
REVIEW
published: 18 October 2019

doi: 10.3389/fonc.2019.01092

Frontiers in Oncology | www.frontiersin.org 1 October 2019 | Volume 9 | Article 1092

Edited by:

Benyi Li,

University of Kansas Medical Center,

United States

Reviewed by:

Zongbing You,

Tulane University, United States

Hui-Ju Hsieh,

University of Texas MD Anderson

Cancer Center, United States

*Correspondence:

Joanna Klubo-Gwiezdzinska

joanna.klubo-gwiezdzinska@nih.gov

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cancer Molecular Targets and

Therapeutics,

a section of the journal

Frontiers in Oncology

Received: 31 July 2019

Accepted: 04 October 2019

Published: 18 October 2019

Citation:

Thakur S, Tobey A and

Klubo-Gwiezdzinska J (2019) The Role

of Lithium in Management of

Endocrine Tumors—A Comprehensive

Review. Front. Oncol. 9:1092.

doi: 10.3389/fonc.2019.01092

The Role of Lithium in Management
of Endocrine Tumors—A
Comprehensive Review
Shilpa Thakur †, Andrew Tobey † and Joanna Klubo-Gwiezdzinska*

Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,

Bethesda, MD, United States

Background: Epidemiological data reveal that treatment with lithium, a mood stabilizer,

is associated with decreased incidence and mortality of certain cancer types, such as

melanoma. Therefore, repositioning of lithium as an anticancer agent has emerged as a

promising strategy in oncology. Since lithium affects the physiology of several endocrine

tissues, the goal of this study was to analyze the role of lithium in the pathogenesis and

treatment of tumors of the endocrine system.

Methods: The databases of PubMed, EMBASE, MEDLINE, were searched

from January 1970 through February 2019 for articles including the keywords

“lithium and”—“thyroid cancer,” “thyroid nodule,” “parathyroid adenoma,”

“parathyroid carcinoma,” “pituitary adenoma,” “pituitary neuroendocrine tumor,”

“neuroendocrine tumor,” “carcinoid,” “adrenal adenoma,” “adrenal carcinoma,”

“pheochromocytoma/paraganglioma.” Preclinical in vitro and in vivo studies as well

as case series, retrospective cohort studies and prospective trials were selected for

the analysis.

Results: Treatment with lithium has been associated with a higher prevalence of thyroid

enlargement, hypothyroidism and increased calcium levels due to parathyroid adenoma

or hyperplasia, as one of the mechanisms of its action is to stimulate proliferation

of normal follicular thyroid and parathyroid cells via activation of the Wnt signaling

pathway. Supratherapeutic concentrations of lithium decrease the activity of glycogen

synthase kinase-3β (GSK-3β), leading to cell cycle arrest in several in vitro cancer

models including medullary thyroid cancer (TC), pheochromocytoma/paraganglioma and

carcinoid. Growth inhibitory effects of lithium in vivo have been documented in medullary

TC xenograft mouse models. Clinically, lithium has been used as an adjuvant agent to

therapy with radioactive iodine (RAI), as it increases the residence time of RAI in TC.

Conclusion: Patients chronically treated with lithium need to be screened for

hypothyroidism, goiter, and hyperparathyroidism, as the prevalence of these endocrine

abnormalities is higher in lithium-treated patients than in the general population. The

growth inhibitory effects of lithium in medullary TC, pheochromocytoma/paraganglioma

and carcinoid were achieved with supratherapeutic concentrations of lithium thus limiting

its translational perspective. Currently available clinical data on the efficacy of lithium in the

therapy of endocrine tumors in human is limited and associated with conflicting results.
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INTRODUCTION

Lithium (lithos for stone in Greek) was discovered in the
nineteenth century and it’s salt—lithium carbonate has been
widely used to treat bipolar disorder (1). Interestingly, patients
chronically exposed to lithium carbonate were also characterized
by a lower incidence of Alzheimer disease (2). These clinical
observations prompted an investigation of the pleiotropic effects
of lithium carbonate in human physiology and pathology. One of
the important findings was that lithium affects glycogen synthase
kinase-3β (GSK-3β) signaling pathway. GSK-3β functions as
an important regulatory kinase and its hyperactivity have
been linked to several disorders such as Alzheimer disease,
schizophrenia (3), diabetes (4), and cancer (5, 6). Therefore,
the reposition of lithium as an inhibitor of GSK-3β has
emerged as a potential tool in cancer treatment. This interest
is further supported by functional studies documenting the
effect of lithium on numerous other pathways, including
the WNT/β-catenin pathway (7), activation of CREB (cAMP-
response-element-binding protein), interaction with TORC1 (1,
8) immunomodulation of lymphokine-activated killer cells and
its effects on cell metabolism (glycolysis) (9–11). All of these
cellular processes play an important role in pathogenesis of
tumors of the endocrine system (12–20). Most of the studies
analyzing the effects of lithium in the management of cancers
have been primarily focused on thyroid cancer. Besides endocrine
tumors, there are few reports where lithium use was associated
with growth inhibition of melanoma (9, 21), prostate (22), and
hepatocellular carcinoma cells (23, 24). In a retrospective cohort
study, lithium exposure was associated with reduced melanoma
risk and mortality (25). In contrary to this, lithium exposure
increased the incidence of renal tumors in the lithium-treated
patients (26).

The therapy of a subset of endocrine cancers is very
challenging and the goal of this review is to provide an overview
of the potential utility of lithium in the management of endocrine
tumors based on published pre-clinical and clinical data.

LITHIUM AND BENIGN AND MALIGNANT
THYROID NODULES

Epidemiology
As the use of lithium for the manic state of the bipolar disorder
increased, so did the appearance of goiters and hypothyroidism,
suggesting a role of lithium in the synthesis and storage of thyroid
hormones (27). The prevalence of goiter has been reported to be
as common as 4–60% (28–33) and hypothyroidism was observed
in up to 6–52% of patients taking lithium (28, 34–46) while
its prevalence in general population varies between 4.8–28 and
4.6–9.5%, respectively (47–49). On the other hand, lithium can
also cause damage to the thyroid cell with consequent signs
and symptoms of thyroiditis (28, 50). Interestingly, lithium is
concentrated by the thyroid at levels 3–4 times higher than
in the circulation (51). Lithium was found to increase the
intrathyroidal iodine content as well as to inhibit release of
thyroid hormones from the thyroid into the circulation due
to altered tubulin polymerization in thyrocytes (28, 52, 53). In
fact, the latter property has been used to treat patients with

hyperthyroidism. Similar mechanisms have been proposed to
be utilized to extend the retention of radioactive iodine (RAI)
within the thyroid gland to treat either benign toxic multinodular
goiters, Graves’ disease or differentiated thyroid cancer (54–60).
The application of lithium as adjuvant therapy for metastatic
thyroid cancer is particularly interesting in view of the fact
that the incidence of differentiated thyroid cancer (DTC) is
rising more rapidly than any other type of cancer and that
RAI-non responsive metastatic DTC is characterized by a poor
outcome (61, 62).

Mechanism of Lithium Action—Pre-clinical
Evidence
Since therapy with lithium has been associated with a high
prevalence of goiter, there have been several studies evaluating
the growth stimulatory effects of lithium on normal follicular
cells. In vivo studies in rat models indicated that exposure
to lithium resulted in an increase in follicular diameter and
a decrease in follicle cell height (63). Functional in vitro
models revealed that Wnt/β-catenin signaling may be important
in lithium-associated goiter, as lithium significantly increased
human thyrocyte proliferation mediated by Wnt/β-catenin
pathway (64–66). Wnt/ β-catenin pathway plays a crucial role
in organ formation during embryonic development, stem cell
renewal and cell survival (67, 68). Aberrant activation of this
pathway has been seen in many cancers. This pathway can
regulate multiple target genes which play important roles in
various physiological processes like proliferation, transformation
and differentiation (67, 68). Gilbert-Sirieix et al. documented
that the Wnt/β-catenin pathway regulates expression of one of
the most important transcription factors in the thyroid gland,
thyroid-transcription factor 1 (TTF1), in the papillary thyroid
cancer (PTC) cell line TPC1 and in patient-derived PTC tumors
(20). The activation of Wnt signaling by lithium chloride at the
concentration of 5 and 20mM induced TTF-1 gene and protein
expression, suggesting a role of lithium in tumor differentiation
(20). This observation is particularly important in view of
the fact that de-differentiation is often observed in thyroid
cancer, during which tumors progressively lose the expression of
thyroid-specific genes such as sodium-iodine symporter (NIS),
paired-box gene 8 (PAX8) or thyroglobulin (Tg) (69). Dupain
et al. observed that treatment with 20mM lithium resulted
in upregulation of thyroid-specific genes TTF1 and PAX8 in
TPC1 cell line, but not in other cell lines (e.g., BHP 10-3, and
ARO) (70). TTF-1 and PAX8 are thyroid-specific transcription
factors and are crucial for thyroid development and function.
These transcription factors have been known to regulate the
expression of various thyroid specific genes which include Tg,
NIS thyroid peroxidase (TPO), and thyrotropin receptor (TSHR)
(71). The low levels of TTF-1 and loss of its nuclear localization
in thyroid cancer have been associated with dedifferentiation and
increasedmalignancy, whereas the role of PAX8 in thyroid cancer
is still controversial (71, 72). The lithium-mediated induction
in the expression of thyroid-specific transcription factors
upon Wnt activation, suggest these transcription factors as
downstream targets of Wnt/β-catenin pathway in thyroid cancer
cells (Figure 1).
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FIGURE 1 | Diagrammatic representation of known mechanisms of action of lithium in endocrine cancers. Lithium treatment inactivates GSK-3β by phosphorylating it.

Inactivation of GSK-3β can promote cell death by increasing the expression of cyclin-dependent kinase inhibitors (p21, p15, p27) that promotes cell cycle arrest

and/or by increasing the expression of transcription factors (NR4A1) which induce expression of pro-apoptotic genes. Depending upon the cell types and

concentration, lithium can also promote cellular proliferation by activating Wnt/β-catenin signaling pathway and its downstream mediators which have the ability to

regulate the expression of various genes that play important role in cell growth and survival (e.g., Cyclin D1, TBX1). Lithium treatment can also promoter cell

differentiation by increasing the expression of tissue specific transcription factors (TTF-1, PAX8). Also, lithium treatment at low concentration provide protective effects

to the cells against toxic compounds by inhibiting the expression of BAX (pro-apoptotic gene) and promoting the expression of BCL2 (anti-apoptotic gene). Besides

these, there might be other mechanisms of action involved which are currently unknown.

Another study also documented the role of lithium in the
differentiation of a follicular thyroid cancer (FTC) model. FTC
is characterized by a significantly lower expression of Nuclear
Receptor Subfamily 4 (NR4A1) compared with benign follicular
adenomas (73). NR4A1 receptors have emerged as important
molecular switches in processes associated with carcinogenesis,
including apoptosis, DNA repair, proliferation, migration,
inflammation, and metabolism. NR4A1 has been shown to be
lower in various tumor types in comparison to normal tissues.
TheWnt signaling pathway is one of the upstreammechanism of
NR4A1 regulation (74). Lithium treatment resulted in restoration
of NR4A1 expression in FTC cell line as well as inhibition of
cell growth and induction of apoptosis in vitro (73). Besides
NR4A1, lithium treatment upregulated the expression of FOSB
which is a downstream target of Wnt signaling pathway. This
suggests that upregulation of NR4A1 by lithium treatment is
possibly associated with activation of Wnt signaling pathway.
Wnt signaling pathway is known to be regulated by GSK-3β (75)
and lithium treatment has been shown to inhibit activity of GSK-
3β (76). The exact mechanisms by which lithium inhibits GSK-3β
and Wnt regulates NR4A1 are not known. Moreover, one of the
cell lines used in this above mentioned study was WRO, and its
classification as a model for human FTC has been questioned in
subsequent studies (77).

Since lithium is a potential differentiation stimulus, several
studies have tested its role as an RAI uptake enhancer in
in vitro models via induction of NIS. The main shortcoming

of this approach is that cancer cells lack the machinery
responsible for iodine organification and therefore intracellular
RAI is rapidly released (78). Liu et al. analyzed the role of
lithium in a rat follicular cell line intrinsically expressing NIS
(FRTL5), and a follicular thyroid cancer cell line FTC133
stably transfected with NIS (60). Lithium in a concentration
ranging between 0.5 and 2mM did not affect RAI efflux nor
residence time in these models (60). Similarly, Elisei et al.
used anaplastic and medullary thyroid cancer models stably
transfected with NIS and showed that treatment with 10mM
of lithium chloride was not associated with increased RAI
retention (78).

More encouraging results have been found in both in
vitro and in vivo models of medullary thyroid cancer (MTC).
Lithium at concentrations ranging between 10 and 30mM,
through inhibition of GSK-3β signaling, led to significant
inhibition of MTC cell line growth and decreased production
of neuroendocrine markers (79). The growth inhibitory effects
of lithium were associated with increase in the levels of cyclin-
dependent kinase inhibitors (p21, p27, and p15) leading to cell
cycle arrest. The lithium mediated growth inhibition was aslo
confirmed in an in vivo xenograft model of MTC (79). Moreover,
these effects were achieved with therapeutic concentrations in
mice sera, ranging between 0.2 and 1 mEq/l, thus reflecting
the therapeutic window in humans. Adler et al. documented an
additive effect of treatment with lithium in combination with
the histone deacetylase inhibitor valproic acid in inhibition of
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TABLE 1 | Effects of lithium on different endocrine tumors as stated in pre-clinical studies.

Endocrine tumors References Preclinical model Lithium dose Study endpoint

Papillary thyroid cancer (20) TPC1 cell line, human

PTC tumors

5mM, 20mM Induction of TTF1 expression

Follicular adenoma and

carcinoma

(66) S18, NPA, FTC133 5–20mM Stimulation of proliferation via inhibition

of GSK-3β and activation of

Wnt/beta-catenin signaling

Follicular and anaplastic

thyroid cancer

(73) WRO, NPA, ARO 10–20mM Restoration of NR4A1 expression,

inhibition of growth, induction of

apoptosis

Papillary and anaplastic

thyroid cancer

(70) TPC1, BHP10-3 ARO, 20mM
Differential cell type-based response to

lithium

TPC1—upregulation of TTF1 and PAX8

BHP10-3, ARO—downregulation of

TTF1 and PAX8

Follicular thyroid cells and

follicular thyroid cancer

(60) FRTL5, FTC133 0.5–2mM Failure to induce enhanced RAI retention

Medullary and anaplastic

thyroid cancer

(78) TT, FRO stable

transfected with NIS

10mM Failure to induce enhanced RAI retention

Medullary thyroid cancer (79) TT cell line, TT xenograft in vitro-−5–30mM,

in vivo-−340 mg/kg

body weight

Inhibition of growth via inhibition of

GSK-3β

Medullary thyroid cancer (14) TT cell line 15–20mM Inhibition of growth, additive effect of

HDAC inhibitor, induction of apoptosis

Parathyroid adenoma (102, 103) HEK293 and/or

parathyroid adenoma

derived cell line

Variable Activation of Wnt/beta-catenin signaling

pathway leading to an inhibition of

parathyroid embryonic transcription

factor TBX1

Parathyroid adenoma (104) Primary cultures of

parathyroid adenomas

2mM Lithium -induced increased proliferation

of parathyroid cells

Parathyroid hyperplasia

and adenoma

(105) Normal and hyperplastic

parathyroid glands,

parathyroid adenomas

1.3mM Lithium induced PTH excretion in normal

and hyperplastic parathyroid tissue

Adrenal Cortex Tumor (110) Adrenal cortex tumor and

normal human tissues

5, 10, and 50mM Inhibition of DNA Fragmentation

Pituitary Tumor (123, 124) AtT-20 cell line Variable Pre-treatment with lithium inhibited

ACTH secretion upon subsequent

lithium exposure

Neuroendocrine tumor (119) BON and NCI-H727 cell

line

20mM Inhibition of cellular growth and

inactivation of GSK-3β

Neuroendocrine tumor (120) BON and NCI-H727 cell

line

0–50mM Dose-dependent reduction in cancer cell

proliferation, induction in apoptosis and

inactivation of GSK-3β

Pheochromocytoma (111) PC12 cell line 0.5mM Promotes cell growth and protects cells

from toxic compounds like thapsigargin

and trimethyltin

Pheochromocytoma (16, 112) PC12 cell line Variable Dose-dependent cytotoxic effects

Pheochromocytoma (113–115) PC12 cell line Variable Pretreatment with lithium protects

against morphine, beta-amyloid peptide

and hydrogen peroxide-induced cell

death

growth and induction of apoptosis of TT (MTC cell line) cells
in vitro (14).

Overall, based on in vitro experiments, there is evidence
that lithium affects GSK-3β and Wnt/β-catenin signaling
in a cell type-dependent manner—with stimulation of
proliferation of normal follicular cells and inconsistent

inhibition of cell growth in thyroid cancer cell lines (Figure 1;
Table 1). The majority of pre-clinical studies utilized in
vitro models exposed to supra-therapeutic concentrations
of lithium, limiting its translational perspective. The only in
vivo data documenting growth inhibitory effects of lithium
are available for an MTC xenograft model. The role of
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lithium as a differentiation stimulus and RAI-retention
enhancer is limited and needs to be clarified based on
in vivo studies.

Clinical Evidence
Lithium and Benign Thyroid Nodules/Goiter
Turner et al. documented increased thyroidal retention of RAI
in patients with hyperthyroidism treated with lithium (54)
(Table 2). Data from two large randomized studies performed
in Italy revealed that lithium enhanced the effectiveness of RAI
therapy resulting in a more prompt control of the disease in
patients with large goiters (55, 56). The authors also claimed that
lithium diminished RAI-induced release of thyroid hormones
into the circulation, an observation confirmed by another group
(58), suggesting that adjuvant lithium therapy could be employed
in the RAI therapy for goiters, particularly in elderly patients with
high cardiovascular risk. Martin et al. also showed that cure was
twice as likely in patients with toxic multinodular goiter receiving
RAI with adjuvant lithium compared with RAI therapy alone
(80). However, another randomized study concluded that the role
of lithium as adjuvant therapy in patients with large goiters was
insignificant (57). The latter study was the largest one involving
patients with goiters (Table 2), suggesting that the role of lithium
as an adjunct to RAI therapy might be either minimal or not
significant. The discrepancy in the results of above-mentioned
studies might be due to varying RAI dosages implemented in
therapy, different thyroid volumes of included patients, varying
doses, and duration of exposure to lithium, different iodine
nutritional status, to name just a few. Interestingly, exposure to
lithium has been associated with morphological changes of the
thyrocytes, namely pronounced pleomorphism of the epithelial
cells and marked nuclear changes (81). These features might
be interpreted in cytology specimens received from fine-needle
aspiration biopsy of thyroid nodules as atypia of uncertain
significance (82). Therefore, lithium may need to be added to the
list of medications causing cytologic atypia.

Lithium and Thyroid Cancer
One of the first studies utilizing adjunctive lithium therapy in
patients with thyroid cancer were case reports of metastatic
thyroid cancer associated with hyperthyroidism due to hormonal
overproduction by DTC (83, 84). The effects of addition of
lithium were quantified with tumor and whole-body dosimetry.
Adjunctive lithium therapy resulted in a longer retention time
of RAI within the metastatic lesions but also increased exposure
of the bone marrow to radiation (83). Moreover, achievement
of therapeutic lithium levels of 0.6–1.2 mEq/l was associated
with side effects, including nausea and vomiting. Interestingly,
Pons et al. showed that although RAI retention was significantly
increased in all metastatic lesions in DTC patients with distant
metastases, it was not significantly increased in the remnant
normal thyroid tissue in ∼50% of low-risk patients (85). This
observation was further confirmed by Ang et al. who showed a
lack of enhanced retention of RAI in thyroid remnant tissue after
exposure to lithium (86).

Another case series from the National Institute of Health,
United States of America including 15 patients with metastatic
DTC found that lithium increased RAI retention in 24 of 31

metastatic lesions and in 6 of 7 thyroid remnants. Lithium
prolonged the effective half-life in metastases by more than 50%
and increased the estimated RAI dose in the metastatic tumor
by 2.29-fold (59). However, the long-term efficacy of adjunctive
lithium therapy in this cohort was not available until recently,
when our group summarized the National Institute of Health
experience with lithium-aided RAI therapy for metastatic DTC
(87). There was no difference in progression-free survival in
patients treated with lithium-aided RAI compared with patients
treated with RAI alone. Although therapy with lithium was
associated with improved overall survival in unadjusted models,
adjustment by clinically relevant factors affecting overall survival
such as age and disease burden revealed no added benefit of
lithium. The main factors affecting the outcome were patient
age and disease burden, while the method of preparation for
RAI therapy was not associated with improved progression-
free or overall survival (87). This study was characterized
by the largest to date cohort of dosimetry-based lithium-
aided therapy of metastatic thyroid cancer and relatively
decent duration of follow of a median 5 years. In a smaller
cohort, 24 Korean patients with metastatic RAI-refractory DTC
underwent combined treatment with RAI and lithium and
the treatment efficacy was compared with 48 patients treated
solely with RAI. The comparison analysis was performed
using propensity score matching (88). The overall survival
was significantly better in lithium-aided RAI treated patients,
but the analysis was not adjusted by other factors affecting
the outcome such as age, number, and location of metastatic
foci (88).

In contrast to patients with high-risk metastatic thyroid
cancer, addition of lithium to low dose RAI for thyroid remnant
ablation in low-risk DTC patients without distant metastases
has proven to be beneficial. Yamazaki et al. performed a
randomized controlled study in Brazil involving 32 patients
treated with 30 mCi of RAI alone and 29 patients treated
with RAI with addition of lithium. One year follow up studies
revealed a higher thyroid remnant ablation rate in the RAI +
lithium group compared with RAI alone, as documented by
undetectable stimulated thyroglobulin and negative 123I whole-
body scan (89). Similar findings were observed in another study
conducted in Italy by Barbaro et al. on thyroid ablation in
low-risk DTC patients, while this study found no difference in
remnant ablation in high-risk patients treated with 100 mCi
of RAI, regardless of whether lithium treatment was added
(90). It is worthwhile to speculate that the higher efficacy of
lithium-aided RAI therapy in low-risk patients might be due
to the higher level of NIS expression in low-risk patients,
particularly in normal remnant tissue, compared with relatively
lower NIS expression in tissues derived from distant metastases
of high-risk patients (91). Lithium-induced extension of RAI
residence time in metastatic lesions might not be sufficient
to deliver tumoricidal RAI dose to the high-risk tumors. It
might be interesting to design a study utilizing combination
therapy with NIS inducing agents such as MEK or BRAF
inhibitors with lithium as an adjunct to RAI therapy of high-risk
DTC patients.

Despite very promising pre-clinical data in in vitro and in vivo
MTC models, a clinical trial utilizing lithium monotherapy in
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TABLE 2 | Clinical studies utilizing lithium in benign thyroid disorders and malignant thyroid nodules.

Endocrine

tumors

References Study design Lithium dose Study endpoint

BENIGN THYROID DISEASE

Goiter (54) Prospective cohort study−16

patients RAI + Lithium,

16 patients—RAI alone

400mg post-operative daily 7

days before and 7 days after RAI

Prolonged retention time of RAI in

lithium-treated group

Goiter due to

Graves disease

(55) Randomized controlled prospective

study

55 patients—RAI

55 patients—RAI + Lithium

900mg daily for 6 days after RAI Earlier cure from hyperthyroidism, no

difference in treatment efficacy between RAI

alone and RAI + Lithium at the end of the

study

Goiter due to

Graves disease

(56) Prospective cohort study-−36

patients with Graves disease

N = 12—RAI alone

N = 12 Lithium for 6 days

N = 12 Lithium for 19 days

Lithium 900 mg/daily for 6 days

post-RAI (n = 12)

Lithium 900 mg/daily for 19 days

post-RAI (n = 12)

Patients treated with RAI plus lithium had a

prompter control of hyperthyroidism than

patients treated with RAI alone

Graves disease

and multinodular

goiter

(57) Randomized controlled prospective

study−152 patients treated with

RAI alone 164 with RAI + Lithium

300mg three times a day, for 3

weeks starting on the day of

radioiodine administration

No difference in the success rate in RAI

group vs. RAI + Lithium group

Multinodular

goiter

(58) Randomized controlled prospective

study−35 patients RAI alone, 33

patients RAI + Lithium

900mg daily for 6 days post-RAI Low incidence of RAI-induced thyrotoxicosis

in patients from RAI + Lithium group. No

difference in a degree of reduction of goiter

size between RAI and RAI + Lithium group

Toxic

multinodular

goiter and

Graves disease

(80) Retrospective cohort study

110 patients RAI alone, 123

patients RAI + Lithium

800mg daily 3 days before and 7

days after RAI

The likelihood of cure 60% greater in the RAI

+ lithium group compared with RAI alone

MALIGNANT THYROID TUMORS

Follicular thyroid

cancer

(83) Case report 600mg loading dose, followed by

900mg daily during diagnostic

dosimetry and post-RAI treatment

for 4 days

Increased RAI retention within metastatic

lesions, increased bone marrow exposure to

RAI

Metastatic

differentiated

thyroid cancer

(84) Case series−4 cases Lack of detailed information Dosimetry available for 1 out of 4

patients—increased residence time of RAI in

the metastatic lesion

Metastatic and

non-metastatic

differentiated

thyroid cancer

(85) Case series−6 patients with

metastatic thyroid cancer, 12

patients without metastases

400–800mg 1 day before and 7

days after RAI treatment

Increased RAI retention in all metastatic

lesions, increased RAI retention in half of

normal remnant thyroid tissue

Differentiated

thyroid cancer

(59) Prospective cohort study−9

patients with PTC 6 patients with

FTC

600mg loading dose followed by

900mg post-operative daily to

target plasma concentration of

0.6–1.2 mEq/l

Lithium increased 131-I retention in 24 of 31

metastatic lesions and in 6 of 7 thyroid

remnants. Lithium prolonged the effective

half-life in metastases by more than 50% and

increased the estimated RAI dose in the

metastatic tumor by 2.29 times

Differentiated

thyroid cancer

(87) Cohort study−41 patients prepared

for RAI with endogenous TSH

stimulation + lithium, 52

patients—endogenous TSH

stimulation without lithium, 42

patients recombinant human TSH

stimulation

600mg loading dose followed by

900mg daily adjusted to lithium

level of 0.6–1.2 mEq/l, given 7

days before and 2 days after RAI

No difference in progression-free survival

between the groups, lithium group

characterized by the longest overall survival in

an unadjusted model, but adjustment by age

and disease burden revealed no association

between lithium and overall survival

RAI-non

responsive

metastatic

thyroid cancer

(88) Cohort study−24 patients treated

with RAI + Lithium and 48

patients—RAI alone

300mg daily for 7 days Improved overall survival in RAI + Lithium

group compared with RAI alone

Low risk

differentiated

thyroid cancer

(89) Randomized controlled study−32

patients RAI alone, 29 patients RAI

+ lithium

900mg daily for 7 days Higher rate of thyroid remnant ablation at 12

months in RAI + Lithium group compared

with RAI alone

(Continued)
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TABLE 2 | Continued

Endocrine

tumors

References Study design Lithium dose Study endpoint

Differentiated

thyroid cancer

(86) Randomized double-blinded

prospective study of 21 patients

TRH aided RAI−7 patients

Lithium—aided RAI−6 patients

TRH + lithium-aided

RAI−8 patients

600mg daily for 7 days RAI uptake in the remnant thyroid

comparable in all groups

Metastatic and

non-metastatic

differentiated

thyroid cancer

(90) Cohort study−201 patients

Low-risk rhTSH-aided

RAI 30 mCi−44 patients

Low-risk rhTSH + Furosemide RAI

30 mCi−45 patients

Low risk rhTSH + furosemide +

lithium RAI 30 mCi−45 patients

High risk rhTSH-aided RAI 100

mCi−20 patients

High risk rhTSH + furosemide

RAI 100 mCi−22 patients

High risk

RhTSH + furosemide + lithium

RAI 100 mCi−20 patients

450mg daily for 3 days post-RAI Significantly better remnant ablation rate in

low-risk patients treated with lithium

compared with patients not treated with

lithium

No difference in the rate of remnant ablation

in high-risk patients, regardless of the

method of preparation

NEUROENDOCRINE TUMORS

Neuroendocrine

tumor

(121) Phase II clinical trial—

15 patients with low-Grade NETs

300mg three times a day for 28

days

Lithium was ineffective in reducing tumor

volume in the patients

MTC was terminated, and 3 out of 5 enrolled patients died of
disease (NCT00582712).

Overall, therapy with lithium was well-tolerated.
Gastrointestinal disturbances (nausea, vomiting, diarrhea)
were reported most commonly in up to 10–20% of patients
(85). Although lithium treatment has been reported to increase
remnant ablation rate in low-risk patients with DTC, its utility
in this setting may be limited as current guidelines recommend
against RAI in thyroid cancer confined to the thyroid gland based
upon the observed lack of benefit of RAI therapy on mortality
and morbidity in low-risk thyroid cancer patients. Additive
lithium therapy in high-risk patients has not been proven to
improve long-term outcomes in patients with metastatic DTC.

LITHIUM AND PARATHYROID TUMORS

Epidemiology
Hyperparathyroidism due to benign parathyroid adenomas
overproducing parathyroid hormone (PTH) is one of the most
common endocrine disorders. Treatment with lithium has been
associated with 4–6 higher likelihood of hyperparathyroidism
compared with its incidence in the general population (92). Most
studies have shown that lithium-induced hyperparathyroidism is
associated with the presence of a solitary parathyroid adenoma
(92–96). However, lithium-induced polyglandular hyperplasia
has also been described (95–97).

The molecular signature of lithium-induced parathyroid
adenomas reveals that gross chromosomal alterations occur
rarely. In most cases, the tumorigenic pathway is independent of
multiple endocrine neoplasia gene (MEN1) and genes at 1p34.3

and 1q21-q32, suggesting a unique etiology of development of
these tumors (98).

The management of lithium-induced parathyroid adenomas
is predominantly surgical, however, calcimimetics have
been also successfully used, particularly in the pediatric
population (96, 97, 99–101).

Mechanism of Lithium Action—Pre-clinical
Evidence
Calcium sensing receptors (CaSRs) are present in parathyroid
glands, renal tubules, and bones. Lithium is known to shift the
CaSR set point in parathyroid cells, raising the threshold of
serum calcium necessary to inhibit PTH secretion, resulting in
an increase in parathyroid cell proliferation and increased PTH
synthesis and secretion (94). One of the potential mechanisms
of stimulation of parathyroid cell proliferation by lithium might
be the activation of the WNT/β-catenin signaling pathway.
Verdelli et al. in an in vitro model of parathyroid adenoma-
derived cells showed that lithium-induced activation of WNT/β-
catenin signaling led to downregulation of the transcription
factor TBX1, which is expressed in adult parathyroid cells and
deregulated in parathyroid tumors (Figure 1) (102). Similar
findings of activation of Wnt/β-catenin signaling pathway
leading to downregulation of TBX1 were observed by Corbetta
et al. in HEK293 cells (103). TBX1 deficiency may potentially
contribute to the low proliferative index of parathyroid tumors
(102). In fact, Saxe et al. in a study utilizing primary cultures of
parathyroid adenomas showed that therapeutic concentrations of
lithium of 2mM lead to enhanced proliferation of parathyroid
cells in vitro (104). Lithium has been also shown to stimulate

Frontiers in Oncology | www.frontiersin.org 7 October 2019 | Volume 9 | Article 1092

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Thakur et al. Effects of Lithium Treatment on Endocrine Tumors

release of PTH in vitro (105). To summarize, pre-clinical in vitro
studies consistently show that lithium induces proliferation and
PTH secretion in parathyroid cells (Table 1).

TUMORS OF THE ADRENAL CORTEX AND
MEDULLA

Epidemiology
Adrenocortical tumors are common in occurrence with most
of the tumors being benign and non-functional adrenocortical
adenomas (106). A very small proportion of adrenal tumors
known as adrenocortical carcinomas (ACC) are malignant
in nature and can cause significant morbidity and mortality
(107). ACC is a rare malignancy with an incidence of 0.7–
2.0 cases/million inhabitants per year (108). Similar to ACC,
pheochromocytomas, and paragangliomas which are tumors of
adrenal medulla are considered rare tumors affecting around 3
per million people annually (109). Currently, there is no patient-
based information available pertaining to the effects of lithium on
ACC, pheochromocytomas, and paragangliomas.

Mechanism of Action—Pre-clinical
Evidence
At present, there is only one pre-clinical study where the effects
of lithium were analyzed on adrenal cortex tumors. The study
reported dose-dependent inhibition of apoptosis associated with
a reduction in DNA fragmentation in tumor as well as adjacent
normal tissues procured from the patients with adrenal cortex
tumors. In contrast to this, lithium treatment caused enhanced
DNA fragmentation in the adrenocortical tissue of patients
with Cushing disease (110). This study was very preliminary in
nature as the conclusions were drawn from the analysis of DNA
fragmentation observed in the agarose gels and the study utilized
supraphysiological concentrations of lithium (5, 10, and 50 mM).

Up until now the effects of lithium on pheochromocytomas
have been studied on a single cell line that is derived from a rat
pheochromocytoma (PC12). Lithium treatment in PC12 cells at
a concentration equivalent to the levels detected in the serum of
lithium-treated patients (0.5mM) resulted in an increase in cell
number (111). This increase in cell number was not associated
with an increase in proliferation as no significant difference in
DNA synthesis was observed. Rather, lithium protected PC12
cells from thapsigargin and trimethylation-induced cell death.
A higher lithium concentration (5mM) resulted in a reduction
of cell number (111). In another study, lithium treatment had
a concentration-dependent cytotoxic effect on PC12 cells. These
cytotoxic effects were associated with interactions of lithium ions
to amyloid-β monomers, resulting in the formation of β -sheet
fibrils which induced toxic effects within the cells (112).

A similar growth suppression effect of lithium was observed
in a study where PC12 cells were exposed to supraphysiological
concentrations of lithium (5, 10, and 30mM) (16). Growth
suppression at these concentrations was associated with
inhibition of GSK-3β activity via its phosphorylation in
a concentration-dependent manner and reduction in the
production of vasoactive hormones. The exact mechanism by

which lithium phosphorylates and inactivates GSK3 is, however,
not known.

Lithium treatment (1.2mM) has been shown to have
protective effects against morphine-induced cell death in PC12
cells. The protective effects of lithium were associated with
decreased expression of a pro-apoptotic gene (Bax) and increased
expression of an anti-apoptotic gene (BCL-2), resulting in
reduced apoptosis (Figure 1) (113). A similar study reported
the cytoprotective effects of lithium against a β-amyloid peptide
in PC12 cells pretreated with lithium (2mM) for 7 days in
association with increased BCL-2 protein levels (114). Another
study showed that lithium treatment at 1mM concentration
for 5 days protected PC12 cells from hydrogen peroxide-
induced cell death by increasing nuclear translocation of nuclear
factor E2-related factor 2 (Nrf2) protein (115). Altogether,
these studies suggest protective rather than anti-cancer effects
of lithium at therapeutic concentrations. The studies where
cytotoxic effects were observed in PC12 cells were conducted at
very high lithium concentrations and therefore lack translational
significance (Table 1).

OTHER ENDOCRINE TUMORS

Epidemiology
The other endocrine tumors include neuroendocrine tumors
(NETs) and pituitary adenomas (also known as pituitary
neuroendocrine tumors, PitNETs). NETs are a heterogeneous
group of tumors which have both neuro- and endocrine
properties. NETs affect 2–5 people per 100,000 population
annually, but its incidence is increasing every year (116). At
present, there is very limited information available regarding the
effects of lithium on NETs.

PitNETs are the common neoplasms arising from the pituitary
gland, with an estimated prevalence of around 17% (117).
PitNETs are histologically diverse based on their cell of origin and
the type of hormone secreted (118). PitNETs are mostly benign in
nature but can lead to substantial morbidity by hypersecretion of
pituitary hormones. More than 50% of PitNETS are functional
tumors and secrete hormones (117). Currently, there is no
patient-based information available pertaining to the effects of
lithium on PitNETs.

Mechanism of Action—Pre-clinical
Evidence
In an in vitro study performed on NET cell lines- gastrointestinal
(BON-1) and pulmonary carcinoid (NCI-H727) cells, lithium
treatment at 20mM concentration inactivated GSK-3β, inhibited
cellular proliferation and caused cell cycle arrest in both cell
lines. These effects were even more pronounced when lithium
treatment (15mM) was combined with either valproic acid
(3mM) or suberoyl bis-hydroxamic acid (40µM), both of
which activate the Notch signaling pathway (119). In another
study utilizing the same cell lines, lithium caused a dose-
dependent reduction in cell growth through inactivation of GSK-
3β and increased expression of ADP-ribose polymerase, while
suppressing serotonin and chromogranin A cellular levels (120).
These studies suggest an anti-cancer effect of lithium in NET
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cells, however, they are very preliminary in nature and the
observations need to be validated through in vivo models at
therapeutic concentrations. At present, there are no in-vitro or
in-vivo studies where the effects of lithium have been investigated
in PitNETs.

Clinical Evidence
There is only one clinical trial to date that has been conducted
in United States of America by the National Cancer Institute
(NCI) to analyze the effects of lithium on patients with NETs.
The trial included 15 patients with low-grade NETs that were
given 300mg lithium orally 3 times daily for 28 days followed by
measurement of tumor response. The study reported that lithium
was ineffective in demonstrating any objective responses in these
patients and the trial was discontinued early (121).

SUMMARY AND CONCLUSIONS

Patients chronically treated with lithium need to be screened
for hypothyroidism, goiter, and hyperparathyroidism, as
prevalence of these endocrine abnormalities is higher in
lithium-treated patients than in the general population. The
growth inhibitory effects of lithium in non-medullary TC,
pheochromocytoma/paraganglioma and carcinoid were achieved
with supratherapeutic concentrations of lithium in vitro, thus
limiting its translational perspective. Although pre-clinical in
vivo models of growth inhibitory effects of lithium in MTC
were promising, the only clinical trial focused on lithium
therapy enrolled only five patients and was ended before the
endpoints were met, thus limiting any conclusions of lithium

therapy efficacy in MTC. Currently available clinical data
on the efficacy of lithium in therapy of endocrine tumors in
humans is limited and associated with conflicting results. The
most robust data were obtained from clinical trials utilizing
combination of lithium and RAI therapy in patients with goiters
and thyroid cancer. The lithium dosage utilized in these studies
were comparable to the doses used for bipolar and depressive

disorders, which ranges from 0.4–2.0g per day (122). Even

though treatment with lithium has been associated with the
extended retention of RAI in RAI-avid tissues, there is no

long-term clinical benefit of lithium therapy in thyroid cancer.
Future studies may focus on the potential synergistic role of

the combination therapy with NIS-inducing agents such as
MEK or BRAF inhibitors to enhance RAI uptake and lithium
as an agent extending RAI retention time in the management
of metastatic thyroid cancer. More pre-clinical in vivo data
utilizing therapeutic concentrations of lithium in monotherapy
and combination therapy is needed before translation of lithium
from bench to the bedside for the management endocrine tumors
is pursued.
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