis are listed in Table 1.

MiR-30a-3p
Transforming Growth Factor (TGF-β) is a relevant cytokine that
functions in the process of vascular homeostasis and is involved
in the vascular development of endothelial cells. It has been
reported that the administration of TGF-β to endothelial cells
leads to decreased miR-30a-3p expression. The absence of this
microRNA results in increased levels of methyl-CpG-binding
protein 2 (MeCP2), a protein associated with silencing of SIRT1
(45). SIRT1 is necessary for the migration of endothelial cells
to occur throughout sprouting angiogenesis, and the loss of this
enzyme induces abnormal angiogenesis in vivo (52). Conversely,
increased levels ofmiR-30a-3p expression lead to the activation of
SIRT1 expression (Figure 1A). Further experiments revealed that
MeCP2 enhanced the methylation status of the SIRT1 promoter,
probably by DNMT1 recruitment, leading to a reduction in
SIRT1 expression and endothelial angiogenic defects (53).

MiR-101
The microRNA miR-101 acts as a tumor suppressor, promoting
apoptosis and inhibiting cell proliferation, angiogenesis,
invasion, and metastasis. MiR-101 performs its regulatory
functions by targeting an abundant range of epigenetic molecular
effectors, such as DNMT3A, EZH2, and HDAC9 (54, 55). In
endothelial cells, high levels of VEGF are associated with the
downregulation of miR-101, allowing an increase in EZH2 (46).
EZH2 is associated with the formation of heterochromatin
and can affect multiple target genes such as Vasohibin 1
(VASH1), which functions as a negative feedback modulator of
angiogenesis in vascular endothelial cells (56, 57) (Figure 1B).
The overexpression miR-101 leads to EZH2 repression and
the activation of VASH1 transcription. This evidence, taken
together, suggests that miR-101 is involved in multiple processes
such as cellular growth attenuation, migration, and invasion
mechanisms and the ability of endothelial cells to form
capillary-like structures in glioblastomas (47).

MiR-20a
MiR-20a belongs to the miR-17-92 cluster and has been
linked to breast cancer cells with a high angiogenic profile.
High levels of miR-20a are correlated with complex vascular
structures and larger vessels, suggesting that miR-20a could be
used as a potential new angiogenic target (58). Additionally,
overexpression of miR-20a affects the mRNA stability of the
lysine acetyltransferase, p300. In mouse myocardium cells, p300
is a key factor that regulates angiogenic and hypertrophic
programs, influencing the expression of many related genes,
such as Hif,1 Vegfc, Vegfa, Angpt1, and Egln3. Interestingly, high
p300 levels induce an increase in the expression of miR-20a,
providing a feedback inhibition loop for p300 that prevents its
pro-angiogenic effects (48).

MiR-137
MiR-137 has a tumor suppressor gene function that has been
reported for several neoplasms (49, 59, 60). It was also reported
that this miRNA can inhibit angiogenesis and cell proliferation
by EZH2 downregulation in glioblastomas. Overexpression of
miR-137 reduces the mRNA and protein levels of EZH2, while
downregulation of miR-137 is associated with poor prognosis in
affected patients (49).

MiR-124
The miRNA miR-124 is highly conserved, from nematodes to
humans. Three human genes encoding miR-124 have previously
been characterized (miR124a-1, miR-124a-2, and miR-124a-
3) and the majority have been shown to be deregulated in
neoplasms (61). Also, it has been shown that expression of
miR-124 is elevated after treatment with certain drugs such as
niclosamide. In this case, it is associated with the inhibition of
vasculogenic mimicry formation, particularly by reducing levels
of phosphorylated STAT3 (62).

Some reports propose that miR-124 suppresses the E3
ubiquitin ligase with PHD and RING finger domain 1 (UHRF1)
expression, a factor involved in the recruitment of epigenetic
components in bladder cancer tissues. Also, UHRF1 is known to
enhance malignancy, inducing cellular proliferation, migration,
and angiogenesis (63). MiR-124 overexpression resulted in
UHRF1 suppression through the competitive binding of its 3’-
UTR region. In addition, miR-124 overexpression attenuated
tumor growth and cell proliferation in vivo and invasion,
migration, and vasculogenic mimicry in vitro. Further, it reduced
VEGF protein levels and levels of the matrix metalloproteinases
MMP-2 and MMP-9. A matrigel assay in a three-dimensional
culture revealed reductions in tubular channel formation
when miR-124 was over-expressed in bladder cancer cell
lines compared to the control group, suggesting that miR-124
indirectly regulates vasculogenic mimicry in bladder cancer (44).

MiR-214
Originating from intron 14 of the Dynamina-3 gene (DNM3),
the primary transcript of miR-214 produces four different
miRNAs (miR-199-3p, miR-199-5p, miR214-3p, andmiR-214-5p)
(64). During the endothelial differentiation of embryonic stem
cells, the Brain-Derived Neurotrophic Factor (BDNF) promotes
angiogenesis, in vitro and in vivo, by increasing levels of miR-
214. ThemiR-214 inhibits EZH2 at the post-transcriptional level,
leading to reductions in EZH2 occupancy at the NOS3 promoter
(50). Also, miR-214 controls the BDNF-mediated upregulation
of neuropilin 1, VEGF-R, and Crk-associated substrate kinase
(50, 65). Thus,miR-214 is a downstream player within the BDNF
signaling pathway that regulates important angiogenic targets.

MiR-200b
miR-200b is part of the miR-200 family, which is organized into
two main groups according to seed sequence. The miRNAs of
group A aremiR-141 andmiR−200a, while the miRNAs in group
B are miR-200b, miR−200c, and miR−429 (66). Particularly,
miR-200b has been indicated to have a role in the process of
angiogenesis. Studies of malignant neoplasms demonstrated that
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TABLE 1 | Summary of MicroRNAs and their epigenetic targets in angiogenesis and vascular disease.

Common

name

Function Mechanism Model or disease References

MiR-30a-3p Required for endothelial cell migration

during sprouting angiogenesis

Base-pairing with matching

sequences within MeCP2 mRNA

Human umbilical vein endothelial cells (45)

MiR-101 Inhibitis celular proliferation,

migration, invasión and atenuates

formation of capillary-like structures

Base-pairing with matching

sequences within EZH2 mRNA

Human brain microvascular

endothelial cells and glioblastoma

(46, 47)

MiR20-a Inhibits angiogenic and hypertrophic

programs

Base-pairing with matching

sequences within p300 mRNA

Mouse myocardium (48)

MiR-137 Inhibits celular proliferation and

angiogenesis

Base-pairing with matching

sequences within EZH2 mRNA

Glioblastoma and xenografts of

severe combined immunodeficiency

mice

(49)

MiR-124 Inhibitis celular proliferation,

migration, invasión and formation of

capillary-like structures

Base-pairing with matching

sequences within UHRF1 mRNA

Bladder cancer (44)

MiR-214 Promote angiogenesis and

endothelial differentiation

Base-pairing with matching

sequences within EZH2 mRNA

Embryonic stem cells (50)

MiR-200b Inhibits the formation of capillary-like

structures

Posibly base-pairing with matching

sequences within p300 mRNA

Diabetic retinopathy (51)

miR-200b controls the epithelial to mesenchymal transition by
downregulating p300 (67–70). In addition, p300 activates HIF1,
which is a transcriptional regulator of VEGF-A, and triggers
the development of abundant blood vessels (71–73). Since miR-
200b negatively regulates p300, this miRNA has antiangiogenic
properties (51).

In sum, these studies suggest that miRNAs have the capacity
to indirectly affect epigenetic pathways in endothelial cells and
influence the angiogenic response. This opens up the possibility
of considering miRNAs as therapeutic targets or biomarkers,
an exciting prospect since therapies for both vascular diseases
and cancer are needed. In several diseases, miRNAs have
proven to be excellent biomarkers as a result of their high
circulating levels. Indeed, analysis of oncogenic and suppressor
miRNAs that are found in primary tumors against non-neoplastic
cells revealed exosome-mediated sorting mechanisms related
to cancer progression (74, 75). It is unknown whether similar
mechanisms could be utilized by Epi-miRNAs during the
evolution of vascular diseases. Recently, the attention of the
scientific community has been focused on other, widely-studied
ncRNAs known as long non-coding RNAs (lncRNAs), which
have master regulatory functions in angiogenesis.

LONG NON-CODING RNAs AS
SCAFFOLDS FOR EPIGENETIC PARTNERS
IN NEOVASCULARIZATION

LncRNAs are all ncRNAs larger than 200 nucleotides and are
classified according to their proximity to protein-coding genes as
intergenic, intronic, bidirectional, sense, and antisense lncRNAs.
Massive analyses have revealed that lncRNAs are originated using
the samemechanisms as protein-coding genes; however, contrary
to protein-coding genes, lncRNAs show a preference for having

two-exon transcripts, and most of them lack any protein coding-
potential. Also, lncRNAs show tissue-specific expression patterns
and are predominantly located in the nucleus rather than the
cytoplasm. In fact, there are several lines of evidence that suggest
that lncRNAs are significantly more enriched in chromatin than
miRNAs (76).

LncRNAs can indirectly modulate DNA methylation at
CpG sites, which in turn regulates gene transcription. For
example, Tsix recruits DNMT3a to methylate and silence the
XIST promoter. XIST is an important effector involved in the
inactivation of the X chromosome (77). Likewise, the lncRNA
Kcnq1ot1 recruits the de novo DNA demethylase DNMT1 to
control the methylation status of ubiquitously imprinted genes
during mouse development (78). LncRNAs can act as guides or
scaffolds, facilitating interaction between several proteins, such as
those that are part of chromatin-modifying complexes, causing
gene activation or repression, depending on the interaction
partners involved (79, 80). The polycomb repressive complexes
PRC1 and PRC2, the transcriptional repressor element-1
silencing transcription factor REST, its cofactor (REST/CoREST),
other epigenetic components like the mixed lineage leukemia
protein and the H3K9 methyltransferase G9a, physically interact
with lncRNAs (78, 80, 81). In addition, many lncRNAs such as
HOTAIR, Xist, Kcnq1ot1, and Breaveheart interact with PRC2,
implying that these ncRNAs play a role in recruiting this complex
through its subunits (EZH2, SUZ12, EED, RBBP4, andAEBP2) or
through a bridging protein (such as JARID2) to their target genes
(82, 83). Likewise, the expression of many angiogenesis-related
genes involved in the VEGF signaling pathway is regulated
through lncRNAs (such as H19, MEG3, and HOTAIR), and
recently, researchers discovered that some of them perform
their regulatory function by influencing the expression and
activity of several epigenetic modulators (20, 22). LncRNAs
and their identified epigenetic targets in angiogenesis are listed
in Table 2.
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FIGURE 1 | The chromatin regulatory role of non-coding RNAs in angiogenesis. The miRNAs can interfere with the expression of key epigenetic players, leading to the

(A) induction or (B) inhibition of angiogenesis. The lncRNAs regulate (C) the activity and (D) recruitment of chromatin-modifying complexes. MiRNAs are represented

in blue panels, and lncRNAs are represented in green.

MANTIS
MANTIS is a recently discovered lncRNA required for
endothelial cell function and proper angiogenesis. MANTIS is
induced in the endothelium of glioblastoma tumors and is
overexpressed during vascular regeneration in atherosclerosis
regression. It alters angiogenic sprouting, tube formation, and
epithelial cell migration. Loss of MANTIS expression is reported
during pulmonary arterial hypertension, and its downregulation
also led to the reduced expression of many angiogenesis-related
mRNAs (80).

In endothelial cells, MANTIS is upregulated following the
knockdown of the histone demethylase JARID1B. JARID1B
loss triggers increased H3K4me3 levels at transcription start
sites (TSS) of the MANTIS gene, facilitating gene expression.
Interestingly, in patients with idiopathic pulmonary arterial
hypertension, a disease characterized by endothelial dysfunction,
MANTIS expression is downregulated, while JARID1B is
upregulated (80).

Novel studies have revealed that MANTIS functions as a
scaffold and regulates the activity of Brahma related gene-
1 (BRG1), the catalytic subunit of the SWI/SNF chromatin
remodeling complex. The MANTIS-BRG1 interaction allows for
increased binding of BAF155, which is a core component of
the SWI/SNF complex, enhancing BRG1 ATPase activity and
chromatin relaxation at the TSS of the transcription factor
COUP-TFII, which, in turn, recruits RNA Pol II binding and
transcription of the pro-angiogenic genes SOX18 and SMAD6.
The knockdown of MANTIS reduces BRG1 ATPase activity (80)
(Figure 1C).

ANRIL
ANRIL is an antisense lncRNA from the INK4 locus. It encodes
two cyclin-dependent kinase inhibitors, p15 (INK4b) and p16
(INK4a), and a protein known as ARF. All of the genes
cooperate in tumor suppressor networks. When these genes are
silenced, proatherosclerotic cellular mechanisms are enhanced,
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TABLE 2 | Summary of lncRNAs and their epigenetic targets in angiogenesis and vascular disease.

Common

name

Function Mechanism Model or disease References

MANTIS Promotes angiogenic sprouting and

proper endothelial function

Interplay with BRG1 and favors

ATPase activity in chromatin

remodeling

Human umbilical vein endothelial cells,

glioblastoma, atherosclerosis, and idiopathic

pulmonary, arterial hypertension

(80)

ANRIL Induces the formation of capillary-like

structures

Recruitment of EZH2 and p300 to the

VEGF promoter

Diabetic retinopathy (84)

GATA6-AS Promotes angiogenic sprouting Binds to LOXL2 and regulates H3K4

trimethylation of angiogenesis- and

hypoxia-related genes

Human endothelial cell-based xenograft model (85)

such as increased adhesion and diminished apoptosis (86). In
fact, ANRIL expression is correlated with the risk of some
vascular diseases such as coronary atherosclerosis and carotid
arteriosclerosis (87).

It has been shown that ANRIL recruits PRC2 or PRC1 to
different target genes by directly interacting with their subunits
EZH2, SUZ12, and CBX7 (86, 88, 89). In a diabetic retinopathy
cellular model, high glucose levels upregulated ANRIL and
VEGF expression. In turn, ANRIL positively regulated EZH2,
EED, and p300 levels. Furthermore, ANRIL recruits EZH2
and histone acetyl-transferase p300 to the VEGF promoter,
enhancing its expression and angiogenic effects. It was shown
that ANRIL silencing prevented the formation of capillary-
like structures in spite of the angiogenic influence of high
glucose levels (84) (Figure 1D). Moreover, ANRIL silencing
also promoted miR-200b expression, a previously described
miRNA that has been shown to be involved in regulating
VEGF (90).

GATA6-AS
GATA6-AS is the hypoxia-regulated long non-coding antisense
transcript of GATA6 and promotes angiogenesis by negatively
regulating lysyl oxidase-like 2 (LOXL2). LOXL2 catalyzes
the oxidative deamination of lysines and hydroxylysines,
which results in the generation of non-methylated H3K4 and
gene silencing. Thus, GATA6-AS silencing leads to increased
LOXL2 activity and transcriptional repression. In the nucleus,
the physical interaction between GATA6-AS and LOXL2
positively regulates the expression of several angiogenesis- and
hypoxia-related genes, such as periostin and cyclooxygenase-
2. It has been shown that GATA6-AS silencing in epithelial
cells significantly prevented TGF-β2-induced endothelial to
mesenchymal transition and augmented angiogenic sprouting in
xenograft models in vivo (85).

Like epi-miRNAs, the epi-lncRNAs are excellent candidates
biomarkers due to their easy collection and tissue specificity.
Although there are few examples of epi-lncRNAs in angiogenesis,
the implications behind these interactions provide an interesting
view of the mechanisms in which lncRNAs regulate not only the
recruitment but also the activity of chromatin modifiers. Another
layer of complexity is added if we consider that lncRNAs have
many alternative splice forms, including the non-linear, circular
RNAs (circRNAs).

CIRCULAR RNAs IN
NEOVASCULARIZATION

Circular RNAs (circRNA) are single-stranded RNAs that are
widely conserved in all life domains and form a covalent closed
loop (91). The discovery of this type of RNA has occurred fairly
recently, and before their discovery, the RNAs were considered
the result of errors within the process of gene transcription. These
circRNAs are produced by a back-splicing process of pre-mRNA,
in which a downstream splice donor is linked to an upstream
acceptor (92, 93). The splice forms can circularize from exonic,
intronic, or a combination of both regions (EIciRNAs) (94).

In cancer-derived cell lines, it has been reported that changes
in DNMTs and the hypermethylation of the CpG islands of
some genes that host circRNA can induce gene silencing of both
linear RNA and circRNA, suggesting an epigenetic mechanism
that produces two molecular “hits” (95). Because circRNA lack
5′ and 3′ ends, these cannot be degraded by exoribonucleases.
Instead, circRNA levels may be regulated by endonucleases
and exosomal deportation (96). These molecules are stable,
abundant and specific to certain cell types, having distinct
transcriptional patterns for specific tissues and multiple isoforms
in eukaryotic cells (97). CircRNAs have been linked to different
biological processes, including cell proliferation, senescence, and
apoptosis, among others. The study of circRNA has increased in
recent years, since they have been shown to be related to both
physiological and pathological processes (98). In fact, circRNAs
have been proposed as potential biomarkers for neurological
disorders, infectious diseases, cancer, and preeclampsia as a result
of their availability in circulating body fluids (99–102).

The circRNAs have transcriptional and post-transcriptional
regulatory functions. EIciRNAs such as EIF3J associate with
ribonucleoproteins like U1 and the Pol II at the promoters
of their parental genes to enhance their own expression (94).
Similar to EIciRNAs, some circRNAs (such as ciANKRD52) can
positively regulate their own expression through interaction with
the Pol II complex (103). Other circRNAs regulate alternative
splicing or serve as sponges to bind, store, or sequester miRNAs
and other protein complexes containing transcription factors and
RNA binding proteins (94, 104, 105). Due to the ability of cirRNA
to bind to miRNAs, they have been referred to as miRNA sponges
(106). Despite their recent discovery, some evidence suggests that
circRNAs are implicated in angiogenesis (e.g., circRNA-MYLK)
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and many cardiovascular diseases, such as atherosclerosis (e.g.,
circR-284), myocardial infarction (e.g., ciRS-7), and coronary
artery disease (CAD) (e.g., circ_0124644), among others (107,
108). However, to our knowledge, no study has shown that
circRNAs have an epigenetic regulatory role in angiogenesis.
Similar to the lncRNA ANRIL, a circularized and anti-sense
splice variant of the INK4/ARF locus (cANRIL) has been
associated with atherosclerotic vascular disease (109). Moreover,
in the cytoplasm, the binding of circANRIL to the rRNA-
processing machinery impairs its function and causes nucleolar
fragmentation and stress signaling (110). These findings suggest
that, just like their longer-sized isoform, the variant cANRIL may
have a role in the epigenetic regulation of vascular disease.

The study of ncRNA has opened up a new research field,
and this has been extended to the genome scale. This type of
experimental approach has become common practice in both the
research laboratory and at the clinical level. Therefore, along with
a growing array of genomic analysis machinery, bioinformatics
platforms have also been developed, thus generating a new set of
tools for the study and analysis of ncRNA.

CONTRIBUTION OF NGS TECHNOLOGIES
TO THE DISCOVERY OF NEW ncRNAs

In recent years, increasing quantities of data have been obtained
from NGS technologies such as mass RNA sequencing (RNA-
seq), small RNA-seq (smRNA-seq), and single-cell RNA-seq,
among others. These technologies have revealed that the human
genome encodes for more than 90,000 non-coding RNAs and
that these play an important role in several diseases (111). Using
publicly available genomic information, it is now possible to
discover and characterize novel disease-associated ncRNAs. In
the next section, we will describe some of the key discoveries that
have beenmade thanks to NGS data, in which ncRNAs are shown
to have roles in angiogenesis and neovascularization processes.

The study of the ncRNAs involved in molecular processes
associated with neovascularization and angiogenesis in several
diseases can be carried out by using RNA-seq approaches,
especially where angiogenesis or neovascularization is one of
the causes, risk factors, or consequences of the disorders. Some
of the diseases studied in this manner have been ischemia
stroke, CAD, hemangioma, and heart failure (HF). Furthermore,
angiogenesis and neovascularization are strongly related to
endothelial functioning and the transcriptional programming
of endothelial progenitor cells (EPCs). Thus, the study of the
molecular mechanisms involved in the regulation of EPCs is
of great interest. Nevertheless, only a few studies have been
conducted on human umbilical vein endothelial cells (HUVEC)
or other endothelial models to understand the role of ncRNAs
using NGS technologies. In this section, we will provide a
compilation of some studies aiming to identify or characterize
ncRNAs involved in vascular processes.

First, in 2012 Cheng et al. performed smRNA-seq on
umbilical cord blood EPCs (UC-EPCs), which was known for
its enrichment in EPCs, and compared the expression profiles

against EPCs derived from peripheral blood in adults (PB-
EPCs) to understand the underlying mechanisms involved the
functional differences between these two models. They identified
specific patterns of miRNAs (miRNome) in UC-EPCs and PB-
EPCs in which 54 miRNAs were overexpressed in UC-EPC and
50 miRNAs were overexpressed in PB-EPCs. For instance, UC-
EPCs expressedmiRNAs involved in angiogenesis such asmiR-31
and mir-18a, while PB-EPCs are enriched in tumor-suppressive
miRNA expression such as that ofmiR-10a andmir-26a (112).

A study performed by Wang and colleagues in 2014 revealed
that there was cooperation between VEGF and miRNAs in CAD
progression. They performed smRNA-seq and identified EPC-
specific miRNome that was related to angiogenic processes,
which suggests that miRNAs in EPCs with a poor capacity
to enhance angiogenesis might have higher levels of miRNAs
targeting VEGF. Indeed, they identified anti-VEGFmiRNAs such
as miR-361-5p that were enriched in EPCs and in the plasma of
patients with CAD (113).

Also, atherosclerosis appears to be one of the factors leading
to CAD. In 2018, Mao and colleagues conducted a study
to identify miRNAs linked with carotid atherosclerosis. They
performed a differential expression analysis to identify genes
that were specifically associated with either primary or advanced
atherosclerotic plaque tissues. Using public databases, they
predicted 23 miRNAs that targeted the differentially expressed
genes, such as miR-126, miR-155, miR-19A, and miR-19B,
which can play a regulating role in neovascularization and
angiogenesis (114).

Furthermore, a study from Liu et al. (115) identified
differentially expressed ncRNAs that were predicted to be
involved in the regulation of high-density lipoprotein (HDL)
metabolism, the deregulation of which is believed to be one of
the main causes of CAD. To this end, they treated HUVEC cells
with HDL from healthy subjects and patients with CAD and
hypercholesterolemia. After RNA-seq analysis, 41 ncRNAs were
identified, and researchers were able to show that the ncRNAs,
along with protein-coding genes such as DGKA and UBE2V1,
have critical functions in vascular cells (115).

Additionally, it is well-known that endothelial cell
metabolism is sensitive to hypoxia, which is an adverse
effect of atherosclerotic lesions in humans. In 2018, Moreau et al.
investigated the lncRNA profiles of HUVEC cells using global
run-on sequencing (GRO-Seq). GRO-seq is a sequencingmethod
that measures active transcription, identifying newly synthetized
RNA, and providing sufficient resolution to map the position and
orientation of transcripts detected. This group aimed to discover
changes in the expression patterns of lncRNAs in HUVEC cells
exposed to hypoxia and demonstrated that hypoxia affects the
transcription of ∼1,800 lncRNAs. Among the most relevant
lncRNAs identified were MALAT1, HYMAI, LOC730101,
KIAA1656, and LOC339803, which were differentially expressed
in human atherosclerotic lesions compared to normal vascular
tissue (116).

In contrast, heart and circulatory system diseases often involve
changes in vascular smooth muscle or cardiac cells. In 2018,
Cheng et al. used RNA-seq to identify circRNAs in human aortic
valves. They recognized 1,412 specific circRNAs, most of which
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originated from exons of their host genes. Furthermore, after
performing a gene ontology enrichment analysis, they found
that the host genes were associated with pathways regulating
aortic valve function (ECM-receptor interaction pathway, ErbB
signaling pathway, and vascular smooth muscle contraction
pathway) (117). In addition, Bell et al. identified novel lncRNAs
in human vascular smooth muscle cells in 2014. This work
expanded our knowledge of the relevance of lncRNAs in the
control of smooth muscle cells. The researchers performed an
RNA-seq experiment examining expression patterns in human
coronary artery smooth muscle cells. Their analysis revealed
31 novel lncRNAs. They discovered and characterized a novel
vascular cell-enriched lncRNA that they named SENCR. They
performed RNA-seq after knockdown of SENCR and observed
that expression of Myocardin and genes involved in the
contraction of smooth muscle were reduced, while expression
of other promigratory genes was enhanced (118). These results
have enhanced our understanding of vascular cells and should
be further studied in order to discern lncRNAs in vascular
diseases. Finally, in 2015, Di Salvo et al. analyzed the expression
profiles of cells derived from 22 human hearts from patients
with Heart Failure (HF) vs. non-HF donor hearts. Initially, they
discovered 2,085 lncRNAs, and subsequent analyses revealed
48 differentially expressed lncRNAs in HF patients. Among
these, AP000783.2, RP11-403B2.6, and RP11-60A24.3 were
identified (119).

Angiogenesis and neovascularization processes affect the
prognosis of patients who have suffered from brain stroke
ischemia. Thus, the identification of ncRNAs involved in
these processes might be useful for their further use as drug
targets or biomarkers for the disease. Therefore, Zhang
et al. (120) aimed to uncover which ncRNAs have altered
expression profiles after cerebrovascular dysfunction in
ischemic stroke. Using bulk RNA-seq, they profiled lncRNA
signatures in primary brain microvascular endothelial cells
after oxygen-glucose deficiency. This approach allowed for
the identification of 362 differentially expressed lncRNAs.
The top three lncRNAs that were upregulated were Snhg12,
Malat1, and lnc-OGD 1006, while the top three down-
regulated lncRNAs were 281008D09Rik, Peg13, and lnc-OGD
3916 (120).

Another disease model that has been studied in order to
identify ncRNAs involved in angiogenesis and neovascularization
is infantile hemangioma (IH), which is a type of vascular tumor
in infants. Li et al. investigated whether ncRNAs have a role in
IH pathogenesis in 2018. The researchers used a bulk RNA-seq
approach to examine global ncRNAs expression profiles in IH
patients compared to their matched, normal-skin controls. In
this study, researchers identified 256 lncRNAs and 142 miRNAs
that were differentially expressed. They also found more than
a thousand sponge modulators involved in miRNA-, lncRNA-
, and mRNA-mediated interactions. These findings suggest
the presence of an endogenous ncRNA regulatory network
associated with the development of IH and other vascular
diseases (121).

Overall, the studies described above have shown that
NGS technologies can be very effective in identifying and

characterizing ncRNAs. This type of technology has helped
researchers to understand the regulatory role of ncRNAs in
angiogenic and neovascularization processes. However, studies
in this field are just emerging, and additional research will
be required to expand our knowledge and translated into
clinical use.

CURRENT APPROACHES USED TO
DISCOVER NEW ncRNAs

After the development of NGS technologies, ncRNAs have been
discovered, and multiple efforts have been made to organize,
collect, provide, and unify all available information regarding
ncRNAs so that it can be accessed by the research community.
Furthermore, new methods have developed to predict and
identify novel ncRNAs. Here we present some of the cutting-
edge bioinformatics approaches currently being used to study
ncRNAs and give some examples of how they are used in the
study of neovascularization processes (Figure 2). For a detailed
explanation, see the following reference (122).

Transcriptome-wide association studies can be performed
to identify expression-trait associations where ncRNAs might
be involved. This method can identify single-nucleotide
polymorphisms (SNPs) located in transcribed regions of ncRNA
genes that can be related to a specific phenotype. A second
bioinformatic approach is the use of tools for the prediction of
primary, secondary, and tertiary ncRNA structures to obtain
information about their potential function. This method has
been used for circRNAs, smRNAs, and lncRNAs. The third
approach to studying ncRNAs is the use of biological networks.
These types of analyses enhance our understanding of the
function of ncRNAs by integrating expression, regulatory,
and protein–protein interaction networks. NcRNAs are highly
connected in these networks and can influence more than one
target gene in order to produce a specific phenotype. These
approaches can identify disease-specific regulatory modules
where ncRNAs play an important role (122).

Though the effective methods described above can be
used to discover and understand the biological functions of
ncRNAs, they have not been adequately exploited to reveal
the roles of ncRNAs in angiogenesis or neovascularization.
So far, only a few studies have used advanced bioinformatics
tools for this purpose. For example, in 2018, Li et al. detected
novel circRNAs related with IH using RNA-seq data. The
best experimental approach for the detection of circRNAs is
the use of deep sequencing of RNA treated with RNase R
(which leaves a circRNA-enriched sample). The availability of
tools to predict novel circRNAs from RNA-seq data is of
great value, given that RNA-seq data are much more highly
available (122). Thus, Li et al. used circRNAFinder, a tool
able to predict circRNAs from bulk RNA-seq experiments,
and identified 249 circRNA candidates differentially expressed
between IH and matched normal skin samples. The circRNAs
hsa_circRNA001885 and hsa_circRNA006612 where further
investigated by this group, providing novel insights about the
disease (123).
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FIGURE 2 | Schematic representation of an ncRNA analysis workflow using databases. The central panel shows the available analyses provided by the databases;

letters in black indicate the available analyses for miRNAs and lncRNAs; blue letters indicate analysis for miRNAs, and green letters the analyses for lncRNAs. Blue and

green panels show the names of the available databases for miRNAs and lncRNAs, respectively.
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As shown previously, the development of tools used to
predict and identify novel ncRNAs is invaluable. The increasing
number of RNA-seq experiments and access to databases
will increasingly facilitate the discovery of novel ncRNAs,
and the characterization of ncRNAs will become increasingly
straightforward. For instance, ANGIOGENES is a database that
has been created to store information related to angiogenic
processes. It depicts experimental data obtained from RNA-seq

experiments in endothelial cells. This allows for the in-silico
detection of genes expressed in several endothelial cell types
from different tissues. ANGIOGENES uses publicly-available
RNA-seq experiments and identifies endothelial cell-specific
ncRNAs in human, mouse, and zebrafish. The database facilitates
further analyses using GO enrichment terms and is available
online (124). In addition to ANGIOGENES, EndoDB is another
database that retrieves information about endothelial cells from

TABLE 3 | Databases and tools for the ncRNAs study.

Database ncRNAs Website Species References

ANNOTATION RESOURCES

miRbase microRNAs http://www.mirbase.org/ All (126, 127)

NONCODE lncRNAs http://www.noncode.org/ All (111)

LNCipedia lncRNAs https://lncipedia.org/ Human (128)

LNCact lncRNAs http://biocc.hrbmu.edu.cn/LNCat/ Human (129)

TARGET RESOURCES

TarBase microRNAs http://diana.imis.athena-innovation.gr/DianaTools/ Human/mouse, fruit fly, worm, and zebrafish (130)

miRTarBase microRNAs http://mirtarbase.mbc.nctu.edu.tw Human, mouse, virus (131)

miRGate microRNAs http://mirgate.bioinfo.cnio.es Human, rat, mouse (132)

miRdSNP microRNAs http://mirdsnp.ccr.buffalo.edu Human (133)

TargetScan microRNAs http://www.targetscan.org/vert_72/ Human (134)

CSmiRTar microRNAs http://cosbi.ee.ncku.edu.tw/CSmiRTar/ Human, mouse (135)

MiRecords microRNAs http://c1.accurascience.com/miRecords/ Huma, rat, mouse, fly, worm, chicken (136)

miRSel microRNAs https://services.bio.ifi.lmu.de/mirsel/ Human, mouse (137)

miRWalk microRNAs http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/ Human, mouse (138)

miRPathDB microRNAs https://mpd.bioinf.uni-sb.de/ Human, mouse (139)

HOCTARdb microRNAs http://hoctar.tigem.it/ Human (140)

miRTar microRNAs http://mirtar.mbc.nctu.edu.tw/human/ Human (141)

miRDB microRNAs http://www.mirdb.org/ Human, rat, mouse, dog, chicken (142)

DIANA-LncBase microRNAs lncRNAs www.microrna.gr/LncBase Human, mouse (143)

LncRNA2Target lncRNAs http://123.59.132.21/lncrna2target Human, mouse (144)

CELL TYPE SPECIFIC RESOURCES

bloodmiRs microRNAs http://134.245.63.235/ikmb-tools/bloodmiRs/ Human (145)

ExcellmiRDB microRNAs http://www.excellmirdb.brfjaisalmer.com/%27% Human (146)

miRandola microRNAs http://mirandola.iit.cnr.it/ Human (147)

miREnvironment microRNAs http://www.cuilab.cn/miren Human (148)

HMED microRNAs http://bioinfo.life.hust.edu.cn/smallRNA/ Human (149)

DISEASE-RELATED RESOURCES

dbDEMC microRNAs http://www.picb.ac.cn/dbDEMC/ Human (150)

EpimiRBase microRNAs https://www.epimirbase.eu/ Human (151)

HMDD microRNAs http://www.cuilab.cn/hmdd Human (152)

OncomiRDB microRNAs http://lifeome.net/database/oncomirdb/ Human (153)

LncRNADisease lncRNAs http://www.cuilab.cn/lncrnadisease Human (154)

Lnc2Cancer lncRNAs http://www.bio-bigdata.com/lnc2cancer/ Human (155)

lncRNASNP lncRNAs http://bioinfo.life.hust.edu.cn/lncRNASNP/ Human (156)

LincSNP lncRNAs http://bioinfo.hrbmu.edu.cn/LincSNP/ Human (157)

OTHER RESOURCES

EpimiR microRNAs http://210.46.85.180:8080/EpimiR/ Human (158)

MirGeneDB microRNAs http://mirgenedb.org/ All (25)

miRBaseTracker microRNAs http://mirbasetracker.org/ All (127)

mirPub microRNAs http://www.microrna.gr/mirpub/ All (159)

miRNEST microRNAs http://rhesus.amu.edu.pl/mirnest/copy/ All (160)

miROrtho microRNAs http://cegg.unige.ch/mirortho All (161)
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different platforms for several species (125). Other databases are
available for the study of ncRNAs; nevertheless, these are not
specialized in angiogenesis or neovascular processes. Databases
and tools used for the study of ncRNAs are listed in Table 3.

We know that endothelial cells are heterogeneous; for
instance, they function differently depending on vessel type
(162). To uncover the molecular mechanisms controlling this
heterogeneity, single-cell RNA sequencing analyses (scRNA-seq)
have the potential to enhance our understanding of vascular
biology. ScRNA-seq is currently being used to study and
assess cellular heterogeneity. Particularly with respect to cancer
research, this approach has proved to be valuable (163–165);
nevertheless, its use in vascular research is just beginning.
Recently published studies have mostly focused on protein-
coding genes (166, 167). The participation of ncRNAs, along
with epigenetic factors, in regulating the metabolic activities
of endothelial cells from a single-cell perspective in vascular
development and diseases is not yet clear.

CONCLUDING REMARKS

ncRNAs comprise a new frontier in genetic regulation that
has impacts on several research areas. Undoubtedly, the study
of angiogenesis and neovascularization has been enhanced
through the integration of the study of ncRNAs and epigenetics.
Further, ncRNAs are involved in the regulation of several
angiogenic targets through epigenetic mechanisms. On the basis
of this relationship, a new field of opportunity has emerged
in which biomarkers and specific therapies may be identified
that can improve the treatment of different vascular diseases
and cancers. NGS platforms allow for the global analysis of
ncRNA expression and can be used to compare different

physiological and pathological processes. Most of the pathways
and mechanisms controlling the ncRNA-mediated regulation of
angiogenesis remain unexplored. It is likely that new research
strategies implementing an epigenetic perspective will facilitate
future discoveries.
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