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In multiple myeloma the mutational profile is mainly represented by translocations

involving chromosome 14 and by single nucleotide mutations, frequently involving genes

implicated in the mitogen activated protein kinase (MAPK) pathway, as KRAS, NRAS,

and, less frequently, BRAF. Because KRAS/NRAS/BRAF mutations are associated with

a higher number of mutations per patient, we hypothesize that this group of patients

could benefit from therapy with checkpoint inhibitors because of the higher frequency

of neo-antigens that this group would present. This might also true for IMiD therapy,

because of their activatory effect on T cells. Because, KRAS/NRAS/BRAF are members

of the MAPK pathway, this subgroup of patients would also benefit from inhibitors

of MAPK, either directly on the specific mutation or through downstream targeting of

MEK1/2 or ERK1/2 to account for a possible compensatory collateral signaling that might

activate as response to upstream inhibition.
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Multiple myeloma (MM) is a hematological malignancy in which the proliferating clone is
represented by the plasma cells. The main clinical symptoms associated with this disease are caused
by paraprotein secretion, osteoclast activation, and bone marrow involvement. The end results of
the aforementioned causes are end organ damage, especially renal dysfunction, bone fractures, and
pancytopenia (1). As more and more therapeutic approaches are being developed for MM, there is
still no therapy offering a strong curative option for this disease (2).

The genetic changes of this malignancy are generally represented by translocations involving
chromosome 14 and by single nucleotide mutations. The latter frequently involving genes
implicated in the mitogen activated protein kinase (MAPK) pathway, generally represented by
KRAS, NRAS, and, less commonly, by BRAF. Because of the high frequency of these mutations
in MM, we hypothesize that they can be targeted either directly or downstream the activating
mutation, for example at the level of MEK1/2 or ERK1/2 (3–5).

MM treatment consists mainly in the use of proteasome inhibitors (PIs), immunomodulatory
drugs (IMiDs), glucocorticoids, and biological agents. Because MM is considered an incurable
disease, efforts have been made to develop or to use drugs already approved for other diseases
to improve the prognosis of MM (6). One such attempt is represented by the use of checkpoint
inhibitors. Many of those trials were not successful either because of too low efficacy, as in the
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case of monotherapy or were discontinued due to toxicity, in the
case of the combinations of checkpoint inhibitors with IMiDs
(6). The toxicities of combining an IMiD with a checkpoint
inhibitor are hypothesized to have arisen because of IMiDs effect
on increasing the activation and tumor infiltration of effector
T cells. This was hypothesized to improve the tumor-killing
potential of T cells when associated with a checkpoint inhibitor,
but only determined a raise in autoimmune complications with
no improvement in efficacy. This was thought to be caused
by the fact that T cells infiltrating MM are generally senescent
and not exhausted, thus checkpoint inhibitors not being able to
significantly enhance the activity of T cells within the MM (6, 7).

As a proof-of-concept, we analyzed the data published
by Lohr et al. on MM using the cBioPortal (8–10). The
inclusion criteria included patients with MM, of Caucasian race
and available mutational profile. Data analysis was performed
using R 3.5.3. Clustering was performed with hierarchical
clustering using Euclidean distances and the complete method.
Dummy coding was applied to use hierarchical clustering on
dichotomial variables. Categorical variables were represented
as absolute value (percent). Contingency tables were analyzed
using Fisher test. Benjamini–Hochberg p adjustment method
was used for repeated analyses. Normality of the distribution
was assessed using Shapiro test and histogram visualization.
Differences between two non-normally distributed groups were
assessed using Wilcox test. The model used for determining
the chromosomes harboring a different number of mutations
between the designed groups used repeated use of t statistic with
Benjamini–Hochberg adjustment. In the aforementioned model
both p-value and adjusted p-value were assessed. A p-value under
0.05 was considered statistically significant.

Using the aforementioned criteria, we included 150 patients
in the current study. Mutations present in more than 10 patients
are represented in Figure 1. For a relevant coverage we selected
all mutated genes that occurred in more than five patients and
used them for hierarchical clustering. After removing the outliers,
116 (77.3%) patients remained with 37 (31.9%) in one cluster,

FIGURE 1 | Oncoprint representation of the frequency and characteristics of genes mutated in more than 10 patients of the selected cohort.

and 79 (68.1%) in the other. Comparing the two clusters we
observed that KRAS, NRAS, and BSN were the genes different
between the two groups considering the adjusted p-values. Also,
a different segregation of KRAS and NRAS mutations was
observed, each being enriched in one of the clusters (Figure 2).
Considering that clustering was highly influenced by KRAS
and NRAS and the current literature on MAPK in MM (3, 4),
we decided to split the initial cohort in KRAS/NRAS/BRAF
mutated vs. non-mutated. Seventy-four (49.3%) patients had
mutations in KRAS/NRAS/BRAF. Four (2.66%) patients had two
overlapping mutations. The clinical and sample variables were
not different between the two groups (Table 1). Considering the
mutation data, there were a total of 5.531 distinct genes mutated
between all patients. The total number of mutated genes per
patient was significantly different between the two groups with
more mutations in the KRAS/NRAS/BRAF group (p = 0.0107)

FIGURE 2 | Frequency of mutations present in more than 10 patients of the

selected cohort between the two clusters that resulted from using a cut with

k = 2 of the hierarchical clustering.
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(Figure 3). Considering this, we hypothesized that the higher
number of mutations per patient might be caused by more
frequent mutations in DNA damage repair genes. For genes
implicated in DNA damage repair we used the list published
by Chae et al. (11). There was no different enrichment in genes
implicated in DNA damage repair between the two groups.

The following step was to determine if these mutations are
enriched in different chromosomes between the MAPK and
non-MAPK groups. Because of the low mutational count, we
removed chromosome Y. Chromosomes that were different
between the two groups considering the p-value, but not the

TABLE 1 | The clinical and sample variables were not different between the two

analyzed patient cohorts.

Non-MAPK MAPK p-value

n = 76 n = 74

Median age; years

(quartile 1, quartile 3)

63.0 (56.0, 69.0) 59.5 (53.0, 67.0) 0.151

Sex Female 26 (34.2%) 26 (36.6%) 0.863

Male 50 (65.8%) 45 (63.4%)

Previous

treatment

No 39 (52%) 26 (38.2%) 0.130

Yes 36 (48%) 42 (61.8%)

Heavy chain A 12 (23%) 12 (24.5%) 0.816

G 40 (77%) 36 (73.5%)

M 0 (0%) 1 (2%)

Light chain Biphenotypic 0 (0%) 1 (1.8%) 0.620

Kappa 35 (67.3%) 41 (71.9%)

Lambda 17 (32.7%) 15 (26.3%)

Hyperdiploid No 34 (44.7%) 32 (43.2%) 0.871

Yes 42 (55.3%) 42 (56.8%)

Translocations del17p13 0 (0%) 1 (4.1%) 1

t(11;14) 14 (77.8%) 16 (66.7%)

t(14;16) 0 (0%) 1 (4.1%)

t(4;14) 4 (22.2%) 6 (25%)

FIGURE 3 | Comparison of the number of mutations between

KRAS/NRAS/BRAF mutated (Yes) vs. wild type (No).

adjusted p-value were chromosome 1 (p = 0.0153; adjusted
p = 0.176) and 12 (p = 0.00416; adjusted p = 0.0958)
(Figure 4). When adjusting for the dimension in base pairs of the
chromosome, the chromosome presenting the most mutations
per base-pair was represented by chromosome 19 (Figure 5).
Mutated genes situated on chromosome 1 and present in more
than 10 patients were NRAS, FAM46C, and RYR2, while the
gene mutated in more than 10 patients from chromosome
12 was KRAS.

When considering genemutations occurring inmore than five
patients, we observed that 143 (95.3%) presented any of those
genes mutated. After eliminating KRAS/NRAS/BRAF from the
analysis there were no differences in gene enrichment between
the two groups neither in the p-value or adjusted p-value.
From these results we hypothesize that the higher number of

FIGURE 4 | Number of mutations per chromosome between the MAPK (1)

and non-MAPK (0) groups.

FIGURE 5 | Adjusted mutation count per chromosome, calculated as number

of mutations/chromosome length in base pairs between the MAPK (1) and

non-MAPK (0) groups.
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mutations in the KRAS/NRAS/BRAF group could be attributed
to the selection criteria, as KRAS/NRAS/BRAF had the inclusion
criteria of any three frequently mutated genes. This being said,
it could still be applicable in the clinic, as we could observe
the same enrichment bias when selecting for KRAS/NRAS/BRAF
mutated MM.

Because KRAS/NRAS/BRAF mutations are associated with a
higher number of mutations per patient, we hypothesize that this
group of patients could benefit from therapy with checkpoint
inhibitors because of the higher frequency of neo-antigens
that this group would present. This might also true for IMiD
therapy, because of their activatory effect on T cells. Because,
KRAS/NRAS/BRAF are members of the MAPK pathway, this
subgroup of patients would also benefit from inhibitors of
MAPK, either directly on the specific mutation or through
downstream targeting of MEK1/2 or ERK1/2 to account for a
possible compensatory collateral signaling that might activate as
response to upstream inhibition (3–5). Moreover, because of the
known efficacy of IMiDs in MM (12), we would rather consider
the combination of MAPK inhibitors with an IMiD, rather than
a checkpoint inhibitor.

The major limitation of the study is that it presents a clinical
comment, not experimental data validated by a large patient
cohort. Thus, even if it is plausible and it may have deep clinical
impact, the manuscript should be regarded at this point as a
hypothesis, that need further extensive validation or invalidation
on a large population cohort.

Still, the current hypothesis raises several important
questions regarding the mutational burden in the MAP
kinase pathways and should be regarded as a steppingstone
toward a curative approach for MM. Two questions in
particular remain to be answered at the end of this letter:
Should we start targeting MAPK pathway in MM in the
cases where it is activated through KRAS/NRAS/BRAF
mutations? Would these inhibitors present an additive or
synergistic effect when associated with checkpoint inhibitors
or with IMiDs? This letter should stand as a hypothesis-
generating paper as the clinically relevant answer to the
aforementioned questions will most likely reside in clinical

trials on multiple myeloma focused on MAPK inhibitors and/or
checkpoint inhibitors.
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