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Although rare, glioblastomas account for the majority of primary brain lesions, with a

dreadful prognosis. Magnetic resonance imaging (MRI) is currently the imaging method

providing the higher resolution. However, it does not always succeed in distinguishing

recurrences from non-specific temozolomide, have been shown to improve -related

changes caused by the combination of radiotherapy, chemotherapy, and targeted

therapy, also called pseudoprogression. Strenuous attempts to overcome this issue

is highly required for these patients with a short life expectancy for both ethical

and economic reasons. Additional reliable information may be obtained from positron

emission tomography (PET) imaging. The development of this technique, along with the

emerging of new classes of tracers, can help in the diagnosis, prognosis, and assessment

of therapies. We reviewed the current data about the commonly used tracers, such as

18F-fluorodeoxyglucose (18F-FDG) and radiolabeled amino acids, as well as different

PET tracers recently investigated, to report their strengths, limitations, and relevance in

glioblastoma management.

Keywords: glioblastoma, imaging, PET, FDG, DOPA, radiolabeled amino acids, PSMA

INTRODUCTION

Gliomas are the most common primary malignant brain tumors arising from glial cells. The glial
cells form the neuronal environment and are involved in myelin production and in the support
and protection of the neurons. A new World Health Organization (WHO) classification has been
proposed recently, combining the gliomas both from histological and molecular findings and
classifying them into four grades (1). Glioblastomas are the most frequent type of gliomas in adults
(about 55%), with an increasing annual incidence of 3–4 per 100,000 people newly diagnosed
in the USA and Europe. The disease is slightly more frequent in males than in females. They
are particularly locally aggressive, with rare cases of metastases. The prognosis is dismal with a
5-year survival rate of lower than 10% (2, 3). According to the 2016 WHO classification, two
main subtypes of glioblastomas are identified: the isocitrate dehydrogenase (IDH)-wildtype and
the IDH-mutant variants. The IDH mutation leads to a D2-hydroxyglutamate overproduction,
involved in a large number of cellular reactions and in histone and DNA hypermethylation (4, 5).
Primary or de novo glioblastoma is frequently characterized by the presence of the IDH-wildtype
isoform in ∼90% of cases, occurring in older patients. The other 10% with the IDH-mutant
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variant is seen in younger patients with secondary glioblastoma,
with a prior history of lower grade diffuse glioma (1).
The risk factors currently identified are the exposure to
therapeutic doses of radiation and genetic syndromes (such
as neurofibromatosis 1 and 2 and the Li-Fraumeni syndrome)
(6). Clinical symptoms include headaches, epileptic seizures,
focal neurologic deficit, confusion, memory loss, and personality
modifications, depending on the location of the tumor (7).
The gold standard treatment is surgical resection, radiotherapy,
and chemotherapy (8, 9). Although complete surgical resection
of glioblastomas is often not achievable due to their highly
infiltrating nature, the extent of surgical resection remains a
key component for survival improvement (10–12). The second
cornerstone is subsequent radiation therapy that can lead to an
improvement in survival rate of 6 months (13). For patients up
to 71 years, the standard treatment is adjuvant administration
of temozolomide chemotherapy treatment, leading to an
improvement in progression-free survival (PFS) and overall
survival (OS) (14). All patients with a 2.5 months global
survival benefit are eligible (15). However, a better efficacy is
observed in patients with a methylated MGMT promoter (3, 16).
Targeted therapies, such as the anti-VEGF agent bevacizumab
in association with temozolomide, have been shown to improve
PFS, but no impact on OS has been reported (17, 18). Despite the
initiation of such aggressive treatments, relapses are the rule. The
reference imaging technique to monitor the onset of recurrences
is magnetic resonance imaging (MRI), more specifically,
multimodal MRI (MRI with gadolinium injection associated
with spectroscopy, perfusion, and diffusion). Glioblastomas
conventionally appear as hypo or iso-intense on T1, enhanced in
“a ring pattern” in T1 with gadolinium, and are hyper-intense on
T2 and FLAIR acquisitions. The challenge is to improve diagnosis
and to discriminate post-therapeutic recurrences from radiation
complications, such as pseudoprogression or radiation necrosis,
and from pseudoresponse.

Pseudoprogression can be defined as a subacute radiation-
related side effect. It occurs after radiotherapy, particularly with
high-dose delivery or with associated chemotherapy, occurring
in the first 3 months after radiotherapy, or later, making
identification and diagnosis difficult. This concerns about 20%
of patients, with an incidence twice higher in patients with
glioblastoma harboring a methylation of the MGMT promoter
for which the prognosis is better. The pathophysiology is not
well-understood, and some neurological symptoms may be
associated. Spontaneous resolution is generally observed within
a few weeks or months. No specific treatment is needed (19, 20),
and these patients are therefore at risk of inappropriate further
treatment. Radiation necrosis is a later and chronic inflammation
radiation-related complication. This brain tissue injury occurs at
least 3 months after completing radiotherapy, with a reported
incidence from 5 to 40% (21). Clinical symptoms and imaging
features may mime a relapse. Radiation necrosis lesions may be
associated with recurrence lesions, making it difficult to diagnose
conclusively (22). Biopsy is the gold standard but may not be
feasible or may be inconclusive due to a limited and non-
representative sampling. Furthermore, this invasive procedure
may lead to further damage. Proposed treatments include

steroids, bevacizumab, surgical resection, anticoagulation, or
hyperbaric oxygen therapy.

Pseudoresponse is defined as an important diminution
in contrast enhancement within the first two days after
antiangiogenic therapies initiation. It is an indirect effect of
treatment on vascular permeability but does not reflect a real
antitumor effect (23, 24). The Macdonald criteria published in
1990 are based on the evaluation of tumor size measured on
contrast enhancement (25). However, contrast enhancement is
non-specific, reflecting only the extravasation of gadolinium
through the disrupted blood–brain barrier (BBB). These response
assessment in neuro-oncology (RANO) criteria added T2 and
FLAIR modifications to contrast enhancement to evaluate tumor
response (26). RANO has recently evolved into RANO modified
and RANO in immunotherapy to take into account new
treatments, such as targeted therapies and immunotherapy, and
to allow standardized comparison in clinical trials (27, 28).
Regardless of the evaluation criteria used, MRI techniques have
some limitations, especially the confusion caused by treatment-
induced modifications, such as radiation therapy, bevacizumab,
or even corticosteroids that induce tumor shrinkage (29). More
effective tools are needed to overcome these drawbacks and bring
relevant additional information.

Functional nuclear imaging may investigate metabolism-
related changes for oncological response assessment (30). Many
positron emission tomography (PET) tracers have been studied,
such as 18F-FDG (which explores glucose metabolism), the
nucleoside analog 18F-fluorothymidine (18F-FLT), radiolabeled
amino acids such as 18F-fluorodihydroxyphénylalanine (18F-
FDOPA), 18F-fluoro-ethyl-tyrosine (18F-FET), 11C-methionine
(11C-MET), and hypoxia tracers such as 18F-fluoromisonidazole
(18F-FMISO) (Figure 1). These different tracers can provide
additional reliable data in equivocal situations, guide a biopsy,
help plan the tumoral volume delineation before radiotherapy,
detect early tumor recurrence, distinguish pseudoprogression
from relapse, evaluate response early during treatment (especially
with new targeted treatments), and have prognostic value. Here,
we detail the contributions that these tracers provide and
we explore the opportunites that new tracers currently under
evaluation may provide beyond routinely used tracers.

As explained above, the two major problems we are currently
facing are the early distinction of tumor recurrence from post-
therapeutic complications as well as the predictive response
to targeted treatment. They imply both ethical and medico-
economics issues, avoiding to inadequately discontinue an
effective treatment or maintain an ineffective treatment.

CARBOHYDRATE METABOLISM TRACER:
18F-FDG

The 2-deoxy-2-fluoro-D-glucose is a glucose analog used by
tumors cells overexpressing GLUT1 and GLUT3 transporters in
malignancies and is the most commonly used PET tracer in
tumor assessment. After active transportation across the BBB, it
is captured by the cells and phosphorylated as the first step of the
Krebs cycle, preventing further release.
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FIGURE 1 | Pathophysiological mechanisms of main radiotracers used in glioblastomas investigation in functional nuclear imaging.

Despite its interesting role in differentiating low-grade from
high-grade gliomas, no reliable cutoff level has been able to
characterize brain tumors. The cutoff that Delbeke et al. proposed
was not confirmed in semiquantitative analysis because of a
large overlap between tumor standard uptake value (SUV)max
and healthy parenchyma contralateral brain SUVmax (31–33).
Furthermore, potential false positives, such as granulomatous
diseases (tuberculosis or sarcoidosis), pyogenic abscesses, fungal
infections, or other primary brain tumors, such as primary
brain lymphomas, limited its role in initial and differential
diagnosis (34–36).

It could however help in guiding the biopsy by highlighting
the most hypermetabolic tumor area (37).

Its performances in discriminating radiation necrosis from
tumor relapse are still debated (21). Assumptions for the use
of 18F-FDG were based on an increase in metabolic rate in

tumor recurrence, theoretically leading to a hot spot, compared
to supposedly reduced metabolic rate in radiation necrosis
leading to a cold spot (38). Initial studies reported strong
performances (39–41), but the specificity varies greatly from one
study to another (40–94%), while the sensitivity remains rather
consistent (81–86%) (21). These differences could be explained
by heterogeneity in the type of radiation, tumor heterogeneity
or subtypes, and the timing of the PET examination after
radiotherapy (29).

However, these encouraging performances have been
revised downward. A study including the results of 18F-FDG
PET vs. stereotactic biopsy demonstrated sensitivity and
specificity of 43 and 100%, respectively, in the differentiation
between recurrence and radiation necrosis (42). Indeed,
PET interpretation based on the detection of an abnormal
hypermetabolic or hypometabolic spot compared with the
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surrounding area or the contralateral equivalent tissue is
challenging. The high physiological brain uptake limits
brain tumor detection. False-positive lesions—inflammation,
abscesses, foci of gliosis—and false-negative lesions, such
as cerebral necrosis, limits reliability (43). Another issue is
the frequent association of radiation necrosis with residual
lesions (39). 18F-FDG is therefore disappointing in resolving
this thorny issue (44). The utility of 18F-FDG would lie in
the exploration of enhanced lesions on MRI to eliminate a
differential diagnosis when clinical symptoms and MRI are
discordant. A hypometabolic feature would allow the patient
to be freed from biopsy or new treatments and would allow a
simple follow-up (45).

Its prognostic and predictive roles are less controversial and
better assessed. It is a recognized prognostic tool, regardless of its
schedule in follow-up (46–48).

It is a significant independent prognostic factor for high-grade
glioma before treatment (49) as well as an important predictive
factor of survival in patients with suspicion of glioma relapse (50).

A ratio of 2.0 or 2.5 between the residual lesion SUVmax
and the healthy white matter SUVmax could be used as a cutoff
to identify patients with reduced survival who may potentially
benefit from other therapeutic strategies (51).

Early changes in the glucose metabolic rate predicted response
to temozolomide but failed to predict response to temozolomide
plus radiotherapy (52). In treatment with bevacizumab and
irinotecan, 18F-FDG is a predictive biomarker of response to
treatment, with an uptake correlated with survival to a greater
extent than any other prognostic factor tested (53).

Its role in tumor delineation is limited by its lack of specificity,
other tracers have a better performance in this indication
(Figure 2) (54).

Dose escalation in radiation therapy, based on the 18F-
FDG uptake, led to an additional boost in the hypermetabolic
tumor areas. Although no additional toxicity was reported, this
dose escalation did not improve PFS or OS in comparison to
institutional historical series. Most recurrences occurred at sites
that received the irradiation boost (55).

Several points have been stressed to improve PET with
18F-FDG in this disease. Delayed examinations could increase
the examination performances by enhancing the tumor-to-
normal brain uptake contrast. A better discrimination of tumors
compared to the surrounding gray substance was reached on
late images performed at 180–480min both on visual and
semiquantitative analysis. Imaging at 300min (5 h) allowed an
18% increase in the tumor/gray matter ratio (T/G ratio). This
could result from an improved degradation of 18F-FDG-6-
phosphate in the normal cerebral parenchyma compared to the
tumor. However, performing such delayed images in current
clinical practice is rarely feasible (56).

It is of paramount importance to perform MRI to compare
information. Hybrid PET/MRI could better allow to discriminate
radiation necrosis from tumor recurrence by combining the
PET parameters and MRI perfusion parameters (29, 57–59).
The composite association of the apparent diffusion coefficient
(ADC) on diffusion MRI with SUVmax/normal brain ratio on
PET could also allow the identification of patients at risk of

progression. Those with an ADC ≤1.400 × 10−5 mm2/s and
with a SUVmax/Normal brain index >1.5 would be most at
risk of tumor progression (60). Other authors reported that
tumor cross-product and metabolic tumor volume (MTV) on
PET at time of first recurrence were significantly correlated with
survival (61).

CELL MEMBRANE METABOLISM:
18F-FLUOROCHOLINE AND 11C-CHOLINE

Choline is a metabolite incorporated into cancer cell’s membrane,
which therefore reflects cellular membrane metabolism
through its incorporation in different choline-transporting
transmembrane systems, such as high-affinity choline
transporters (CHTs), choline transporter-like proteins (CTLs),
organic cation transporters (OCTs), and organic cation/carnitine
transporters (OCTNs), and through the upregulation of choline
kinase metabolizing choline to phosphatidylcholine. It can be
radiolabeled with either 18F or 11C (62).

11C-choline is used to differentiate high-grade from low-
grade gliomas but low-grade gliomas and non-neoplastic lesions
failed to be distinguished (63). In single lesions enhanced on
MRI, the uptake of 18F-fluorocholine was significantly higher in
high-grade gliomas compared with benign lesions with SUVmax
lesions (1.89 ± 0.78) vs. (0.59 ± 0.31), respectively (p < 0.0001).
The increased uptake in the peritumoral area was characterized
high-grade gliomas (64). However, investigations on malignant
and non-malignant lesions from brain and other locations
showed that uptake may occur in lesions other than malignant
ones, and recommended caution in interpreting results (65).
For example, benign lesions, such as tumefactive demyelination
and radiation-induced mass, may be the site of moderate to
significant 18F-fluorocholine uptake (66).

18F-Fluorocholine may be useful in differentiating tumor
recurrence from radiation necrosis. There is a very low uptake
in acute radiation necrosis in rats based on disruption of the
BBB and uptake by inflammatory cells, especially macrophages.
In humans, radiation necrosis differs because dose and type of
irradiation are obviously different, and the onset of a chronic
phase of radiation injury is frequently observed, but the use of
18F-fluorocholine is nevertheless considered (67) and reinforced
with results obtained from 55 patients with suspected brain
tumor recurrence or radiation necrosis after radiation therapy,
including initial grade-IV gliomas. 11C-choline exceeded the
performance of 18F-FDG, with sensitivity and specificity of
92.3 and 76.9%, and 87.5% and 62.5%, respectively. However,
histologic confirmation was performed in only a few patients.
In addition, two false positives—gliosis and post-radiation
granuloma—and three false negatives were reported, including
two negative glioblastomas attributed to a too short delay after
the end of radiotherapy (68).

RADIOLABELED AMINO ACID

Amino acid incorporation into membrane transporters is
upregulated in tumor cells, regardless of the permeability of the

Frontiers in Oncology | www.frontiersin.org 4 November 2019 | Volume 9 | Article 1134

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Moreau et al. PET Tracers in Glioma

FIGURE 2 | Contrast-enhanced MRI (top row) and multiple PET tracers (bottom row) in glioblastoma. (A) 18F-fluorodeoxyglucose (18F-FDG), (B)
18F-fluoroethyltyrosine (18F-FET), (C) 18F-fluoromethylcholine (18F-FCho), (D) 18F-fluoromisonidazole (18F-FMISO) PET in human glioblastoma, (E) 18F-fluoroazomycin

arabinoside (18F-FAZA) PET of the rat F98 model, (F) 18F-fluorothymidine (18F-FLT) PET, and (G) 18F-AIF-NOTA-PRGD2 (18F-RGD) PET/CT in human GB. Bolcaen

et al. (54). Used with permission from the publisher.

BBB. Their contribution can outperform the conventional and
18F-FDG limitations and drawbacks, in particular for contentious
cases (69). The intense uptake in tumors and weak capture in the
normal brain provide a higher contrast and better delineation
between tumors and healthy surrounding tissue (29). The non-
specific increase in amino acid results from enhanced energy
requirements, increased cell division and protein synthesis,
associated with specific oncogenic modifications in the targeted
membrane transporters (70). An increased expression of
receptors in the vasculature of tumor lesions also contributed
to amino acid uptake (71). The use of radiolabeled amino acids,
mainly 11C-methionine, 18F-FDOPA, and 18F-FET in gliomas,
andmore specifically glioblastomas, is actively being investigated.
The RANO working group and the European Association for
Neuro-Oncology published recommendations for the use of
these PET tracers in routine clinical practice to differentiate
neoplastic and non-neoplastic lesions, define tumor extent before
surgical resection, evaluate the quality of resection with post-
operative control and search for tumor residue, determinate
biopsy site, assess prognosis before or after treatment, determine
MTV as part of radiotherapy planning, perform therapeutic
evaluation of adjuvant treatments, differentiate post-therapeutic
modifications and tumor recurrence, and monitor adjuvant
therapy (69–72).

11C-METHIONINE

The first radiolabeled amino acid explored was 11C-methionine,
however, the short half-life of 20min for 11C restricts its use to
the rare facilities with on-site cyclotron.

Contrary to 18F-FDG, which does not allow benign lesions
to be differentiated from malignant lesions in the case of iso-
or hypo-metabolic lesions, performances for 11C-methionine
are excellent (sensitivity and specificity of 89 and 100%,

respectively). Moreover, 11C-methionine binding correlates with
the proliferation index (73).

11C-methionine allows the distinction between low-grade
and high-grade tumors. Lopci et al. showed a more intense
11C-methionine uptake in primary glioblastoma compared to
other gliomas. The captation significantly correlated with IDH1
mutation status in the majority of gliomas, with the exception of
glioblastomas (74).

It may a good substitute for 18F-FDG in guiding stereotactic
biopsy owing to better performances in sensitivity and specificity,
especially in lesions with no 18F-FDG uptake or uptake less than
or equal to that of gray matter (75, 76).

Conflicting results remain in differentiating between radiation
necrosis and tumor recurrence. 11C-methionine was first
identified as better than 18F-FDG and 11C-choline (77).
However, Kim et al. failed to prove a significant difference
in discriminating radiation necrosis from tumor recurrence.
The uptake in a radiation necrosis lesion may result from an
increased methionine metabolism and permeability induced by
reactive gliosis after radiation injury, an accumulation in glial
cells proliferating in the area of radiation necrosis and BBB
modifications (78).

It allows the refining of irradiation and reirradiation planning.
It may help identify areas at high risk of recurrence that

may benefit from a radiation boost. The fusion of PET with
11C-methionine, computed tomography (CT), and MRI results

could be a potential tool in the reirradiation of glioblastoma
recurrences. The target volume delineation may be improved
by better discriminating post-therapeutic modifications of tumor
zones to spare healthy tissues and thus improve the therapeutic
ratio (79, 80). This fusion-based radiation planning significantly
improved the survival in reirradiated patients compared with
patients for whom radiation planning was based on CT/MRI
alone (81).
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It contributes to the management of patients undergoing
treatment with temozolomide. A small series reported that
tumor response could be evaluated after three cycles of
chemotherapy, with the absence of progression correlated with
tracer uptake stability during the next three cycles. The stable
or decreased uptake on metabolic imaging was consistent
with clinical stability. A decreased uptake was associated with
a significantly longer time to progression (TTP) compared
with increased uptake (82). 11C-MET-PET at 8 weeks allowed
identification of responders with significantly longer PFS than
non-responders (83).

Wider use of 11C-methionine is nonetheless limited by the
need for an on-site cyclotron. Other radiolabeled amino acids
have therefore been explored to overcome this restriction.

18F-FDOPA

18F-FDOPA was initially used to assess the distribution of
dopamine in patients with movement disease as a precursor
to dopamine entering into brain tumors through the L-type
amino acid transporter (LAT), without significant uptake in the
surrounding brain parenchyma, except the basal ganglia (84).
The potential interest in 18F-FDOPA in the exploration of brain
tumors was first reported by accidentally discovering a grade II
oligo-astrocytoma with 18F-FDOPA in a patient with movement
disorders and suspicion of underlying Parkinson’s disease (85).

18F-FDOPA uptake is significantly associated with LAT-
1 expression, but the linear correlation between the LAT-1
expression level and the intensity of fixation is still debated (86,
87). 18F-FDOPA transported into tumor cells does not remain
trapped. The permeability of the BBB could have an additional
and complementary effect and may be added to the increased
expression of amino acid carriers in high-grade tumors (88).

18F-FDOPA combines the successful biopharmacological
properties of amino acids and the convenient physical and
logistical properties of fluorine 18. It could replace 11C-
methionine in amino acid transport imaging in glioblastomas.
Visual analyses and SUV ratios of 18F-FDOPA compared with
11C-methionine suggest that it is an excellent surrogate for the
exploration of recurrent lesions, especially for centers without
on-site cyclotron. 18F-FDOPA may assist in grading newly
diagnosed gliomas, in planning radiotherapy, and in assessing
treatment response (89). Another advantage is the possibility
of acquiring images as early as 20min after injection, without
hindrance from the delayed basal ganglia physiological fixation,
which peaks later (85, 90, 91).

18F-FDOPA is used to discriminate high grades from low
grades. 18F-FDOPA uptake prior to the treatment of newly
diagnosed glioma has been reported to correlate with tumor
grade and proliferation. No significant correlation was reported
in recurrent gliomas (92). The correlation between uptake and
tumoral aggressiveness can help in the distinction of low-
and high-grade tumors, according to enhancement. Distinct,
although close, SUVmax thresholds have been reported (92,
93). It should be noted that glioblastoma tumor uptake may
sometimes be less intense than oligodendroglioma uptake (94).

Janvier and collaborators highlighted that other indices, such
as the SUVmean tumor/normal brain ratio or the SUVmean
tumor/striatum ratio could allow a better discrimination between
low- and high-grade tumors in routine practice (93). 18F-FDOPA
kinetics and capture revealed differences between high- and low-
grade tumors, notably differences in time–activity curves. High-
grade tumor profiles showed an early maximum followed by
a steep decrease, whereas low-grade tumors showed a slowly
declining curve (88). Conversely, some rare studies failed to
demonstrate a difference in 18F-FDOPA uptake between low-
grade and high-grade gliomas (95, 96), possibly related to
limited statistical power and differences in examination time and
duration for image acquisition.

18F-FDOPA to guide the biopsy site: the intensity of uptake
is related to the grade. Hence, 18F-FDOPA could identify high-
grade areas and could determine sites that could benefit from
radiotherapy boost (97).

However, 18F-FDOPA in planning radiotherapy was
disappointing. It allowed broader tumor delineation and
significantly wider contour of the gross tumor volume (GTV)
than that defined with MRI alone; however, the therapeutic
impact was low as almost all relapses occurred outside the
PET-GTV (98, 99).

18F-FDOPA is very useful for distinguishing radiation necrosis
and glioblastoma recurrence (100, 101). Visual analysis based on
a 5-point visual scale or semiquantitative images analysis using
lesion-to-striatum or lesion-to-normal brain tissue were accurate
in distinguishing recurrence from treatment-related changes in
110 patients followed for glioblastoma and were prognostic of
PFS. Patients with positive examinations had a 4.2 times shorter
median OS than patients with negative examinations (101).

The superiority of 18F-FDOPA over 18F-FDG is reported in
the recurrent tumor evaluation and in the differentiation between
tumor recurrence and radiation necrosis, thanks to a higher
contrast between tumor tissue and normal tissue. Sensitivity
of 18F-FDOPA was higher than 18F-FDG on visual analysis,
but comparable, and mediocre specificities were reported.
The addition of a semiquantitative analysis through a ratio
determination for 18F-FDOPA [tumor/striatum ratio (T/S),
tumor/normal whitematter ratio (T/W), and tumor/contralateral
normal brain tissue ratio (T/N)] improved specificity. A T/S
ratio of 0.75 resulted in a maximum sensitivity of 100% with a
specificity of 86%, while a T/S ratio of 1.0 resulted in a small
decrease in sensitivity (92%) with a good specificity of 95%. A
1.0 threshold in a first-line assessment or clinical suspicion of
radiation necrosis was predominant, and the 0.75 threshold in
inconclusive cases or with the suspicion of tumor recurrence
as the most likely hypothesis (Figure 3) (95). Another study
confirmed these results, with better specificities (100).

Rare false-negative glioblastoma and a few false-positive
lesions have been reported, such as acute disseminated
encephalomyelitis, neurosarcoidosis, demyelinating lesions,
and inflammatory granulations on the resection margins,
through activation of macrophages after surgery. Therefore, a
weak homogeneous circumferential fixation on the resection
margins should be considered with caution, as it may be
caused by post-operative inflammatory changes rather than
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in association with tumor recurrence and may be closely
monitored (91, 102, 103).

18F-FDOPA as a prognostic factor: The tumor to normal
tissue (T/N) ratio significantly correlated with survival in patients
suspected of glioma recurrence (104). In low-grade gliomas,
intensity of uptake may be an independent predictive factor of
disease progression and its prognostic role was proposed (105,
106). However, unexpected and somewhat paradoxical results
showed a higher capture of 18F-FDOPA by IDH-mutated grade
II and III gliomas compared to wildtype ones (107). Similarly,
a high 18F-FDOPA uptake was predictive of a low growth rate
tumor, regardless of IDH status (108).

18F-FDOPA is also used to evaluate tumor response in patients
with recurrent high-grade glioma treated with anti-angiogenic
therapy, such as bevacizumab. The absolute MTV measured 2
and 6 weeks after the treatment initiation correlated with the
tumor response (109). This predictive value based on parametric
response maps showed a correlation between evolution and both
PFS and OS (110).

As with 18F-FDG, results should be interpreted in conjunction
with MRI results and ideally using merged images if possible. In
rare cases, 18F-FDOPA may detect recurrences earlier than MRI.
Inverse association between the 18F-FDOPA uptake level and
ADC and a proportional association between the 18F-FDOPA
uptake level and the mitotic index have been reported (102, 111).

The 18F-FDOPA PET can therefore modify the management
of patients with glioblastoma owing to its performances in
diagnostic, therapeutic, and prognostic evaluation (89). Themain
drawbacks remain its cost and its availability (112).

18F-FET

To overcome the limitations for the use of 11C-methionine,
18F-labeled amino acids have been synthesized, such as 18F-
FET.18F-FET enters tumor cells through a specific amino acid
transport system (LAT) and is not metabolized or incorporated
into proteins.

18F-FET and 11C-methionine showed equivalent
performances in lesion detection to differentiate post-therapeutic
modifications from recurrences and to confirm delineation of
MTV (113). Compared with 18F-FDOPA, no significant
difference was reported in visual analysis for patients either
with primary or recurrent high-grade glioma. Semiquantitative
analysis outlined a significant difference; however, it had no
impact on the delineation of tumor volume (114).

18F-FET clinical applications included guiding biopsy, tumor
delineation, scheduling and monitoring treatment (surgery or
radiotherapy), and distinguishing between radiation necrosis and
tumor recurrence.

18F-FET to target the biopsy area in patients with
characteristic glioma lesions on the MRI. A lesion was
considered to be suspicious of tumor when it displayed a
brain/ratio>1.6 with 18F-FET. The addition of PET 18F-FET and
MR spectroscopy to conventional MRI improved the efficiency
of biopsy targeting (115).

FIGURE 3 | MRI (left), 18F-FDG PET (middle), and 18F-FDOPA PET (right) of

newly diagnosed tumors. (A) Glioblastoma. (B) Grade II oligodendroglioma.

This research was originally published in Chen et al. (95).

18F-FET results used in conjunction with MRI in tumor
delineation. Tumor delineation showed larger volumes with 18F-
FET than relative cerebral blood volume (rCBV) on perfusion-
weighted MRI (116). Combined with MRI, it would better define
the areas where tumors are likely to recur after radiotherapy
treatment (117). It also identifies post-operative residual tumors
in a more sensitive way than MRI (118). Investigating this setting
through a dual time-point imaging of FET uptake at 10 and
60min after radionuclide injection, some authors showed that
it was less time-consuming than most dynamic data acquisition
protocols but still overcomes many of the limitations of static
acquisition (119).

Differentiation between low- and high-grade gliomas. One
study reported no significant discrepancy between these tumors,
while another retrospective study reported that a tumor-to-
brain max ratio <2.5 could rule out a high-grade tumor
with a high probability (120). Some authors have highlighted
the potential contribution of dynamic acquisition. In a study
based on the SUVmax lesion/background ratio, low-grade and
high-grade gliomas showed statistically different uptakes and
could be distinguished with a 2.58 threshold. Notwithstanding,
there was a significant overlap limiting the relevance of these
tools. Conversely, the dynamic acquisitions allowed a better
discrimination through the time–activity curve, with an early
peak at 10–20min for high-grade gliomas, followed by a
decrease, vs. a sluggish growth for low-grade gliomas (121, 122).
Nevertheless, this dynamic acquisition takes two to three more
times than a static acquisition, making it difficult to implement
as routine. Early static acquisition performance at 5–15min is
sufficiently consistent to distinguish low- and high-grade tumors.
The tumor-to-brain ratio (TBR) was more accurate on such early
images than at 20–40min, thanks to a higher ratio for high-grade
tumors on the early images. However, the calculation of this early
ratio remained less precise than the dynamic acquisition for this

Frontiers in Oncology | www.frontiersin.org 7 November 2019 | Volume 9 | Article 1134

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Moreau et al. PET Tracers in Glioma

objective (123). Although it is a powerful tool to distinguish low-
and high-grade glioma, histological analysis remains the gold
standard (124).

18F-FET for the differentiation between post-therapeutic
modifications and relapses. 18F-FET is useful to distinguish
recurrence from radiation necrosis, with its low uptake after
acute radiation necrosis due to BBB leakage. The ratio between
the radiation necrosis captation and the normal cortex uptake
is lower for 18F-FET compared with 18F-FDG and 18F-
fluorocholine (67).

Metabolic characteristics were explored in patients with
gliomas after treatment with various therapeutic approaches
and suspicion of recurrence. An intense and focal uptake
suggests relapse, whereas a weak homogeneous uptake on the
resection bed was rather in favor of benign post-therapeutic
modifications (125).

However, these results are still being debated, and Mehrkens
and collaborators adjusted these results. The examination could
not replace the stereotactic biopsy (126).

The additional dynamic data mentioned above can help in
differentiating low-grade from high-grade glioma tumors but
also allows the discrimination of recurrences from radiation
necrosis and would have a prognostic contribution. A mean
tumor/brain ratio ≥2.0 on static images or a time-to-peak
<45min on dynamic images improves the accuracy in the
discrimination of glioma recurrences from post-therapeutic
changes compared to MRI. It would outperform MRI in this
setting (127–129).

18F-FET can also be used to differentiate an early
progression after a radiochemotherapy completion from a
pseudoprogression, with an uptake significantly higher in early
progression than in pseudoprogression. The optimal TBR
maximal threshold value for pseudoprogression was 2.3. The
patients with pseudoprogression had significantly longer OS
than the patients with early progression (130). The dynamic
acquisition would also identify a late pseudo progression,
defined as occurring beyond 3 months after completion of
radiotherapy (131).

Despite its performances in differential diagnosis between
the post-therapeutic modifications and recurrent changes, its
specificity and image analysis remain somewhat controversial
and debated. Increased amino acid tracer uptake may also occur
in non-neoplastic lesions or processes (e.g., ischemic stroke, local
infections related to a brain abscess, inflammatory processes such
as multiple sclerosis, status epilepticus) (132–135).

Prognostic role of 18F-FET: The MTV was identified as
an independent prognostic factor. A small MTV before any
treatment or just after surgery before radiochemotherapy
correlated with an increased OS and PFS (136–138). A TBR
threshold ratio of 1.6 would correlate with OS and with
disease-free survival (DFS), and would allow—after surgery
and before adjuvant radiochemotherapy—the residual tumor
volume to be accurately determined in order to improve
the delineation. Similarly, an increased time–activity curve at
baseline examination is a factor associated with a prolonged
OS (137). 18F-FET has a predictive role in early response
to radiochemotherapy. The patients with an 18F-FET uptake

decrease >10% estimated by the TBRmax on an examination
performed 7–10 days after treatment discontinuation would have
a longer median OS (139).

These results were relatively consistent with those of other
studies (140). Nevertheless, the modification of the kinetics
parameters on the dynamic acquisition during treatment had no
prognostic impact (141).

18F-FET complementary role to MRI for therapeutic response
assessment: Response to bevacizumab and irinotecan therapy in
patients with high-grade glioma recurrence was discordant in
40% of cases. 18F-FET showed tumor progression earlier than
MRI. A PET response—defined as a reduction of more than
45% of the metabolically active tumor volume, that is, with a
TBR ≥1.6—was observed at an early stage. This PET response
significantly correlated with increased median PFS and OS. A
TBR reduction ≥17% at follow-up allowed the discrimination
of responders (PFS ≥6 months) from non-responders (PFS
≤6 months) with good performances. Interestingly, at baseline,
kinetics characteristics, such as an early peak of capture
followed by a decrease, were more often observed in non-
responder patients (142). A few years earlier, a similar study,
using the same response criteria, had found consistent results.
In more than one third of the cases where MRI failed to
demonstrate progression according to the RANO criteria, 18F-
FET PET detected progression. Survival was significantly higher
in responders than in non-responders (143). This approach
could be cost-effective while avoiding continuation of ineffective
treatment with associated side effects and costs. These medico-
economic aspects should also be considered in the area
of personalized medicine, where costs associated with new
treatments, such as targeted treatments and immunotherapy, are
soaring (144).

18F-FET may contribute to improving management of
patients pursuing a tumor-treating field (TTF) therapy. This
innovative treatment consists of using transducers to deliver
an electric wave, transformed into electromagnetic energy to
the scalp. The low-intensity and intermediate-frequency waves
(200 kHz) generated in the brain are toxic to cells. It prevents
neoplastic cell division and causes neoplastic cell death, with
no significant effect on normal quiescent cells. This adjuvant
therapy with temozolomide improves PFS and OS in patients
who have completed initial radiochemotherapy treatment. The
18F-FET TBRmax and TBRmean ratios have been proposed to
discriminate relapses from post-therapeutic changes (145).

The recent advances are no longer limited to studying the
standard static and dynamic parameters of 18F-FET. Radiomics
parameters based on textural features can be associated with
reflect tumor heterogeneity, with good performances in the
subgrading of high-grade gliomas (grade III vs. grade IV);
they have a predictive role for tumor progression and correlate
with OS (146). Kebir and collaborators highlighted their role
in the detection of pseudoprogression (147). In addition,
the combination of conventional static and dynamic criteria
with radiomic parameters allows a non-invasive prediction
of IDH status with good performances (148). The current
drawbacks of such parameters are that textural feature analysis
is influenced by image quality, especially by the spatial
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resolution, and post-processing of image data is complex
and time-consuming.

According to Galldiks and collaborators, 18F-FET should
be preferred to other radiolabeled amino acids because of its
logistical advantage, thanks to its 18F radiolabel, the absence of
striatum uptake, and the accurate discrimination between high-
and low-grade glioma with kinetics parameters from dynamic
acquisition (149). However, it is not available in all countries.

RADIOLABELED NUCLEOSIDE ANALOG:
18F-FLT

18F-FLT is a thymidine analog that is phosphorylated by
thymidine kinase-1, an enzyme whose activity is increased
in tumor cells, and that operates during the DNA synthesis.
However, this substrate is not incorporated into DNA (112). 18F-
FLT capture requires the rupture of the BBB and reflects cell
proliferation—more precisely, the fraction of tumor cells in the
S phase (150).

The use of 18F-FLT in grading gliomas: Glioblastomas display
a higher uptake ratio than astrocytomas (p< 0.01) (151). 18F-FLT
uptake significantly differs according to the lesion/background
ratio in high- and low-grade tumors from different brain benign
and neoplastic lesions. The proliferation index (Ki-67) correlates
with the 18F-FLT fixation in gliomas. However, 18F-FLT failed
to distinguish non-tumor lesions from low-grade tumors (152).
18F-FLT use was more efficient than 18F-FDG in detecting
recurrences of high-grade tumors, predicting tumor progression
and survival in the follow-up of patients with low- and high-
grade gliomas, and 18F-FLT results correlated with the Ki-67
proliferation index (153).

Role of 18F-FLT in discriminating radiation necrosis from
tumor recurrence: Enslow and collaborators have demonstrated
the potential use of 18F-FLT in patients with suspected recurrence
of treated gliomas of grade ≥II: visual and quantitative analysis
allows distinction between radiation necrosis from tumor
recurrence. However, 18F-FLT failed to prove its superiority in
this setting compared to 18F-FDG (154).

The prognostic role of 18F-FLT. The proliferative volume is
a prognostic factor before treatment. The proliferative volume
assessed through the signal-to-background ratio (SBR) for an
adaptive threshold delineation (PVSBR) segmentation method
in patients followed up for high-grade gliomas was significantly
associated with OS compared with SUVmax or with the
proliferative volume estimated according to other segmentation
methods (155).

The predictive role of 18F-FLT in assessing response to
treatment: Metabolic changes at 2 and 6 weeks after treatment
initiation significantly correlated with PFS and OS in patients
followed for glioma after bevacizumab administration, the
metabolic response being defined as a decrease equal to or
greater than 25% in tumor 18F-FLT standardized uptake values
from baseline. The subsequent median OS was 3.3 times longer
in responders than in non-responders. 18F-FLT PET was more
predictive than MRI for early response to treatment (156). These
results confirm prior results in recurrent malignant gliomas

treated with bevacizumab and irinotecan. Whether earlier
imaging at 1–2 weeks could be a predictive factor as accurate
as later imaging at 6 weeks remains to be confirmed (157).
Dynamic acquisitions have shown their interests in predicting
survival in patients followed for recurrent glioma treated with
bevacizumab and irinotecan. The prognostic value of kinetic
parameters of 18F-FLT, estimated 2 weeks after the beginning of
the treatment, was more relevant than that of 18F-FDOPA (158).
The parametric response maps modifications correlated with PFS
in patients treated with bevacizumab. However, the 18F-FLT was
not associated with OS (110).

HYPOXIA IMAGING: 18F-FMISO AND
18F-FAZA

18F-FMISO is a hypoxia tracer. It is a nitro-imidazole derivative
whose metabolites are blocked in hypoxic cells. It is a positive
tracer of hypoxia; its uptake is inversely proportional to the
partial pressure in oxygen. It diffuses into the cells, is reduced
in the case of hypoxia, and then remains trapped in the cells.
Its role could be crucial because hypoxia is related to tumor
aggressiveness and resistance to radiation treatment. Its uptake
does not depend on the strength of the tumor perfusion or on the
BBB permeability (159). Its uptake is significantly correlated with
the Ki-67 proliferation index (160).

Its main drawback is its lipophilicity, which generates a
high background activity and requires both early and delayed
acquisitions (112).

18F-FMiso is complementary to MRI. 18F-FMISO uptake
straddles the peripheral area of the anomalies found in T1
gadolinium, supporting the principle that local hypoxia leads to
the production of angiogenic factors, themselves leading to the
creation of neovasculature (161).

Use of 18F-FMISO to discriminate glioblastomas from
other gliomas: An intense and significant fixation relative to
surrounding cerebral background has been reported in patients
with glioblastomas compared with those with other gliomas.
The sensitivity and specificity in glioblastoma detection were
higher using 18F-FMISO than using 18F-FDG. Similarly, the
lesion/cerebellum ratio was higher in patients followed for
glioblastoma than in non-glioblastoma patients, without overlap
between these two groups (162).

Hypoxia measured on 18F-FMISO PET as prognostic
factor: An increase in SUVpeak before treatment with
radiochemotherapy was associated with a shorter OS in
patients followed for glioblastoma (163). Similarly, the intensity
and volume of tumor hypoxia in glioblastomas are significantly
correlated with time to progression and survival (162, 164, 165).

18F- Fluoroazomycinarabinofuranoside (18F-FAZA), another
tracer of hypoxia, displays a better signal-to-noise ratio due to less
lipophilic properties and greater clearance. It may help identify
small hypoxic tumor areas confined in hypometabolic necrotic
areas, as revealed with 18F-FDG. These data would be of potential
interest for radiotherapy planning (166).

Hypoxia is a poor prognostic factor, causing resistance to
radiation therapy, leading to poorer local control. Using these
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TABLE 1 | Advantages and drawbacks of main radiotracers used in gliomas investigation in functional nuclear imaging.

Physiopathology Advantages Drawbacks

18F-FDG Carbohydrate

metabolism

- Availability

- Help in guiding biopsy

- Prognostic role

- Predictive role

- Physiological brain fixation (false negative)

- Lack of specificity (false positive)

- No differentiation between low- and high-grade lesion

- Disappointing in recurrence from radiation

necrosis differentiating

- Disappointing in radiotherapy planning

11C-choline and

18F-Fcholine

Cell membrane

metabolism

- Grading gliomas

- - Recurrence from radiation necrosis differentiation

- Rare false positive and false negative

- No differentiation between low-grade gliomas and

non-neoplastic lesions

11C-methionine Amino acid transport - Grading gliomas

- Help in guiding stereotactic biopsy

- Radiotherapy planning

- - Predictive role

- Limited use to on-site cyclotron

- Controversial and results in differentiation between

radiation necrosis and tumor recurrence

18F-FDOPA Amino acid transport - Logistical advantage thanks to its 18F radiolabel

- Early acquisition

- Grading gliomas

- Guiding biopsy

- Radiotherapy planning

- Recurrence from radiation necrosis differentiation

- Prognostic role

- Predictive role

- Disappointing in radiotherapy planning

- Availability compared to radiolabeled -PSMA

18F-FET Amino acid transport - Logistical advantage thanks to its 18F radiolabel

- No striatum uptake

- Dynamic acquisition

- Grading gliomas

- Guiding biopsy

- Radiotherapy planning

- Recurrence from radiation necrosis differentiation

- Prognostic role

- - Predictive role

- Availability

18F-FLT DNA synthesis - Grading gliomas

- Prognostic role

- Predictive role

- No distinction between non-tumor lesions and low-

grade tumors

- Compared to 18F-FDG no superiority in discriminating

radiation necrosis from tumor recurrence

18F-FMISO and

18F-FAZA

Hypoxia imaging - Discriminating glioblastomas from other gliomas

- Prognostic role

- Radiotherapy planning: boost on small hypoxic

tumor areas

- 18F-FMISO: requires realization of early and delayed

acquisition due to a high background activity

68Ga-PSMA and

18F-PSMA

Endothelium of

tumor-associated

neovasculature imaging

- Differenciation between radiation necrosis and

recurrence

- Identification of residual disease immediately after

surgery

- Possible role in characterizing high and low-grade

glioma

- Role in peptide therapy to be investigated

- Cerebral necrosis as a possible pitfall and possible

false positive

hypoxia tracers, identification of these intratumor hypoxic areas
would make it possible to increase radiation doses to the
whole tumor or to specifically target the hypoxic zones (167).
However, it should be noted that there is temporal and spatial
variability of small hypoxic and necrotic zones, which could
compound the role and contribution of hypoxia imaging in
tumor exploration (168).

NEW TRACERS UNDER DEVELOPMENT IN
THIS SETTING

Each aforementioned tracer has shortcomings (Table 1),
which hamper PET imaging in playing a major role in

glioblastoma management (169). The unexpected role of the
transmembrane glycoprotein prostate-specific membrane
antigen (PMSA) encoded by the FOHL1 gene, and overexpressed

in prostate adenocarcinomas, may overcome some drawbacks.
Radiolabeling of PMSA with the positron emitter gallium 68

is readily available, thanks to a 68Ge/68Ga on-site generator.
It can also be radiolabeled with 18F, such as 18F-DCFPyL
or 18F-PSMA-1007, but synthesis with cyclotron sites is not

achievable (170). PMSA can be targeted with small molecular

ligands, such as 68Ga-(HBED-CC), also named 68Ga-PSMA-11.
The key role of this PMSA in prostate cancer care tends to

replace 18F-fluorocholine PET/CT and bone scan to become a
standard (171–175).
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FIGURE 4 | (A) Maximum intensity projection 68Ga-PSMA (MIP), (B,C)
68Ga-PSMA axial PET/CT fusion demonstrating a non-homogeneous uptake in

the right parietal mass (B) and a lower uptake in the left auditory neuroma (C),

(D,E) 18F-FDG axial PET/CT fusion showing an increased uptake comparable

to that in the gray matter in the parietal tumor (D) and no uptake in the

neuroma (E). This research was originally published in Kunikowska et al. (186).

PSMA is not specific to prostate cancer. PSMA is highly
expressed in many other cells, such as renal proximal
tubular epithelium and duodenum columnar epithelium. PMSA
is also expressed in the endothelium of tumor-associated
neovasculature but never in malignant tumor cells themselves
nor in normal vessels (176–178).

This was confirmed in a recent study, which demontrates that
two thirds of glioblastoma neovasculatures express PSMA with a
high and moderate intensity in most cases, with no correlation
between PSMA expression and endothelial proliferation (179).

Glioblastoma multiformes, among the most vascularized
tumors, also express PSMA, which could represent a new target
of choice. Compared to glioblastomas, grade II and III gliomas
have a weaker expression, with predominant expression located
not on vessels, but on astrocytes. Normal cerebral parenchyma
expresses little or no PSMA either in brain cells or vessels (180,
181). The PSMA may be implicated in angiogenesis through
its participation in the destruction of the extracellular matrix
during the invasion by neovessels and modulation of the integrin
transduction signal in a complex way (182). Its folate activity may
facilitate angiogenesis and vasculogenesis by increasing local folic
acid availability.

However, Gordon and collaborators reported a PSMA
overexpression in some non-neoplastic neovasculatures involved
in repair and regeneration mechanisms, such as granulation
tissues and scars (183).

The visualization of glioblastoma with 68Ga-PSMA has
previously been reported and is a potential false positive and can
be the source of pitfalls (184, 185). A few case reports have shown
glioblastomas with PSMA radiolabeled with either 68Ga or 18F,
the intense uptake being consistent with contrast-enhancing
tumor on MRI (Figure 4) (186–188).

Sasikumar and collaborators compared 68Ga-PSMA PET/CT
and 18F-FDG PET/CT in a series of 10 patients followed

for various brain tumors, including five patients suspected of
glioblastoma recurrence, with the aim to characterize the lesions
or to make the differential diagnosis between radiation necrosis
and recurrence. The authors highlighted the superiority of 68Ga-
PSMA over 18F-FDG, owing to an advantageous target-to-
background ratio. The four glioblastoma relapses were correctly
and easily identified (189).

The same team later published a series of 15 patients followed
for gliomas, including 10 glioblastomas, imagedwith 68Ga-PSMA
PET/CT. The authors confirmed previous results in patients
for post-treatment recurrence assessment. The examination also
identified the residual disease immediately after surgery more
clearly than MRI.

However, a case of cerebral radionecrosis demonstrating 18F-
DCFPyL uptake has been published, highlighting this entity as a
possible pitfall while interpreting this examination (190).

Characterizing high- and low-grade glioma in treatment-
naive patients, Verma et al. demonstrated higher 68Ga-PSMA-
11 uptake and tumor-to-background ratio in high-grade glioma
than in low-grade ones. PSMA SUVmax and MIB-1 both
correlated with the tumor grade (191).

Further evidence from robust studies are needed to
define the precise role of this imaging in the evaluation of
gliomas (evaluation of recurrences, radiotherapy planning, and
immediate post-surgery restaging, among others) (192).

Whether it could be used in peptide therapy with α or β-
emitters is still being discussed. The effectiveness of such a
treatment could be reduced by the distance to be covered by
the β- to reach the tumor cells, the PSMA being expressed by
the neovessels, and not by the glial cells themselves. The absence
of tracer internalization in glial cells hinders its theranostic use.
The radiation on the neovessels and its potential tumoricidal
efficiency can only be speculated. Dosimetric studies are required
(186, 193).

Many other tracers have been proposed and studied (57).
Matsuda and collaborators successfully imaged PSMA

expression in three patients followed for recurrent high-grade
gliomas and brain metastases using 89Zr-Df-IAB2M anti-PSMA
minibody and outlined a trend for the binding intensity of
this tracer to correlate with PSMA expression level in tumor
vessels. This tracer may play a role in distinguishing between
post-therapeutic recurrence and radiation necrosis, as well as
in predicting efficacy and evaluating tumor response under
bevacizumab (194).

Somatostatin receptors, especially SSTR2 subtype, are
overexpressed in neuroendocrine tumors, allowing their
visualization with 68Ga-radiolabeled somatostatin analogs, such
as 68Ga-DOTATATE. These receptors are also overexpressed in
activated macrophages, leading to false-positive inflammatory
lesions. Some authors studied the potential use of 68Ga-
DOTATATE to assess glioblastomas that belong to the wide
group of tumor-associated macrophages. They failed to prove
the interest of 68Ga-DOTATATE because of a weak SSTR2A
expression on the cell surface of infiltrating macrophages and on
tumor cells (195).

Other investigations explored the interest of radioguided
surgery with β- isotopes in high-grade glioma. The aim of this
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technique, based on the same rules as sentinel node mapping,
is to help the surgeon during resection to evaluate the extent
of the resection and to maximize the resection margins while
minimizing the peripheral parenchyma resection surrounding
the lesion. A tumor-specific tracer, in this case 90Y-DOTATOC,
was injected before surgery. Its radiolabeling with a β- emitting
isotope makes it possible to get rid of the background noise
obtained with a gamma isotope. Specific detection probes were
used to collect information in real time. Although it was less
interesting than in meningioma because of a lower uptake, the
tumor-to-non-tumor ratio was strong enough to support the
use of this technique in high-grade gliomas (196). The place of
this tracer in glioblastoma evaluation remains uncertain, with
probably less potential impact than for meningiomas, due to the
low expression of these receptors by tumor cells.

11C-alpha-methyltryptophan (AMT) could be an alternative
to 11C-methionine, but this does not avoid the need for on-
site cyclotron (57). It has demonstrated its value in both
discrimination between radiation necrosis and recurrence and
in the detection of post-therapeutic recurrences. This tracer
is accumulated in cells of gliomas and metabolized by the
kynurenine pathway, without being incorporated into proteins.
Kinetic analyses on dynamic acquisitions allowed precise
discrimination between recurrence and radiation necrosis. The
tracer also has a prognostic role, the intensity of fixation being
correlated with OS (197, 198).

18F-fluciclovin, also called anti-[18F]FACBC, a new 18F-
labeled amino acid, was tested in patients followed for gliomas
in a phase II study. The authors concluded that this radiotracer
was safe, and that it was able to delineate the gliomatous invasion
in cases where it could go unnoticed on the MRI (199).

Another amino acid pathway is glutamine, which
together with glucose, is one of the two nutrients necessary
for cell proliferation and survival. A radiolabeled 18F-
glutamine analog 4-18F-(2S,4R)-fluoroglutamine or 18F-FGln
demonstrated a very high lesion/background ratio, no uptake
in neuroinflammatory lesions, an absence of leakage through
the permeable BBB, and a correlation between the decrease in
its fixation and tumor shrinkage. It succeeded in displaying

a suitable lesion/background ratio in a patient followed for a
glioblastoma (200).

11C-(R)PK11195, selectively binds to a mitochondrial
translocator protein (TSPO), which is upregulated in high-
grade astrocytomas but not in healthy brain parenchyma. This
tracer has theranostic potential by being a potential target
for targeted treatments or for the passage of nanoparticles.
TSPO was expressed predominantly by neoplastic cells,
and its ligand, 11C-(R)PK11195, binds more strongly in
high-grade gliomas than in low-grade gliomas. However, its
11C radiolabeling could limit its use (201). Other TSP-18F
radiolabeled ligands, the 18F-DPA-714, with higher binding
potential achieved visualization of gliomas in preclinical
studies (202). Another 18F-labeled ligand investigated in
patients followed for pre- or post–treatment glioblastoma,
the 18F-GE-180, displayed a significant tumor-to-background
contrast. The PET volume based on tracer uptake was larger
than the volume based on MRI-enhanced tumor, thanks
to tumor areas capturing the 18F-GE-180 even outside the
areas enhanced on MRI. Broader prospective studies with
histological comparison are needed to eliminate uptake related
to inflammation (203).

Recent studies on 68Ga-radiolabeled bombesin analogs in
glioma exploration are emerging. NOTA-Aca-BBN (7–14) (or
68Ga-BBN) tested in volunteer patients and patients followed for
gliomas had no side effects and an advantageous dosimetry. The
binding intensity correlated with the expression level of gastrin-
releasing peptide receptor. The authors stressed the potential
theranostic role of this tracer (204, 205).

62Cu-diacetyl-bis (N4-methylthiosemicarbazone), more
simply named 62Cu-ATSM, could replace 18F-FMISO in the
imaging of hypoxic metabolism in gliomas. The binding of
62Cu-ATSM was significantly higher in glioblastoma than in
grade III glioma. Uptake correlated with the expression of the
HIF-1 marker (206).

Acetate is a potential source of energy, which can
be radiolabeled with 11C. In a study involving patients
followed for gliomas, including glioblastoma, this
tracer compared to 18F-methionine and 18F-FDG had

TABLE 2 | Main radiotracers performances in gliomas recurrence distinction and in discriminating recurrence from post-therapeutic modifications.

Sensitivity % Specificity % Positive predictive

value %

Negative

predictive value %

Accuracy %

18F-FDG 43–100

(29, 42, 68, 77, 78, 100, 152)

40–100

(29, 42, 68, 77, 78, 100, 152)

80–00

(100, 152)

20–38.9

(100, 152)

60.7

(100)

11C-choline and

18F-Fcholine

73.5–92.3%

(68, 77)

87.5%

(68, 77)

NA NA NA

11C-methionine 75–91.2%

(77, 78)

87.5–100

(77, 78)

NA NA NA

18F-FDOPA 84–100

(95, 100, 101)

62.1–100

(95, 100, 101)

89.6–100

(95, 100, 101)

63.4–100

(95, 100, 101)

78–97

(95, 100, 101)

18F-FET 84–100

(126, 128–130)

86–100

(126, 128–130)

84–100

(125, 128)

NA 85–96

(128–130)

18F-FLT 82.1

(152)

50

(152)

73.3

(152)

26.7

(152)

NA
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a sensitivity of 90% in glioma detection (vs. 100 and
40%, respectively). Its uptake was significantly higher
in high-grade gliomas than in those of low-grade (207).
These results were further confirmed by another study,
showing a significantly higher uptake and tumor/cortex
(T/C) ratio for high-grade gliomas than for low-grade
gliomas (208).

The 18F-labeled-2-(5-fluoro-pentyl)-2-methyl-malonic acid
([18F]ML10) is a useful tracer for apoptosis that characteristically
highlights cells that have acquired permanent membrane
depolarization. This tracer used in a small series of patients
followed for glioblastoma failed to prove a correlation between
changes in tracer uptake and time to progression. The authors
hypothesized that this failure was secondary to a variable rate of
cell growth and death between the different lesions (209).

Some authors explored integrin-specific radiopharmaceutical
αvβ3,

68Ga-BNOTA-PRGD2 (68Ga-PRGD2), in glioma. This
tracer accumulated in integrin-rich lesions (overexpressed
especially in neovessels and glioma cells) and in choroid
plexuses, but not in the rest of the healthy cerebral
parenchyma in a small series of patients with high-grade
gliomas. SUVmax and TBRmax were both significantly
correlated with tumor grade, and 68Ga-PRGD2 was greater
than 18F-FDG in distinguishing low-grade glioma from
high-grade glioma, even allowing discrimination between
grade III glioma and grade IV glioma (210). These results
confirm prior results in patients with glioblastomas, with
another tracer radiolabeled with 18F, the Arg-Gly-Asp peptide
(18F-galacto-RGD) (211).

18F-AlF-NOTA-PRGD2 (18F-RGD), another integrin-specific
tracer, may play a predictive role in assessing early response to
chemotherapy (212).

However, these tracers are only under experimentation,
further larger studies are needed, including prospective clinical
trials comparing these innovative tracers to the current more
standard radiolabeled amino acids.

Finally, the development of PET-MRI opens up the possibility
to study the various PET and MRI parameters in a single
investigation and in a relatively short time. The problem of the
attenuation correction is not perfectly solved and the high cost
of such equipment is nevertheless a major constraint on their
uptake (213).

SYNTHESIS AND OUTLOOK

Due to the emergence of new different therapies in the
management of glioblastoma and poor prognosis of this disease,
it is crucial to have reliable evaluation imaging.

PET imaging is an additional tool that should be used in
conjunction with MRI, thanks to these numerous tracers and
their multiple contributions. Despite an insufficient role in the
differentiation between tumor recurrence and radiation injury,
18F-FDG still plays an important prognostic role. Regarding the
use of radiolabeled amino acids, the spread of 11C-methionine
is hampered by the need for on-site cyclotron. The 18F-FET and
18F-FDOPA are more easily accessible, thanks to their fluorine-
18 radiolabeling, with excellent properties at all grades of the
pathology. They display reliable performances in distinguishing
post-radiation-related modifications and tumor recurrence
(Table 2) and improved early assessment of tumor response
during antiangiogenic treatment. These tools are currently
recommended in equivocal situations only. The developement
of 68Ga-PSMA seems very promising in the distinction between
radiation injury and relapse. Its synthesis is straightforward
to implement, and its availability makes it a potentially more
accessible and less expensive tracer. Early distinction of tumor
recurrence from a post-radiation complication at a lower cost is
of paramount importance because of the soaring costs of targeted
treatments. Considering the poor prognosis of this pathology,
no time should be lost due to indecision. Another potential
advantage of PSMA is its possible theranostic use. However, the
precise place of this new tracer is yet to be defined, and powerful
prospective clinical trials are needed.
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