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Background: Bladder urothelial cancer (BLCA) treatment using immune checkpoint

inhibitors (IMCIs) can result in long-lasting clinical benefits. However, only a fraction of

patients respond to such treatment. In this study, we aimed to identify the relationships

between immune cell infiltration levels (ICILs) and IMCIs and identify markers for ICILs.

Methods: ICILs were estimated based on single-sample gene set enrichment analysis.

The response rates of different ICILs to IMCIs were calculated by combining the ICILs of

molecular subtypes in BLCA with the response rates of different molecular subtypes

of IMvigor 210 trials to a programmed cell death ligand-1 inhibitor. Weighted gene

co-expression network analysis was used to identify modules of interest with ICILs.

Functional enrichment analysis was performed to functionally annotate the modules.

Screening of key genes and unsupervised clustering were used to identify candidate

biomarkers. Tumor IMmune Estimation Resource was used to validate the relationships

between the biomarkers and ICILs. Finally, we verified the expression of key genes in

molecular subtypes of different response rates for IMCIs.

Findings: The basal squamous subtype and luminal infiltrated subtype, which showed

low response rates for IMCIs, had the highest levels of immune infiltration. The neuronal

subtypes, which showed the highest response rates to IMCIs, had low ICILs. The

modules of interest and key genes were determined based on topological overlap

measurement, clustering results, and inclusion criteria. Modules highly correlated with

ICILs were mainly enriched in immune responses and epithelial–mesenchymal transition.

After screening the key genes in the modules, five candidate biomarkers (CD48, SEPT1,

ACAP1, PPP1R16B, and IL16) were selected by unsupervised clustering. The key genes

were inversely associated with tumor purity and were mostly expressed in the basal

squamous subtype and luminal infiltrated subtypes.

Interpretation: Patients with high ICILs may benefit the least from treatment with IMCIs.

Five key genes could predict ICILs in BLCA, and their high expression suggested that

the response rate to IMCIs may decrease.

Keywords: bladder urothelial cancer, molecular subtype, single-sample gene set enrichment analysis, weighted

gene co-expression network analysis, immune checkpoint inhibitor, immune cell infiltration level, biomarker
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INTRODUCTION

Bladder urothelial cancer (BLCA) is one of the 10 most
common malignancies worldwide. Systemic platinum-based
chemotherapy, introduced nearly 30 years ago, remains the
standard of care for untreated patients with inoperable or
advanced metastatic BLCA and is associated with a 5-year
survival rate of less than or equal to 15% (1). The landscape for
BLCA has recently shifted following the approval of therapies
targeting the programmed cell death-1 (PD-1)/programmed
cell death ligand 1 (PD-L1) axis (2). Anti-immune checkpoint
therapy has tremendously expanded our knowledge of the
immunobiology of cancer. However, response rates to immune
checkpoint inhibitors (IMCIs) are approximately 20% in both the
platinum refractory and previously untreated settings (3). Tumor
immune cell therapy may be the key to combatting cancer;
however, the relationship between immune cell infiltration levels
(ICILs) and the therapeutic effects of IMCIs is not clear.

The therapeutic effects of IMCIs are associated with the
expression of PD-L1 and tumor-infiltrating lymphocytes (TILs)
(4), as well as tumor mutational burden (TMB) (5). Notably, even
if TILs are similar, the tumor microenvironment (TME) may still
vary, and differences in mixed infiltration vs. septal infiltration
may explain these variations (6). Moreover, there are many types
of TILs, including CD8+ T cells, which kill tumor cells, and
regulatory T cells (Tregs), which inhibit CD8+ T cells. Subtle
changes in the proportions of immune cells can have different
effects on tumor progression (7). Overall, tumor escape from
immune surveillance and tumor counterattacks against immune
cells are extremely complex and multifactorial processes.

Molecular subtypes of muscle invasive bladder cancer
(MIBC), classified using The Cancer GenomeAtlas (TCGA) data,
revealed different ICILs and suggested that the basal squamous
subtype and luminal infiltrated subtype can be treated with
IMCIs (8). Indeed, these subtypes have been reported to respond
to immune checkpoint therapy (9, 10). However, a recent study
found that the neuronal subtype, which is associated with a poor
prognosis, had the highest response rate after using the PD-L1
inhibitor atezolizumab, and prognosis was significantly better
than those of the other four subtypes (11). The complete response
(CR) and partial response (PR) of the neuronal subtype reached
100%, whereas those of the other three subtypes, excluding the
luminal subtype, did not exceed 20%.

IMCIs may have applications as novel treatments for patients
with BLCA. However, the relationships between ICILs and the
efficacy of IMCIs have not been elucidated. Accordingly, in this
study, we examined that ICILs could be used to predict the
therapeutic effects of IMCIs and evaluated candidate biomarkers
for ICILs through network analysis and unsupervised clustering.

MATERIALS AND METHODS

Data Sources and Preprocessing
The RNA-sequencing (RNA-seq) results from 433 tissues
and 408 cases of human bladder transitional cell carcinoma
and papilloma samples, as well as data on the clinical
characteristics of the patients, were obtained from TCGA
database (portal.gdc.cancer.gov). Five MIBC molecular subtypes

based on TCGA data were derived from a study by Robertson
et al. (8). The response rates of different molecular subtypes to
IMCIs were described by Kim et al. (11). In single-sample gene
set enrichment analysis (ssGSEA), we normalized the expression
data to Transcripts Per Million after calculating the total lengths
of all exons for all transcripts. In weighted gene co-expression
network analysis (WGCNA), we normalized the data using R
package edgeR and filtered differentially expressed genes (DEGs)
with an absolute fold change of >1 and a false discovery rate
of <0.05.

Gene Signatures
A previously described procedure was used to determine the
infiltration of immune cells in BLCA (12). We obtained a
marker gene set for immune cell types from Bindea et al. (13).
To calculate the one-sample gene set enrichment, we used the
GSEA program to obtain the absolute enrichment scores from
previously validated gene signatures.

Implementation of ssGSEA
The infiltration levels of immune cell types were quantified
by ssGSEA in R package gsva. ssGSEA applies gene signatures
expressed by immune cell populations (13) to individual cancer
samples. The deconvolution approach used in our study included
24 immune cell types that were involved in innate immunity
[natural killer (NK) cells, NK CD56dim cells, NK CD56bright

cells, dendritic cells (DCs), plasmacytoid DCs, immature DCs,
activated DCs (aDCs), neutrophils, mast cells, eosinophils,
and macrophages] and adaptive immunity [B, T, CD8+ T,
T helper (Th), Th1, Th2, Th17, T gamma delta, T central
memory, T effector memory, T follicular helper (Tfh), Tregs, and
cytotoxic T cells]. The obtained cytolytic activity (CYT) score
obtained from the data set of Rooney et al. (14) consisted of
cytolytic genes and was calculated as the geometrical means for
perforin 1 and granzyme A. These two key cytolytic effectors
are dramatically upregulated upon CD8+ T-cell activation and
during productive clinical responses to anti-CTLA-4 and anti-
PD-L1 immunotherapies; these two molecules are co-expressed
in TCGA samples (14). We used the CYT scores to evaluate
immune infiltration in different samples.

WGCNA and Module Preservation
WGCNA was performed using the WGCNA R package
(15). Because some genes with no significant changes in
expression between samples were highly correlated in WGCNA,
genes with the most differential expression were used in
subsequent WGCNA. Genes with the highest 25% of DEG
variance were selected (16), guaranteeing the heterogeneity and
accuracy of bioinformatics statistics for further co-expression
network analysis. First, RNA-seq data were filtered to reduce
outliers. The co-expression similarity matrix consisted of the
absolute values of the correlation between transcript expression
levels. A Pearson correlation matrix was constructed for
paired genes. We constructed a weighted adjacency matrix
using the power function amn = |cmn|β (cmn = Pearson
correlation between gene m and gene n; amn = adjacency
between gene m and gene n). The parameter β emphasized
a strong correlation between genes and penalized a weak
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correlation. Next, an appropriate β value was selected to
increase the similarity matrix and achieve a scale-free co-
expression network. The adjacency matrix was then converted
into a topological overlap matrix (TOM), which measured
the network connectivity of genes defined as the sum of
adjacent genes generated by all other networks. Average linkage
hierarchical clustering was performed based on TOM-based
dissimilarity measurements, and the minimum size (genome)
of the gene dendrogram was 30. Through further analysis
of modules, we calculated their dissimilarity and constructed
module dendrograms.

Confirmation of Significant Modules
To determine the significance of each module, gene significance
(GS) was calculated to measure the correlation between genes
and sample traits. Module eigengenes were considered the
main components in the principal component analysis of each
gene module, and the expression patterns of all genes were
summarized as a single feature expression profile within a

given module. Next, GS was defined as the log10 conversion
of the p-value in the linear regression between gene expression
and clinical data (GS = lgP). Module significance (MS) was
defined as the average GS within the module and calculated
to measure the correlation between the module and sample
traits. Statistical significance was determined using the relevant
p-values. In order to increase the capacity of the modules, we
selected a cutoff (<0.25) to merge some modules with similar
heights. Next, we selected the ICILs previously calculated by
ssGSEA and some clinical data for the clinical phenotype.
The gene modules associated with the clinical phenotype were
then analyzed.

Key Gene Identification
After selecting modules of interest, we calculated GS and
module membership (MM, correlation between the module
own genes and gene expression profiles) for each key
gene and set their thresholds. In most similar studies, the
thresholds for screening key genes in the module were

FIGURE 1 | Immune infiltration landscape of BLCA. (A) Unsupervised clustering of 408 patients from The Cancer Genome Atlas cohort using single-sample gene set

enrichment analysis scores from 24 immune cell types. Molecular subtype, sample type, stage, histological, survival, gender, anatomic location, and race are shown in

the lower panel. Hierarchical clustering was performed with Euclidean distance and Ward linkage analyses. Three distinct immune infiltration clusters, termed high

infiltration, moderate infiltration, and low infiltration, were defined. (B) Relative cytolytic scores (CYT scores) for tumors with high, moderate, and low immune infiltration

were clustered according to overall immune cell infiltration. Kruskal–Wallis tests were used for analyses, and results with P-values of < 0.0001 were considered

significant. Error bars represent the medians, interquartile ranges, and minimum to maximum values. (C) The evolution of immune infiltration levels in 19 cases with

paracancerous tissues.
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defined as cor. gene MM >0.8 and cor. gene GS >0.2
(17, 18), and we adjusted these values appropriately to
suit our study.

Functional Annotation—FunRich
FunRich (www.funrich.org) is an independent software tool for
functional enrichment and interaction network analysis of genes
and proteins (19). To explore the biological functions of genes
in modules, we used the FunRich enrichment analysis function
for analysis.

Tumor IMmune Estimation Resource
(TIMER)
TIMER (cistrome.shinyapps.io/timer) provides a user-friendly
web interface for dynamic analysis and visualization of the
associations between immune infiltrates and gene expression
(20). We used the Gene module to verify the association

between genes and immune infiltration. The scatterplots were
generated and displayed, showing Spearman’s correlation and
statistical significance.

Validation of Key Genes in the Different
Molecular Subtypes
Few expression profiling, sequencing, or array data have been
published for different prognostic outcomes after treatment with
IMCIs. Therefore, according to the different responses of various
molecular subtypes to IMCIs, we identified data with molecular
subtypes to verify the key genes.

RESULTS

Immune Phenotype Landscape in BLCA
Diverse immune cell populations infiltrate the TME and activate
or suppress the antitumor response. To assess the spectrum of

FIGURE 2 | Molecular subtypes and immune infiltration. (A) Different ICILs showed variations in the proportions of molecular subtypes. (B) ICILs of different molecular

subtypes were altered. (C) TCGA was similar to the IMvigor 210 trial in terms of total sample size and molecular subtype ratio. (D) The low ICIL group had the highest

efficacy after receiving IMCIs. High ICILs had the lowest efficiency. ICILs, immune cell infiltration levels; IMCIs, immune checkpoint inhibitors.
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immune cell infiltration, the ssGSEA (21) approach was utilized
to deconvolve the relative abundance of each cell type based on
expression profiling data retrieved from the TCGA database. In
this analysis, 408 patients with BLCA, for whom transcriptome
profiling data and clinical characteristics were available, were
included in this study. We found significant heterogeneity in
terms of infiltration of numerous immune cell types among
the cohort (Figure 1A). To facilitate further characterization,
unsupervised clustering was applied to categorize the cohort into
three infiltration subgroups, i.e., termed high (n= 55), median (n
= 195), and low (n= 183) infiltration.

Considering the concomitant infiltration of activating and
suppressive immune cell types, we investigated whether higher
ICILs were correlated with elevation of cytotoxic function.
To this end, CYT, which can serve as a surrogate index for
quantifying the magnitude of the antitumor response, was

examined. Patients with high infiltration status showed the
highest CYT scores, indicating that cytotoxic function was
efficiently elicited in those patients (Figure 1B).

A comparative analysis of 19 cases with normal tissues
revealed that most normal tissues showed moderate infiltration.
The corresponding cancer tissues showed a partial decrease in
the ICILs (Figure 1C). Although the difference in ICILs was
minor, we found that this result was related to lack of sufficient
post-cluster ICILs grading. After increased grading, the ICILs
in all cases were different. Therefore, in the next WGCNA, we
analyzed DEGs.

ICILs of Different Molecular Subtypes
Although there were few cases of the neuronal subtype, the
high response rate to IMCIs was interesting. There were only
20 samples of neuronal subtypes; 15 had low ICILs, and 5 had

FIGURE 3 | Weighted gene co-expression network of bladder urothelial cancer. (A) Identification of a co-expression module in bladder urothelial cancer. The branches

of the cluster dendrogram correspond to the 11 different gene modules. Each piece of the leaves on the cluster dendrogram corresponds to a gene. (B) Correlations

between the gene module and clinical traits. The correlation coefficient in each cell represents the correlation between the gene module and the clinical traits, which

decreased in size from red to blue. The corresponding P-values are also shown. (C) Scatter plot of module eigengenes in pink, brown, and yellow modules. The red

line indicates the screening threshold. The burgundy box identifies the key genes for each module.
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moderate ICILs. Thus, although 75% of cases of the neuronal
subtype had low ICILs, we could not assume that low ICILs were
responsive to IMCIs because most low ICILs were observed for
the luminal-papillary subtype, which had a low response rate
to IMCIs (Figure 2A). In addition to the neuronal subtype, the

luminal subtype showed a better response rate than the other
three subtypes, and 68 and 32% of cases of this subtype had low
and moderate ICILs, respectively (Figure 2B). There were only
three molecular subtypes showing high ICILs, and their response
rates to IMCIs were all low; the basal squamous subtype and

FIGURE 4 | Enriched functions of the modules highly correlated with immune infiltration. Biological processes (BPs), cellular components (CCs), molecular functions

(MFs), and biological pathways are listed. For detailed enrichment results, refer to the Supplementary Material.

FIGURE 5 | Five candidate biomarkers were found by unsupervised clustering, and the sources of genes identifying different immune function modules can be found

in the Discussion section.
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the luminal infiltrated subtype accounted for 98% of cases. Thus,
these findings showed that high ICILs were associated with low
response rate to IMCIs.

CR and PR of Different ICILs
Based on the CR and PR ratios of different molecular subtypes,
we calculated the response rates of different ICILs to IMCIs. The
ratio of CR to PR was derived from the IMvigor 210 cohort
study (11), which included 348 cases, and the proportion of
each molecular subtype was similar to that of the 408 cases
from the TCGA database (Figure 2C). Finally, we calculated the
ratio of CR to PR for different ICILs in TCGA in combination
with the ratio of each molecular subtype (Figure 2D). Although
the response rates of different ICILs did not exceed 30%, the
response rate to IMCIs increased with the decrease in ICILs. The
percentage of low ICILs was 7% higher than that of high ICILs.

WGCNA: Identification of the Most
Significant Modules and Genes
Wgcna was performed to construct a gene co-expression network
for identification of biologically significant gene modules and
elucidation of genes associated with ICILs. Eliminating outlier
samples (Supplementary Figure 1A), the 8510 DEGs with the
highest 25% of variance by cluster analysis were placed in
a module. In this study, we selected β = 3 (scale-free R2

= 0.957) as a soft threshold to ensure a scale-free network
(Supplementary Figure 1B) and obtained 11 modules without
merging for subsequent analysis (Figure 3A).

To analyze the relationships between the modules and ICILs
of the samples, we used MS as the overall gene expression level
of the corresponding module to calculate the correlations with
clinical phenotypes. The pink module was most significantly
associated with the ICILs, with a correlation close to 0.65. In
addition, the brown and yellow modules exhibited relatively high
positive correlations with immune infiltration (Figure 3B). Thus,
we chose these modules as the modules of interest and used them
for subsequent analyses.

To determine the importance of genes in the module
and the correlations between gene expression and ICILs, we
appropriately adjusted the screening thresholds for MM and GS
to select key genes. We identified 9 key genes (ACAP1, CD48,
CXCR4, GYPC, IL16, NCKAP1L, PPP1R16B, SEPT1, andWIPF1,
cor.MM >0.8 and cor.GS > 0.5) in the pink module, 4 key
genes (PARP12, TAP1, TAP2, and TYMP, cor.MM >0.7 and
cor.GS >0.4) in the brown module, and 10 key genes (COL6A2,
CTHRC1, EMILIN1, FBN1, FSTL1, GLT8D2, LRRC32, MMP2,
TGFB, and TIMP2, cor.MM >0.8 and cor.GS >0.4) in the yellow
module (Figure 3C).

Functional Annotation of Modules
Although the three modules had high correlations with immune
infiltration, the functions were not the same (Figure 4). Both the
pink module and the brown module were related to immune
responses. The pink module was also related to chemokine
activity, and the brown module was related to interferon
signaling, both of which are immune-related functions. However,
the yellow module was different, showing associations with the

extracellular matrix and the epithelial–mesenchymal transition
(EMT). Although this result was surprising, it was consistent
with previous reports demonstrating that EMT-related genes are
related to resistance to PD-1 blockade in bladder cancer (21).

Cluster Analysis
To assess the relationships among immune cells, immune-related
genes, and key genes, unsupervised clustering was performed
using ssGSEA (Figure 5). We noted that the genes from different
modules were clustered in different zones that were close to
each other. However, the key genes in the pink module were
distributed in two cluster zones, suggesting that differences
existed among these key genes, even though their biological
functions were similar. CD48, SEPT1, and ACAP1 in the pink
module were strongly associated with the toxicity of T cells,
whereas PPP1R16B and IL16 also showed similar associations but
were more closely related to B cells and Tfh cells. Among the key
genes in the brown module, TAP1 and TAP2 encode components
of MHC I. Together with PARP12 and TYMP, these key genes
were closely related to aDCs and NK CD56dim cells. The key
genes in the yellowmodule, which was related to the mechanisms
of the EMT and extracellular matrix, were clustered even more
closely together and had the closest relationship with NK cells.
Based on the results of these cluster analyses, we considered
CD48, SEPT1, ACAP1, PPP1R16B, and IL16 in the pink module
as important candidate genes because their expression levels best
reflected the ICILs of the samples and cytotoxic function.

TIMER Validation and Co-expression
TIMER utilizes data from the TCGA database to facilitate
the visualization of associations among genes and immune
infiltration. CD48, SEPT1, ACAP1, PPP1R16B, and IL16 were all
negatively correlated with tumor purity, supporting the results
for highly correlating with ICILs (Figure 6A). Additionally, the
co-expression of these five genes was analyzed using the R corplot
package, and no correlations were<0.78; the correlation between
ACAP1 and SEPT1 reached 0.97 (Figure 6B).

Key Genes in Molecular Subtypes
There was a significant difference in the expression of the
key genes in different molecular subtypes based on TCGA
data, using one-way analysis of variance (ANOVA). Among the
five molecular subtypes, five key genes were highly expressed
in the basal and luminal infiltrated subtypes, both of which
had low responses to IMCIs (Figure 6C). In Gene Expression
Omnibus, GSE87304 with molecular subtype was screened out
for key genes. The expression levels of the five key genes
were higher in the basal and luminal infiltrated subtypes than
in the luminal subtype (Figure 6D). The basal and luminal
infiltrated subtypes had the highest ICILs and the worst IMCI
response rate.

DISCUSSION

The use of IMCIs as therapeutic agents for BLCA has
resulted in favorable outcomes in some patients; however, most
patients do not benefit from treatment with these agents.
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FIGURE 6 | Verification of five candidate markers. (A) The correlation of five biomarkers with tumor purity and fraction of immune cells. (B) The five candidate

biomarkers were highly correlated with each other at the transcript level. Correlation analysis using Spearman correlation; results with P-values of < 0.0001 were

considered significant. (C) Candidate biomarkers were highly expressed in the basal squamous subtype and the luminal infiltrated subtype, and the ICILs of these two

subtypes were the highest. Gene expression differed among subtypes (P < 0.01). Differences were analyzed by one-way ANOVA. (D) In GSE87304, the expression of

the candidate genes in the previously described subtypes was still the highest.

Tumor immunity is an extremely complex biological process,
and factors affecting the efficacy of IMCIs include PD-L1
expression levels and TMB. In our study, we found that
ICILs affected the response rate of IMCIs, and higher ICILs
led to lower response rates. In order to easily identify the
ICILs of BLCA, the modules obtained by WGCNA were
related to the ICILs calculated by ssGSEA, and key genes were
obtained through further screening and unsupervised clustering.
High expression of the key genes reduced the effectiveness of
IMCI treatment.

Our results showed that increased expression of key genes
indicated decreased tumor purity, which was not solely caused
by ICILs because there are many other cells, such as cancer-
associated fibroblasts (CAFs), also found in the tumor (22).
CAFs can promote the EMT and are also associated with
tumor progression and treatment resistance (23, 24). Although
CAFs are likely to be associated with ICILs, the yellow
module, which was enriched in EMT and extracellular matrix
functions, was highly correlated with ICILs. Therefore, CAFs
may be responsible for the high resistance of IMCIs in
high ICILs.

In this study, we identified a number of representative
genes related to immunity and found that these genes were
involved in the immune system through different mechanisms.
During the development of tumor immunity, tumors showmany
alterations, including suppression of identity characteristics
and stress, induction of immune cell apoptosis, attraction of
Tregs, and neutralization of complement. These processes may
block the immune system from clearing tumor cells, and the
genes involved in these processes are initially aggregated for
subsequent cluster analysis. The process of hiding the tumor
identity involves major histocompatibility complex (MHC) I-
related genes (e.g., HLA-A/B/C, TAP1/2, TAPBP, and B2M). The
genes that hide stress to prevent NK cells from attacking include
MICA, MICB, and NKG2D (25). Additionally, genes involved in
counterattacking immune cells and inducing apoptosis include
PD-1 (PDCD1), PD-L1 (CD274), and CTLA4 (26). FAS also
binds to FASL to activate the non-inherent apoptotic pathway
(27, 28), and tumor cells release transforming growth factor
(TGF)-β and interleukin (IL)-10 to counterattack immune cells
(29, 30). Tregs block lymphocytes from attacking tumor cells,
which release C–C motif chemokine ligand 22 to bind to
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Tregs expressing C–C motif chemokine receptor 4, thereby
attracting Tregs to tumors (31). CD46, CD55, and CD59 are
membrane-bound complement regulatory proteins that prevent
complement-mediated cytolysis (31, 32).

In our cluster analysis, we included genes that have been
shown to be associated with ICILs. Among these genes, the
well-known T-cell surface receptors PD-1 and CTLA4 (33)
were clustered in the same group as the five important
candidate genes: CD48 (encoding CD48), SEPT1 (encoding
Septin 1), ACAP1 (encoding ArfGAP with coiled-coil, Ankyrin
repeat, and PH domains 1), PPP1R16B (encoding protein
phosphatase 1 regulatory subunit 16B), and IL16 (encoding
IL-16). These genes were also closely related to CD8T
cells and cytotoxic cells. Moreover, in the final molecular
subtype validation, their expression was highest in the basal
and infiltrated subtypes of high ICILs. High expression of
these molecules could indicate that the effects of IMCIs
may decrease.

To elucidate the associations between these five genes and
TILs, further investigations showed that except for PPP1R16B,
all other genes had been previously reported to be associated
with immune cells. CD48, a member of the signaling lymphocyte
activation molecule family, participates in the adhesion and
activation of immune cells, thereby contributing to T-cell
activation and proliferation (34). SEPT1, a member of the
septin family of GTPases, contributes to cancer progression
and proliferation in oral squamous cell carcinoma (35).
Septins are cytoskeletal proteins that provide compression
and rigidity and support efficient motion of motile T cells
(36). PPP1R16B (TIMAP), an endothelium-enriched TGF-β
downstream protein that structurally belongs to the targeting
subunit of myosin phosphatase, regulates macrophage M2
phenotypic phagocytosis (37). IL-16, a cytokine known for its
chemotactic and inflammatory properties, induces proliferation
in cutaneous T-cell lymphoma T cells and plasma cells inmultiple
myeloma and recruits CD4+ protumor macrophages in breast
cancer (38, 39).

The brown module, which included the MHC components
TAP1 and TAP2, and the yellow module, which was closely
related to the mechanism of the EMT, were both associated with
ICILs. Cytotoxic T cells are known to destroy cancer cells by
recognizing the peptides presented via MHC-I on the tumor cell

surface (40). In addition, the EMT not only is involved in tumor
metastasis but also promotes immune escape and enhances
immunosuppressive signals (41, 42). Therefore, ICILs in tumors
are a manifestation of a very complex biological process. Our
findings showed that high ICILs may have no advantage in the
treatment of IMCIs.

In the calculation of the response rates of different ICILs for
IMCIs, we showed that the response rates of different molecular
subtypes in various ICILs were the same. This may have caused
some bias in the results. However, in BLCA, few studies have
evaluated IMCIs using sequencing or array profiling. Further
studies are needed to verify our conclusions.

In summary, our results suggested that patients with high
ICILs may benefit the least from treatment with IMCIs in BLCA.
CD48, SEPT1,ACAP1, PPP1R16B, and IL16were candidate genes
for determining ICILs in BLCA, and these genes may have
application as biomarkers to guide treatment with IMCIs.
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